
Deterministic Scaling

Gabriel Southern Madan Das Jose Renau

Dept. of Computer Engineering, University of California Santa Cruz
{gsouther, madandas, renau}@soe.ucsc.edu

http://masc.soe.ucsc.edu

ABSTRACT
Deterministic execution can simplify development of multi-
threaded applications by ensuring that the same input pro-
duces the same output. However, current proposals only
enforce deterministic execution when run on the same sys-
tem. We propose deterministic scaling in which an applica-
tion runs with a fixed number of threads regardless of the
number of cores in the target system. Our evaluation shows
that in many cases this introduces less than 20% additional
overhead.

1. INTRODUCTION
Multithreaded applications are notoriously error-prone and

difficult to test [17, 18]. Programmers must consider all
possible ways that threads can interleave during execution,
and use appropriate synchronization techniques to prevent
thread interleavings which produce incorrect results. In ad-
dition, while multithreaded applications are typically devel-
oped to improve performance, the performance benefit of
increasing the number of threads is often unpredictable.

Researchers have proposed various deterministic execu-
tion [1, 3, 5, 7, 12, 14, 16, 19] systems that seek to address
problems associated with arbitrary thread interleavings in
traditional multithreaded systems. These systems constrain
thread interleavings in ways that produce deterministic re-
sults, but often the thread interleavings depend on system
parameters that may not be obvious or easily controlled by
the application programmer. In addition, none of these sys-
tems has evaluated how the number of threads spawned by
an application can change its behavior.

In this paper we propose running applications with a fixed
number of threads in order to achieve stronger determinis-
tic execution semantics. We selected the number of threads
to allow for best scalability by finding the best-performing
configuration on the system with the most cores. We then
used that number of threads on systems with fewer cores. Of
the 12 configurations we evaluated, 8 introduced less than
20% additional overhead. We also characterize existing de-
terministic execution proposals based on the determinism
guarantees that they provide to programmers.

The rest of the paper is organized as follows: Section 2 in-
troduces a categorization of deterministic execution systems;
Section 3 describes our proposal for selecting the number
of threads that an application should spawn; Section 4 de-
scribes our experimental setup; Section 5 shows our results;
Section 6 surveys related work; and Section 7 concludes the
paper.

2. DETERMINISM CLASSIFICATION
Shared memory multiprocessor systems allow multiple pro-

cessors to access any physical address in the system’s mem-
ory, and multithreaded programming models typically allow
multiple threads to access any address in a process’s virtual
memory space. As a result the sequence of memory accesses
in a parallel application can overlap in arbitrary and non-
deterministic ways. When threads in parallel applications
communicate with each other they should use some sort of
synchronization mechanism to prevent errors such as atom-
icity violations or order violations. When threads share data
without using proper synchronization, there is a data race,
while a program that has all memory accesses properly syn-
chronized is data-race free.

Additional sources of non-determinism come from the op-
erating system and program input. These sources of non-
determinism can be called external non-determinism [6] and
are not addressed in this paper. The sources of non-determinism
which this paper considers are internal non-determinism
which result from the multiple different thread interleav-
ings which are possible when running a multithreaded ap-
plication. A single-threaded application has no internal non-
determinism and this papers classifies systems in comparison
to the single-threaded case which executes deterministically.

Previous work on deterministic execution [12, 19] has dif-
ferentiated between weak determinism and strong determin-
ism, where weak determinism provides deterministic execu-
tion only for programs that are data-race-free, while strong
determinism enforces deterministic execution even when there
are data races.

However, we argue that this categorization is incomplete
because application programmers typically do not program
at the level of memory accesses. As a result, a program
running under a system that enforces strong determinism
may find that minor changes to the system environment or
compilation options change program behavior.

We propose grouping deterministic execution systems into
the following categories: synchronization determinism; ma-
chine code determinism; program determinism; and seman-
tic determinism. Examples of systems which implement
these types of determinism are shown in Table 1.

In general, enforcing deterministic execution requires re-
stricting the order of communicating memory operations be-
tween threads to a single order. A popular technique is to
divide the program into serial and parallel modes of execu-
tion. During parallel mode, threads operate primarily on
private data, while during serial mode the threads synchro-
nize with each other. Since a single deterministic ordering of

Category Examples
Synchronization Determinism Kendo [19], Cilk [21]
Machine Code Determinism DMP [12], CoreDet [3],

RCDC [13], Calvin [14]
Program Determinism Grace [7], DThreads [16]
Semantic Determinism DPJ [9], NESL [8],

Jade [22], TLS [15]

Table 1: Deterministic Execution Categories

Parallel Mode Serial Mode Parallel Mode

T1

T2

T3

End parallel End serial

Running Blocked

Figure 1: Execution divided into parallel and serial
sections

threads is enforced during serial mode, this allows the sys-
tem as a whole to enforce deterministic execution. However,
in order to have practical implementations, existing systems
have limits on the determinism guarantees which they pro-
vide. Figure 1 illustrates the general technique of dividing
execution in serial and parallel modes, and the following
subsections describe implementation issues.

2.1 Synchronization Determinism
Synchronization determinism is based on the observation

that for a data-race-free program, all communication be-
tween threads is constrained by synchronization operations,
and enforcing a deterministic ordering of synchronization op-
erations provides determinism for the program as a whole.
Kendo [19] is a prototype implementation of this idea; how-
ever, it has three important limitations. First it only guar-
antees determinism for data-race-free programs; although
data-race-free is a desirable property, it is not enforced by
hardware or software and can be a source of bugs. Second,
the Kendo prototype does not provide support for atomic op-
erations. Even a language like C++, which only defines se-
mantics for data-race-free programs, has support for atomic
operations [2]. Finally, the division between parallel and se-
rial modes in Kendo is based on the number of retired stores.
This metric depends heavily on the machine and compiler
settings and can change in ways that are not intuitive to
application programmers. It also limits portability across
different architectures.

2.2 Machine Code Determinism
Machine code determinism enforces a deterministic order-

ing of communicating memory operations between threads
even in the presence of data races. However, the interleaving
of communication points (serial mode in most implemen-
tation) depends on the type, number, and communication
patters of instructions of machine code instructions in the
program binary.

Several prototype systems have implemented this idea us-
ing hardware support [12, 13, 14] or with software only [3].

These systems divide execution between serial and paral-

lel modes and use the number of instructions executed as the
boundary between the two modes. The number of instruc-
tions executed by an application depends on compiler and
system options that might not be obvious to the application
programmer. As a very simple example, dead store elimina-
tion is a compiler optimization that changes the number of
instructions executed. As a result, application programmers
do not know how changes in program source code or compi-
lation settings might change the interleaving of parallel and
serial modes used to enforce determinism. The programmer
therefore must assume that any source code change could
change program behavior.

This category can be further sub-divided between systems
where determinism depends on microarchitectural details
(such as cache line size) and those which depend only on
details exposed through the ISA. We think that this distinc-
tion is not significant from the perspective of an application
programmer, because even if the application only depends
on the ISA, the deterministic execution properties will be
closely tied to the target system. We think this form of de-
terminism will be more useful for embedded systems which
have hardware/software codesign than for a general purpose
computer.

2.3 Program Determinism
Program determinism enforces deterministic execution of

a program based on explicit source code synchronization
operations rather then implicit characteristics the compiled
machine code. For example a mutex_lock operation could
indicate the division between communicating and isolated
modes. This prevents the deterministic execution proper-
ties of the application from changing when an application
is compiled for different hardware architectures. However,
it also means that the programmer must ensure there are
enough synchronization points to prevent over serialization
or thread imbalance from preventing threads from running
when they make communicating writes.

Grace [7] and DThreads [16] are examples of these sys-
tems. Grace supports only fork-join-type parallelism, where
the programmer divides work among multiple threads and
then has the master thread wait for all child threads to com-
plete before continuing. While Grace supports a limited sub-
set of pthread directives, DThreads provides replacement
functions for all of the pthread directives. DThreads uses
synchronization operations (pthread directives) as the divi-
sion between serial and parallel modes of execution. This
provides a significant advantage for application program-
mers trying to understand how source code changes affect
system determinism. It also allows for portability across ar-
chitectures and for changes in compilation options that don’t
change deterministic execution properties.

However, the overall deterministic execution properties
are linked to the order of synchronization operations. The
order of operations depends of course on application input,
but in many cases it also depends on the number of pro-
cessors in the system because parallel applications spawn
a number of threads related to the number of processors.
The total number and sequence of synchronization opera-
tions will depend on the number of threads that are spawned
which themselves execute synchronization operations. This
is a significant difference from the simple single-threaded
semantics that programmers are familiar with and requires
testing, or at least planning, for a range of different numbers

Benchmark Threads Speedup
Blackscholes 54 5.5

Canneal 33 6.5
Dedup 27 4.0
Ferret 33 5.1

Streamcluster 14 6.5
Swaptions 64 35.9

Table 2: Number of threads and associated best
speedup on 48-core system

of threads when developing multithreaded applications.

2.4 Semantic Determinism
We argue that the goal of deterministic execution should

be to provide semantic determinism. For sequential applica-
tions this is implicit, and given the same input, the program
will produce the same output unless it calls an explicitly
non-deterministic operation (e.g. rand()). Deterministic
Parallel Java (DPJ) [9] allows programmers to provide an-
notations which are used by the compiler to determine what
code can safely execute in parallel and to be deterministic
by default. However, this is a language-level solution and
requires more effort from the programmer than system-level
solutions. Automatic parallelization, Thread Level Specula-
tion (TLS) [15], or other systems which convert sequential
code to parallel code can be considered as a form of seman-
tic determinism since they maintain the same semantics as
a single-threaded application. However, these system are
limited in their ability to provide program speedup, in part
because they do not provide a mechanism for applications
programmers to explicitly express parallelism in their code.

3. SEMANTIC DETERMINISM
We propose combining a system that spawns a fixed num-

ber of threads with one that uses source-code level synchro-
nization points between tasks (such as DThreads). Together
these techniques allow semantic determinism to be enforced
by a runtime system for multithreaded programs written us-
ing familiar programming directives (such as pthreads).

We used a simple heuristic to select the number of threads
that an application should spawn. We ran each application
with DThreads and varied the number of threads spawned
on a 48-core system. Afterwards we selected the number of
threads which provided the greatest speedup as the number
of threads that the application should spawn whenever it
ran. The selected number of threads along with the associ-
ated speedup on a 48-core system is shown in Table 2.

We also ran each benchmark on a 4-core system and a
16-core system and compared the performance of the opti-
mal number of threads on each benchmark with the perfor-
mance using the number of threads from the 48-core system
(shown in Table 2). We describe our results in more detail
in Section 5; however, Figure 2 shows that for many of the
configurations this proposal has limited additional overhead.

4. SETUP
To test our proposal of running applications with a fixed

number of threads we evaluated the scalability of 6 PARSEC
benchmarks on three different systems with 4, 16, and 48
cores. We ran all of the PARSEC workloads that DThreads

 0

 0.2

 0.4

 0.6

 0.8

 1

bs cn frt dup sc swp

4 core 16 core

Figure 2: Fixed thread speedup fraction of maxi-
mum speedup

Cores CPU Memory
4 Intel Core i5-2500K 8 GB
16 4 x Intel Xeon X7350 32 GB
48 4 x AMD Opteron 6172 64 GB

Table 3: Evaluation systems

currently works with (Liu et al. [16] explain the limitations
in the prototype systems which prevent the remaining PAR-
SEC workloads from running with DThreads).

The configuration of our experimental systems is shown
in Table 3. We used the native input sets when running
canneal, dedup, streamcluster, and swaptions. For blacksc-
holes and ferret we used the simlarge input sets because
DThreads could not allocate enough memory for the native
input sets. For these benchmarks the execution time for a
single thread was 5 seconds or less, so OS scheduling effects
caused noticeable variation in the results. We ran these two
benchmarks 20 times for each of the data points we collected
and averaged the runtimes when generating our results. For
the other benchmarks the runtimes were longer, so we ran
them 5 times each and averaged the results. PARSEC al-
lows users to specify the minimum number of threads that a
benchmark will spawn, but some benchmarks spawn more.
In particular for the workloads that we evaluated when spec-
ifying n threads, ferret spawns 1+2+4n threads, and dedup
spawns 1+2+3n threads. The other workloads spawn 1+n
threads. We ran all benchmarks to completion and report
speedups relative to the case of spawning a single thread
(n = 1) on each machine.

5. EVALUATION
Figure 2 shows the speedup when running with the num-

ber of threads that give the maximum speedup for the 48-
core system. Overall, the results show that running appli-
cations with a fixed number of threads can provide benefits
for deterministic execution. In many cases there is mini-
mal overhead for running a benchmark with many threads
on a 4-core system. Even though this causes the system
to be heavily overcommitted, it still has good performance.
Likewise, few of the benchmarks really benefit from running
with 48 cores or more on the 48-core system. In most cases
the additional core provides only a marginal speedup, at

the expense of significantly more system resources. Several
of the benchmarks have non-linear scaling, which suggests
that a good strategy could be to optimize the performance
for the number of threads which give a good performance
/ resources tradeoff and then always use that number of
threads. This strategy can provide both deterministic exe-
cution and predictable performance. Finally, for the bench-
marks that don’t scale well when overcommitted, the best
option probably is to make changes in the application source
code when targeting a deterministic execution environment.
Deterministic execution environments tend to be more re-
strictive than typical shared-memory programming and in
some cases optimizations that work well for general uncon-
strained shared-memory perform poorly in a deterministic
execution environment.

5.1 Characterization
Our results are shown in Figure 3. For each benchmark

we have calculated the speedup for each machine relative to
the execution time of the benchmark with a single thread.

Blackscholes: This benchmark is divided into a parallel
section which has no sharing between threads, and a sin-
gle threaded section which performs initialization. As a re-
sult the overall scalability is limited by the serial portion
of the program. When we ran blackscholes on the 48-core
system the best speedup was 5.5 times when spawning 54
threads. However, spawning this many threads meant that
the benchmark was heavily overcommitted when running
on the 4-core and 16-core systems. The benchmark runtime
was also very short (less than 0.5 seconds) which caused
the overhead associated with spawning threads on an over-
committed system to be more significant as a percentage of
overall execution time. Blackscholes performed worst, out of
the benchmarks we evaluated, in the overall speedup shown
in Figure 2. However, the maximum speedup for the 48-core
configuration was relatively small; consequently, spawning a
large number of threads did not lead to the most efficient use
of systems resources. In this case a more complex heuristic
for selecting the number of threads to run may be useful.
And running the benchmark with a smaller but still fixed
number of threads could provide a better performance trade-
off while retaining the benefits of deterministic execution.

Canneal: This benchmark is an excellent candidate for
running with a fixed number of threads. The overall speedup
for the 4-core and 16-core systems is very stable even when
the systems are heavily overcommitted. The maximum speed-
up for the 48-core system occurs when 33 threads are spawned,
and spawning 33 threads for the 4-core and 8-core systems
results in less than 5% slowdown compared to the optimal
configuration for each of those systems.

Dedup: This benchmark uses a pipelined model of exe-
cution and it has a wide variation in speedup. Here spawn-
ing more threads can lead to much worse performance even
when the system is not overcommitted. The reason is that if
the workload distribution between stages is unbalanced this
slows down the execution of the entire program because of
implicit serialization of work. Selecting the optimal number
of threads for the 48-core system is not completely optimal
for the 4- and 8-core systems. But it still provides good
performance which is much better than one of the poor per-
formance configurations would be.

Ferret: This is another benchmark like canneal that has
no performance degradation even when heavily overcommit-

ted. Running with a fixed number of threads provides the
benefits of deterministic execution without any accompany-
ing overhead for overcommitted systems.

Streamcluster: This benchmark has the worst perfor-
mance for overcommitted workloads. However, because of
the difficultly that streamcluster has with scaling when run-
ning with DThreads the best performing configuration for
the 48-core system is when 14 threads are spawned. This
relatively small number of threads still provides acceptable
performance for the 4-core system and is near optimal for the
16-core system. The reason that streamcluster does not scale
is that it uses custom barriers which employ busy-waiting to
synchronize threads. While busy-waiting can be useful for
fast synchronization when running on a non-deterministic
system with extra resources, it is not a good choice for an
overcommitted system or for a deterministic execution run-
time. Thus streamcluster is an example of a type of pro-
gramming that is not well suited for deterministic execution
systems.

Swaptions: This benchmark shows good scalability with
minimal overhead for overcommitted systems. One interest-
ing note about the benchmark is that when spawning a large
number of threads the performance change appears to fol-
low a step function. Previous work on analyzing PARSEC
workloads [20, 23] identified an imbalance in the distribu-
tion of work between threads as the reason for this uneven
scaling. This is an example of how application performance
can vary in unpredictable ways when adding more threads.
Thus running with a fixed number of threads provides ben-
efits both for program correctness and for providing pre-
dictability about performance characteristics.

6. RELATED WORK
We have categorized existing deterministic execution sys-

tems and evaluated the scalability of DThreads with respect
to the number of threads used per application.

Bergan, et al. [4] evaluated the strengths and weaknesses
of a variety of deterministic execution systems. This work
has similarities to ours in identifying ways that system pa-
rameters affect determinism, but it does not evaluate the
classifications we propose.

Devietti [11] examines the interaction between determin-
istic execution runtime systems and programming languages
which enforce deterministic execution. In particular the the-
sis proposes MELD, which studies how to combine DPJ with
a deterministic runtime system such as DMP.

Cui et al. have proposed Peregrine [10] as a way to enforce
efficient deterministic execution. It has some similarities to
our proposal because it seeks to eliminate implicit inputs
by recording and reusing schedules that have been verified.
However, Peregrine does not provide a clear link between
source code semantics and the execution schedule that will
be enforced.

7. CONCLUSION AND FUTURE WORK
We have demonstrated that having applications spawn a

fixed number of threads while running with DThreads in-
troduces limited overhead. The advantage of this technique
is that it provides an application programmer with stronger
deterministic execution guarantees, which we call semantic
determinism. Our proposal had less than 20% additional
overhead on 8 of the 12 benchmarks that we evaluated.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 10 20 30 40 50 60 70

s
p

e
e

d
u

p

spawned threads

blackscholes simlarge

4-core 16-core 48-core

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

s
p

e
e

d
u

p

spawned threads

canneal native

4-core 16-core 48-core

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200

s
p

e
e

d
u

p

spawned threads

dedup native

4-core 16-core 48-core

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300

s
p

e
e

d
u

p

spawned threads

ferret simlarge

4-core 16-core 48-core

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70

s
p

e
e

d
u

p

spawned threads

streamcluster native

4-core 16-core 48-core

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

s
p

e
e

d
u

p

spawned threads

swaptions native

4-core 16-core 48-core

Figure 3: Scalability results

Although this proposal has shown good results on the
set of benchmarks we evaluated, there are several PARSEC
benchmarks that DThreads is not able to run. In the future
we plan to evaluate the scalability of DThreads on a larger
set of workloads and see if limitations in the existing system
can be solved.

In addition, we believe that the technique of spawning a
fixed number of threads can be valuable for other determin-
istic execution runtime environments.

Research in deterministic execution remains a new but
promising way to improve the usability of parallel appli-
cations. However, we argue that researchers should target
system-independent solutions that enforce what we call se-
mantic determinism, as work continues on solving limita-
tions in existing systems.

8. REFERENCES
[1] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient

system-enforced deterministic parallelism. OSDI’10,
2010.

[2] M. Batty, S. Owens, S. Sarkar, P. Sewell, and
T. Weber. Mathematizing c++ concurrency. POPL
’11, 2011.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. Coredet: a compiler and runtime
system for deterministic multithreaded execution.
ASPLOS ’10, 2010.

[4] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The
deterministic execution hammer: How well does it
actually pound nails? WODET’11, 2011.

[5] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble.
Deterministic process groups in dos. OSDI’10, 2010.

[6] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble.
Deterministic process groups in dos. OSDI ’10.
USENIX Association, 2010.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace:
safe multithreaded programming for c/c++. OOPSLA
’09, 2009.

[8] G. E. Blelloch. Programming parallel algorithms.
Communications of the ACM, 1996.

[9] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system
for deterministic parallel java. OOPSLA ’09, 2009.

[10] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang.
Efficient deterministic multithreading through
schedule relaxation. SOSP ’11, pages 337–351, 2011.

[11] J. Devietti. Deterministic Execution for Arbitrary
Multithreaded Programs. PhD thesis, University of
Washington, 2012.

[12] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp:
deterministic shared memory multiprocessing.
ASPLOS ’09, 2009.

[13] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and
D. Grossman. Rcdc: a relaxed consistency
deterministic computer. ASPLOS ’11, 2011.

[14] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin:
Deterministic or not? free will to choose. HPCA ’11,
2011.

[15] T. Knight. An architecture for mostly functional
languages. In Proceedings of the 1986 ACM conference
on LISP and functional programming, 1986.

[16] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
efficient deterministic multithreading. SOSP ’11, 2011.

[17] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. ASPLOS XIII, 2008.

[18] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. OSDI’08, 2008.

[19] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
efficient deterministic multithreading in software.
ASPLOS ’09, 2009.

[20] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread
reinforcer: Dynamically determining number of
threads via os level monitoring. IISWC ’11, pages
116–125, 2011.

[21] K. H. Randall. Cilk: E cient Multithreaded Computing.
PhD thesis, Massachusetts Institute of Technology,
1998.

[22] M. C. Rinard. The design, implementation and
evaluation of Jade: a portable, implicitly parallel
programming language. PhD thesis, Stanford
University, 1994.

[23] M. Roth, M. Best, C. Mustard, and A. Fedorova.
Deconstructing the overhead in parallel applications.
IISWC ’12, 2012.

