Power Model ESESC Tutorial

Speaker: Meeta Sinha

Department of Computer Engineering, University of California, Santa Cruz http://masc.soe.ucsc.edu

Power Model

You will learn: High level view of ESESC power model Run a power simulation Use report.pl to view power numbers LibPeq

Power Model

Meeta Sinha

2

References

<u>CACTI</u>

- 1. Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. CACTI 6.0: A tool to model large caches. *Technical Report, HP Laboratories*, 2009.
- 2. Sheng Li et al. CACTI-P: Architecture-level modeling for SRAM-based structures with advanced leakage reduction techniques. *IEEE/ACM International Conference on Computer-Aided Design*, pages 694–701, 2011.

<u>McPAT</u>

3. Sheng Li et al. McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures. *IEEE/ACM International Symposium on Microarchitecture*, pages 469–480, 2009.

<u>LibPeq</u>

- 4. Elnaz Ebrahimi. Pareto-optimal methodology for cache and SRAM modeling. MS thesis, University of California, Santa Cruz, 2011.
- 5. Meeta Sinha. Equation-based power model integration in ESESC. MS thesis, University of California, Santa Cruz, 2013.

Power Model

Outline

- Overview of the ESESC power model
 - High level description of the power model
 - Structure & components
 - Configuration
- Power Model Demo & Reported values
 LibPeq
- Code structure

Dynamic Power

• Dynamic Energy =

Event Counters

Energy associated with each event.

Read accesses

- Write accesses
- Miss buffer accesses
- Branch instructions
- ALU accesses

Etc.

Power Model - Structure

Power Model - Components

Renaming Unit (RNU) iFRAT iRRAT ifreeL fFRAT fRRAT fRRAT ffreeL	Fetch Unit global BPT L1_local BPT chooser RAS BTB IB	Icache mmu-itlb ifu-icache dcache mmu-dtlb Isu-dcache Isu-dcache	Load Store Unit (LSU) Isu-LSQ Isu-LoadQ Isu-ssit Isu-Ifst
Execution Unit (EXE) EXEU fp_u int_inst_window fp_inst_window	Register File IRF FRF	Reorder Buffer(ROB)	 Array-based structures modeled by CACTI for McPAT McPAT Core Model
Power Model	Meeta Sin	iha ES	SESC

7

Outline

• Overview of the ESESC power model

- High level description of the power model.
- Structure & components
- Configuration
- Power Model Demo & Reported values
 LibPeq

Code structure

Power Model - Demo

Enable the power model and run a benchmark
Use report.pl to view the power numbers

Power Model

Reported numbers: report.pl

ESESC

11

# File : esesc_iscademo.1WQqoZ : Fri Jun 13 09:39:48 2014 ************************************	
Sampler 0 (Procs 0) Rabbit Warmup Detail Timing Total KIPS KIPS N/A 11653 525 527 6054 0.0% 49.7% 12.7% 37.6% : Sim Time (s) 16.529 Exe 1.921 ms Sim (1700 Inst 0.0% 95.6% 1.1% 3.3% : Approx Total Time 64.854 ms Sim (1700MHz)	MHz)
Proc : Avg.Time : BPType : Total : RAS : BPred : BTB : BTAC 0 : 31.074 : hybrid : 89.69% : (100.00% of 8.18%) : 94.10% : (89.23% of 35.13%) : 0.00%	
Proc : rawInst : nCommit : nInst : AALU : BALU : CALU : LALU : SALU : LD Fwd : Replay : Worst 0 : 3270620 : 6410740 : 6410881 : 62.54% : 5.86% : 0.11% : 16.79% : 14.70% : 0.00% : N/A : SUNIT	Unit (cli _AALU 1.3
Proc IPC uIPC Active Cycles Busy LDQ STQ IWin ROB Regs IO maxBr MisBr Br4Clk brDelay 0 01.00 1.96 0.90 3264934 49.1 2.1 2.1 15.1 1.5 0.0 1.8 0.0 8.9 0.0 1.4	
Cache Occ AvgMemLat MemAccesses MissRate (RD , WR, BUS) Dyn_Pow (mW) Lkg_Pow (mW) IL1(0) 0.0 3.2 2254695 0.93% (99.0%, 0.0%, 0.0%) 250 1 ITLB(0) 0.0 3.3 2254376 0.02% (100.0%, 0.0%, 0.0%) 0 0 0	number caches
DL1(0) 0.0 9.8 2510395 0.58% (98.9%, 98.3%, 0.0%) 1322 51	
L2(0) 0.0 51.6 36128 16.58% (85.7%, 26.9%, 0.0%) 0 77 L3(0) 0.0 166.0 5998 97.22% (3.2%, 0.6%, 0.0%) 0 355 MemBus(0) 0.0 141.9 5833 0.00% (100.0%, 0.0%, 0.0%) 0 36 PTLB(0) 0.0 9.9 2509957 2.39% (97.6%, 0.0%, 0.0%) 0 0	
CPU Power Metrics: (Dynamic Power,Leakage Power) Proc RF (mW) ROB (mW) fetch (mW) EXE (mW) RNU (mW) LSU (mW) Total (W) Power nun architectur	nber per al block

Power Model

Outline

• Overview of the ESESC power model

- High level description of the power model.
- Structure & components
- Configuration
- Power Model Demo & Reported values
- Power Model options
- LibPeq
- Code structure

Power Model – LibPeq (alpha)

• What is LibPeq[4,5]?

 Simplified analytical power model derived using statistical techniques on CACTI results.

• Why LibPeq?

- CACTI initialization time very high.
- CACTI covers a subset of design search space. Full exploration extremely time consuming.
- Increasing complexity of microprocessors lead to exponentially increasing design search space.

Power Model

LibPeq: Modeling Technique

- LibPeq: Pareto efficient power model.
- Keywords:
 - Pareto Efficiency : Optimal approach for analyzing tradeoff between parameters.
 - Pareto Frontier: Set of choices that are pareto efficient.

LibPeq: Modeling Technique

• **Plot**: Energy and Delay value from CACTI runs for a particular array based structure.

LibPeq - Structure

16

LibPeq Speedup

	time ese	esc
th the default out LibPeq	real user sys	1m0.626s 1m25.870s 0m26.930s
	time esesc	
th the default LibPeq	real user sys	0m37.680s 0m43.160s 0m25.720s

 Running crafty with the defaul parameters without LibPeq

 Running crafty with the default parameters with LibPeq

Power Model

Outline

• Overview of the ESESC power model

- High level description of the power model.
- Structure & components
- Configuration
- Power Model Demo & Reported value
- Power Model options
- LibPeq
- Code structure

Code Structure: Main files

Files / Directories	Significance
simu/libsampler/Powermodel.*	Main hook to the ESESC power model
pwth/libmcpat	McPAT source code (modified to support ESESC)
pwth/libmcpat/XML_parse.cpp	Reading pwth.conf, translating ESESC GSTATS to McPAT counters
pwth/libmcpat/processor.cpp	McPAT models for various blocks in a processor
pwth/libmcpat/core.cpp	McPAT models for core components.
pwth/libpwrmodel	Wrapper for the power model
pwth/libpeq	Library to parse LibPeq equations.

Code Structure: Flow Chart

Power Model

Meeta Sinha

ESESC

20

Code Structure: Pwth.conf

• McPAT to Gstat translation for membus write access [MCPwrCounterTemplate]:

- mc_write_accesses = L3:writeBack +L3:writeMiss
- Component Category mapping in *simu/libsampler/PowerGlue.cpp*

Power Model

Summary

Important Input Files

- <u>esesc.conf</u>: Enable/Disable Power Model
- <u>simu.conf</u>: Description of architecture
- <u>pwth.conf</u>: Translate GStat counters to McPAT understandable counters. (Don't modify unless you know what you are doing)
- <u>peq.conf</u>: Contains equation for SRAM and caches. CAM equation and leakage equation can be added in future.

Power Model

Questions?

Power Model

(Backup slide)Power Model – LibPeq

- LibPeq
 - Alpha version
 - Analytical model
 - Developed from statistical analysis of thousands of CACTI simulations covering exhaustive design search space
 - Significantly faster
- Only models SRAM and cache structures
- Does not model leakage

Power Model

(Backup slide)peq.conf

• Equations defined for array based structures

[SRAM_Small1]
dynamic ="exp(-4.982+2.196* ln(tech)+0.4961* ln(ports)-0.00986*
sqrt(size)+0.5464* ln(size)-0.016961* width+0.4027* sqrt(width))* (10^(-9))"

[SRAM_Large1]
dynamic = "exp(-5.446+2.094* ln(tech)+0.886* ln(ports)+0.000458*
sqrt(size)+0.5296* ln(size)-0.011965* width+0.31001* sqrt(width))* (10^(-9))"

- Included by esesc.conf
- Should not be modified (unless you know what you are doing!)

Power Model

(backup)Code Structure: Core.cpp

Important Functions:
 # not all components shown

```
Core::Core(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_)
:XML(XML_interface),
    ithCore(ithCore_),
    interface_ip(*interface_ip_),
    ifu (0),
    lsu (0),
    lmmu (0),
    lexu_ (0).
    Sub-components
```

```
void Core::computeEnergy(bool is_tdp)
```

void Core::displayEnergy(uint32_t indent,int plevel,bool is_tdp)

Power Model

Meeta Sinha

26

(backup)Code Structure: Processor.cpp

Power Model

