
Measuring Performance, Power, and Temperature from
Real Processors

Francisco J. Mesa-Martinez Michael Brown Joseph Nayfach-Battilana Jose Renau

Dept. of Computer Engineering, University of California Santa Cruz

http://masc.soe.ucsc.edu

ABSTRACT
The modeling of power and thermal behavior of processors re-
quires challenging validation processes, which may be complex
and undependable. In order to ameliorate some of the difficul-
ties associated with the validation of power and thermal models,
this paper describes an infrared measurement setup that simul-
taneously captures run-time power consumption, thermal char-
acteristics, and performance activity counters from modern pro-
cessors. We use infrared cameras with high spatial resolution
(10x10µm) and high frame rate (125Hz) to capture thermal
maps. Power measurements are obtained with a multimeter,
while performance counters are obtained after modifying the
operating system (Linux), both at a sampling rate of 1KHz.
The synchronized traces can then be used in the validation pro-
cess of possible thermal, power, and processor activity models.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques; C.1
[Processor Architectures]: General

General Terms
Performance and Experimentation

Keywords
Power and thermal measurements

1. INTRODUCTION
Temperature and power consumption have become first order

design parameters for most modern, high performance architec-
tures. Elevated operational temperature and power consump-
tion present possible limits to performance and manufacturabil-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS, 13-14 June 2007, San Diego, CA
Copyright 2007 ACM 978-1-59593-751-3/07/06 ...$5.00.

ity. Due to the importance of this data, modern architects have
extended their performance-centric processor simulation infras-
tructures to accommodate models of power consumption [2,
12] and thermal behavior [4, 11].

Wattch [2] and several Wattch-like tools are used routinely in
the modeling of dynamic power consumption in modern proces-
sors. Wattch builds on top of CACTI [12], a very popular power
model for SRAM-like structures. For the modeling of static
and leakage-associated power consumption, designers employ
packages such as HotLeakage [13], which builds on top of the
HotSpot [11] thermal model and the Wattch [2] power model.

Each of these tools has been individually validated to a vary-
ing degree, but the validation of a final integrated model is not
an easy process. This is mainly due to the fact that modern pro-
cessors do not provide a sufficient (if any) means to validate
such models. This limitation stems from the nature of the veri-
fication process for these kinds of tools.

Validation of real-time processor metrics demands the mea-
surement of real-time responses from the processor itself. De-
signers obtain this real-time data using performance-monitoring
structures – such as performance counters. Using these struc-
tures, designers can compare the real-time data collected from
the processor with that predicted by the simulation environment.
For example, different performance counters can provide statis-
tics like IPC and instruction cache miss rate, or more detailed
statistics like load-store queue replays. Those statistics make it
possible to validate architectural simulators with existing pro-
cessors.

However, This is not the case for power and thermal models.
Unlike performance statistics, modern processors lack struc-
tures to gather power and thermal metrics. However, adding
a sufficient number of power counters to obtain the needed level
of granularity would consume a significant amount of area, and
impact power consumption and processor performance.

To validate processor power models, the architecture com-
munity would like to observe the actual temperature and power
behavior of proposed high performance systems. Without the
measurement of real-time responses from the processor, the best
efforts of the architecture community are reduced to best guesses
and approximations when modeling the power and thermal be-
havior of proposed architectural designs. Further, the cumu-

1

lative impact of many power and thermal approximations may
have a significant effect on the resulting accuracy of the simu-
lated systems. Therefore, many architects using integrated sim-
ulation environments do not trust the absolute results predicted
for the behavior of their systems using current tools – relying
instead on relative trends in the thermal or power behavior.

This paper proposes an infrastructure to directly measure tem-
perature, power consumption, and performance on modern pro-
cessor. The proposed measuring system uses infrared cameras
to capture transient temperature fluctuations. Power consump-
tion is gathered by isolating the current used by the processor
during run time. Furthermore, performance statistics are gath-
ered by sampling internal processor-specific performance coun-
ters. The data gathered by our proposed system can be used to
validate the accuracy of many power and thermal models.

The measuring setup described in this paper captures ther-
mal, power, and activity rates from modern processors. These
three techniques have been proposed separately, but this is the
first time that they are proposed as an integrated infrastructure.
As a result, this paper proposes a unified measuring setup that
captures temperatures on modern high-performance processors;
develops image processing filters to increase the accuracy of
thermal images; measures floorplan temperature on a real chip;
and proposes techniques to synchronizes power, temperature,
and performance data. Compared with other works [9], this pa-
pers focuses on how to build such a measurement setup and
provides insights on failed setups.

The rest of the paper is organized as follows. Section 3 de-
scribes the proposed infrastructure ; Section 4 describes the
setup for our evaluation; Section 5 evaluates the infrastructure
proposed; Section 2 covers related work; and Section 6 presents
conclusions and future work.

2. RELATED WORK
Real power consumption measurements are a very useful tool.

Isci et al [8] measure the overall power consumption with a
multimeter. Together with the activity rate captured from the
processor performance counters, they provide the total power
breakdown for each processor floorplan area. A major differ-
ence between the setup described by Isci and our power mea-
surement setup is the use of a shunt instead of clamp amp meter
to increase measurement accuracy. In addition, we also take
into account the efficiency of the on-board voltage regulator. A
bigger difference is that fact that our setup also captures tem-
perature.

A related work by Sung et al [5] builds on top of models that
use performance counters to generate detailed thermal maps.
Their work compares a less compute intensive regression model
against a HotSpot thermal map result.

The thermal measurement setup has similarities with Hamann
et al [7]. This work measures the temperature on a chip with a
infrared camera. Their setup is similar to ours but they do not
provide enough details on the materials/components used. Nev-
ertheless, the key difference is that their setup only performs

measurements for steady state thermal images and they do not
provide a method to capture power and/or activity rates syn-
chronously.

The most related work [10] employs a similar thermal and
power measurement setup. However, the focus of that work is
on building a novel model that relates thermal processor maps
to fine-grain power consumption by using a genetic algorithm.
This paper furthers the scope of the work done in [10] by propos-
ing the capture of processor performance counter data concur-
rently with power and thermal information. This paper dis-
cusses in deeper detail the thermal imaging, power and perfor-
mance counter data gathering issues. Furthermore, some of the
failed approaches that we incurred while trying to develop the
measurement setup described in this paper.

3. INFRASTRUCTURE
In this paper we propose a system capable of measuring power

and temperature characteristics of modern high performance pro-
cessors, all done with a very fine degree of granularity. The pro-
posed setup measures processor temperature using an infrared
camera. Power consumption data is obtained by directly iso-
lating the current used by the CPU at run time. Performance
counters available in most modern processors are used to ob-
tain traces with execution statistics during run time. Figure 1
displays the major components of the measuring setup.

Radiator IR CameraPump PC-Link Multimeter

Chip under test Trigger

Oil

ShuntReservoirThermometers

Figure 1: Measuring setup

First, the proposed measuring setup (Section 3.1) captures
the chip temperature with an infrared (IR) camera. An infrared-
transparent heat sink is used to allow the IR camera to obtain
the processor die temperature. This transparent heat sink is ca-
pable of dissipating up to 100W, thus it is aptly suited for most
modern high performance processors. The setup is capable of
capturing up to 125fps with a 10x10µm spatial resolution, and
it can be applied to multiple chips with relative simplicity. The
IR camera frame rate (125fps) can be increased up to 10KHz as
long as the bandwidth of the camera stays under 1GB/s. E.g: If
the measurement experiments require it, it is possible to capture

2

1000 thermal frames per second (1KHz) with a 100x80 resolu-
tion.

Second, the data must be processed to remove distortion. Mod-
ern IR cameras have a resolution of 320x200 or 640x400 pixels
with a precision of 25mK error per pixel. Nevertheless, cameras
suffer from a significant distortion of several degrees Kelvin er-
ror between pixels and need calibration for each specific lens,
objective, and/or temperature range setup. To solve these prob-
lems and increase accuracy, the paper introduces a thermal im-
age processing (Section 3.2) correction filter.

The power measurement setup is explained in Section 3.3,
and the Linux kernel extensions to capture the performance coun-
ters are described in Section 3.4.

3.1 Measuring Setup
To generate an accurate thermal map for a given chip, we

need to measure the temperature at multiple points. To do so,
we use an infrared camera to measure temperature as close as
possible to the transistor junction.

(a)

(b)

Figure 2: Oil-based heatsink with laminar flow (a),
liquid heatsink in operation (b).

To keep the processor in operational conditions, an IR trans-
parent heat sink must be implemented. To do so, we create a
mineral oil (Fluka Mineral Oil 69808) flow on top of the silicon

substrate (Figure 2). Even though water has around 2.5 times
the specific heat of mineral oil, we can not use it because it is
not transparent to the infrared spectrum. Several oils like olive
oil are partially transparent on the infrared wavelengths. Fluka
oil is designed for infrared spectrography and delivers excel-
lent infrared pictures. Turbulent flow can remove more heat
than laminar flow, however it is more complicated to correctly
model. For that reason, on the L2 side of the processor, we add
filling with the same height as the silicon. The oil impacts on the
filling and generates a flow from L2 to the core. We keep the oil
flowing as fast as possible to minimize heat transfer from L2 to
the core. Our measurements show less than .1C oil temperature
increase from side to side of the chip.

The oil temperature is continually monitored with multiple
digital thermometers (Dallas DS18B20) connected to the mea-
suring computer. The setup is capable of dissipating up to a
100W. We keep 2 litters in the oil reservoir and connect a small
radiator to guarantee minimal temperature oscillations during
each run.

A detailed thermal map.
is obtained with an infrared camera (FLIR SC-4000). Using

the PC-Link (Gigabit Ethernet), the camera is set up to cap-
ture and transfer 125fps with 320x200 spatial resolution. This
camera operates on the 3-5µm wavelength (MWIR) a range of
light where silicon is transparent. As a result, the IR camera
is capable of measuring the temperature “through” the chip be-
ing tested. Modern high performance processors are manufac-
tured using flip chips – exposing the silicon substrate. Since the
camera can measure temperatures through the silicon substrate,
using flip-chips 1 greatly simplifies the task of measuring junc-
tion temperatures. Although the SC-4000 has 25mK sensitivity
per pixel, to obtain accurate thermal measurements it requires
extensive calibration. The following section explains it.

3.2 Thermal Image Processing
Due to their operational characteristics, infrared cameras need

to be calibrated in order to compensate for different material
emissivities, lens configurations, temperature range for the ob-
ject/material to be measured, and a host of other factors. One
approach to calibration is to have the infrared measuring device
calibrated for the specific setup by the manufacturer. However,
this tends to ignore the temperature range of the object and in-
creases the likelihood of measurements being made outside of
the calibrated range. To solve this problem, we perform an in-
house calibration.

Indium antimonide (InSb) sensors available on IR cameras,
like the one found in the FLIR camera used in the measure-
ment setup, have a high sensitivity per pixel (25mK). This cor-
responds to the camera’s optimal accuracy once it is correctly
calibrated. To calibrate the camera, we perform two measure-
ments: one with cold (289K) and one with hot (344K) min-

1Low power chips tend to be wire-bond, while more high-
performance chips tend to be flip-chip.

3

Figure 3: IR Camera error behavior, exposed with
low (Top), and high temperature (Bottom) constant
plane temperatures. (Temperature scale in Kelvin)

eral oil on top of the processor’s silicon substrate. Figures 3-(a)
and 3-(b) show the IR thermal measurements when the proces-
sor is powered off. We observe that for cold oil 3-(a) the center
of the image closely resembles the measured temperature while
the side pixels can have up to 6C error (288K vs 294K). The
opposite effect is shown when the camera measures a uniformly
hot mineral oil (345K vs 335K).

The camera is coupled with a set of lenses and extension rings
to provide the desired magnification and focus function needed
to differentiate between processor structures. The lenses and
extension rings add a small distortion factor that increases the
overall error in the thermal data. Although not as significant as
the error in the IR sensor array itself, the compounding of the
IR distortion and the differential error across the sensor array
needs to be taken into account. To do so, we perform a two step
filtering of the raw thermal imaging data.

First, to correct the lens distortion, a calibration grid provides
a simple compensation function for both the lens and the ring
extensions in the camera. This correction function is repre-
sented as a 2D vector field, which maps the actual camera image
plane onto a transformed thermal image that takes into account

both distortion and perspective correction.
Since both, the camera and test chip remain static during the

measuring runs, we only need to produce a unique correction fil-
ter for the whole experiment. Accordingly, the camera needs to
be registered just once. Figure 4 shows the experimental setup
for performing the camera calibration and lens correction.

The distortion parameters are obtained by running an edge
detection algorithm [3] on the sides of the processor die being
measured, and estimating how distorted each of the edges of
the processor core are. Distortion for each edge is measured as
a simple least squares approximation of each edge assumed to
be a 3D segment projected by a line [6]. The error is assumed
to be the sum of squares of the least square approximation. In
this model the “curvature” of a straight line is directly propor-
tional to our defined error. The distortion factor is defined as
D =

P3
i=0 E2

i , where Ei is the least squares approximation
for each of the outer edges of the processor core. We assume
the core to be a rectangle, thus we need to consider just 4 edges.
The distortion factor is optimized by applying a simple linear
minimization. The final lens correction function L is defined to
be directly proportional to the optimized distortion factor D′.

Figure 4: Test overlay chip used for camera regis-
tration and distortion calibration.

Second, we need to compensate for the intrinsic IR sensor er-
ror. The camera specifications indicate that a linear ("real temp" =

A ∗ "IR temp" + B) correction should be applied for each
camera pixel. While the central pixels have a high accuracy, the
side pixels need a compensation factor. Our image filter auto-
matically generates a linear correction factor to compensate for
the inaccuracies expected in the outer regions of the lens. A
secondary filter is used to compensate for the optical distortion
induced by the lens setup. After calibration the thermal error
was reduced to 3%.

Figure 5-(a) shows the thermal map before the filter process
is applied, and Figure 5-(b) shows the filtered thermal map. Fur-
ther, Figure 6 shows the behavior of the IR filter when the ther-
mal data is represented as a temperature elevation map across
the core.

Using regular structures, such as the large L2 cache found in
modern processors, we can estimate the performance of our cor-
rection filter. The uncalibrated thermal imaging data performs

4

50 100 150 200 250 300

50

100

150

200

250
325

330

335

340

345

350

355

360

365

(a)

50 100 150 200 250 300

50

100

150

200

250 325

330

335

340

345

350

355

360

(b)

Figure 5: Effect of the IR correction filter on a sam-
ple image for an Athlon64 core during run-time.
Thermal data unfiltered (a), and filtered (b). (Tem-
perature scale in Kelvin)

quite badly, sometimes reporting with as much as 50% error. A
simple linear thermal filter reduces the expected error down to
3%.

The benefits of the IR correction filter are easily illustrated
by considering the average temperatures for each of the major
operational blocks for the Athlon 64 core being tested. Figure 7
shows the dramatic temperature differences for the same func-
tional block between the raw and filtered IR data. Please refer
to Figure 10 for an overview of the major blocks being itemized
in the Athlon 64 floorplan.

3.3 Power Measurements
To measure the overall power consumption, we cut the 12V

wires that provide power to the voltage regulators (VR) on-
board. To have a low overhead and high accuracy measure-
ment, we use a shunt (LTS 25-NP). A shunt provides higher ac-
curacy than clamp current measurements at the cost of cutting
the power supply cables to connect the shunt, but measuring the
power supplied by the processor 12V cable is not enough. The
reason is that the voltage regulators from the motherboard are
not 100% efficient. To have accurate absolute power measure-
ments, we discount the power wasted due to VR. Note that to

(a)

(b)

Figure 6: Effect of the correction filter on a temper-
ature elevation map for a sample thermal image for
an Athlon64 core. Thermal data unfiltered (a), and
filtered (b). (Temperature scale in Kelvin)

know the efficiency, it is necessary to find the VR specifications.
The voltage reported by the shunt is measured with an Agilent

34410A multimeter. This multimeter is capable of sampling at
1KHz and storing over 50 seconds of execution. To read the
power measurements, we use a TCP/IP ruby script.

3.4 Performance Measurements
By measuring the occurrence of performance-relevant events

computer architects can gain added insight into the behavior of
a processor under specific workloads. Modern processors offer
hardware support to measure and gather performance-relevant
events inside the processor’s core. Performance counters are
an example of such facilities. For example, one performance
counter keeps track of the number of L1 cache misses, while
another performance counter counts the number of retired in-
structions.

In this paper we consider an AMD Athlon 64 processor. The
K8 core, in which our sample processor is based, provides four
concurrent hardware performance counters, each counter is stored
in a separate 48-bit wide register. The palette of performance
events is much larger [1], for example K8 supports more than
48 different events to be monitored (Table 1). At run time, we
can easily instruct each performance counter to monitor a spe-

5

50 100 150 200 250 300

50

100

150

200

250 330

335

340

345

350

355

360

(a)

50 100 150 200 250 300

50

100

150

200

250

335

340

345

350

355

(b)

Figure 7: Effect of the IR correction filter on the
average temperature for each of the major func-
tional blocks for an Athlon64 core. Thermal data
unfiltered (a), and filtered (b). (Temperature scale
in Kelvin).

cific event. Depending on the type of event being tracked the
counter will reflect two possible behaviors.

First, the counter can store the overall count of certain pro-
cessor events. In this mode, whenever an instance of the event
being tracked occurs, the processor increments the counter asso-
ciated with this event. Examples of these types of events are L1
cache misses, number of instructions retired, number of replays,
etc.

Second, the counter can be used to track the duration of spe-
cific events. The processor updates the counter with the num-
ber of cycles that were required to complete the action being
tracked. An example of this would be a counter that keeps track
of the number of cycles associated with servicing a cache miss.

A 64-bit wide time stamp counter (TSC) is also available
within the K8 microarchitecture. The TSC operates concur-
rently with the four general counters in the K8, this counter
keeps track of the overall number of cycles executed by the pro-
cessor.

There are two main approaches to count events, once the
mapping between a performance counter and a specific event
has been formalized.

Efficiency Instructions per cycle (IPC)
Memory bandwidth

L1 Data Cache Number of misses
Miss ratio

L1 Instruction Cache Number of misses
Miss ratio

L2 Cache Number of misses
Miss ratio

Data TLB Number of misses
Miss ratio

Instruction TLB Number of misses
Miss ratio

Prediction Tables Branch mispredictions
Near return mispredicitons

Floating Point Retired operations
Exceptions

Load/Store Unit Unaligned data accesses

Table 1: Types of events measured by the performance coun-
ters in K8-based cores.

Event counts can be read before and after a specific sampling
period. These two counts can be subtracted to obtain the num-
ber of events that occurred. This approach is able to track the
number of events, however there is no information regarding the
distribution of such events through the sampling period.

A second approach is to load a performance counter with a
value that is treated as a threshold or limit count. This value
is passed to the performance measuring hardware inside the
processor. Events will be tracked until the specified threshold
is reached, then an interrupt is generated and the performance
counter will reflect the event count when the interrupt was gen-
erated.

In order to get the required kHz resolution for the project, a
modified Linux 2.6 kernel is used. We sample the performance
counters during every scheduler tick, this approach has a sig-
nificant overhead, so the system only runs a single process dur-
ing the sampling period. Multiple runs are needed to obtain all
performance-related events since only four counters and a TSC
can be read during each scheduler cycle.

The counters are read in kernel-mode, not user-mode. How-
ever, the benchmark processes are run in user-mode. We mod-
ified the kernel to allow user-level messages to be trapped by
the kernel to signify when the sampling should begin. The sam-
pling period is fixed to a single kernel scheduler tick, and the
sampling length is also fixed (generally 20 seconds). The kernel
stores the sampled values in private pages. Once the sampling
length timer expires, these kernel-level pages are passed down
to the user-level through the /proc filesystem.

Running the sampling of performance counters in kernel-mode
reduces the collection overhead associated with the elevated sam-
pling rate for this project. The higher resolution results in a
higher pollution of the caches as well as the predictor structures
and the translation lookaside buffer (TLB). This pollution af-
fects the memory behavior for the benchmarks being executed.
Furthermore, multiple processes may be swapped during the
sampling run, this contributes to the pollution of the counters

6

themselves, but it is a tradeoff that we consider necessary.
In order to further reduce the uncertainty in the data gath-

ered, thermal throttling and other power and temperature-aware
mechanisms inside the processor are disabled.

3.5 Failed Thermal Setups
The proposed thermal measurement setup has evolved over

several iterations. Although most papers do not include failed
experiments, we consider it important to include a quick sum-
mary so that other researchers do not fail again on the same
problem.

Our first setup used thermal couples in contact with the pro-
cessor substrate. Although this was an effective and fast method
to measure temperature, it was very challenging to place a very
thin thermal couple between the silicon substrate and the heatsink.
More importantly, we could not devise any effective array of
thermal couples to measure temperature at several points simul-
taneously.

Figure 8: Detailed view of a K8 core coated with
liquid crystal paint and the thermal response of the
paint during run time.

To capture a more fine grain thermal measurements, we tried
liquid crystal (LCs) which delivered significant resolution, but
we found several challenges: the color response of LCs change
over time; the temperature range (30-100C) is difficult to achieve
with LCs because LCs tend to operate with lower temperature
ranges (60-80C); the paint used to glue the LC degraded af-
ter several iterations; it was difficult to paint the chip without
small irregularities (Figure 8); and paint is a good insulator
which complicates the heatsink design. As a result, we de-
cided to explore IR measurement setups. Figure 8 shows a LC
painted Pentium processor after executing a matrix multiplica-
tion benchmark for several seconds. As it is easily observable
by the picture, the paint is not regular due to decay and it is
difficult to paint the chip homogeneously. Equally important,
the color (temperature) measurements do not show the resolu-
tion observed by the IR camera. The reason is that the IR sees
through the silicon substrate while the liquid crystals measure
the temperature at the top of the chip substrate.

The major challenge in using an IR-camera was to develop an
IR-transparent heatsink. The original setup used a air jet flow.

This was enough to cool down up to 17W, common for mobile
processors. The major issue was the complicated turbulent flow
associated and more importantly, the low capacity to remove
heat and the associated slow thermal response.

To cool the chip substrate faster, we explored several liquids.
Water has a very high specific heat which makes it ideal for such
experiments, but it is opaque to the IR camera. Some toxic fluo-
ride materials are extremely transparent to IR with a high capac-
ity to cool down modern (and future) processors. But, to avoid
dangerous lab materials, we looked for safer products. The most
transparent IR material was olive oil (enough to perform good
measurements, but a bit to thick for the pump used).

Figure 9: Transparent sapphire heat sink.

To have a clean setup, we designed several Sapphire heatsinks
where the oil flowed through two layers of sapphire. This setup
had a major problem: oil is transparent to IR, but it generates
signals captured by the IR camera. As a result, to have accurate
thermal measurements, the oil flow should be less than 2mm
thick (Figure 9).

4. EVALUATION SETUP
While the measuring setup section (Section 3.1) explains the

setup infrastructure required to measure any modern processor,
this section explains the measured configuration. Table 2 sum-
marizes the main processor and thermal parameters.

Parameter Value Parameter Value

CPU AMD/Athlon 64 Technology 130nm
CPU Model AMN2800BIX5AR Vdd 1.4v
Socket 754 Frequency 1.6GHz
Oil Spec. Heat 1.67kJ/Kg.K

Table 2: Main processor and thermal model parameters.

Figure 10 shows floorplan blocks used in the evaluation. The
infrared camera captures 320x200 pixels of resolution but we
average the temperature for each block before performing fur-
ther computation. The register file is marked in the middle of
the floorplan with a question mark (RF?). We call this block
register file because it looks like an SRAM-like structure and it

7

LDSQ

Fetch

FP0

Clock

dcacheicache

M
em

or
y

Co
nt

ro
lle

r

Net2

Net0

FP1

Bus

Execution Unit

Net1RF?

12

0 0

1

Figure 10: AMD Athlon 64 core floorplan blocks.

has a high power consumption. Nevertheless, we could not find
any confirmation and it may be a different part of the execution
units. Since only the caches are specifically used to validate the
results, incorrectly naming a block does not affect the results. It
is important to note that the floorplan is the flip version of the
AMD floorplan commonly published. The reason is that we are
measuring “through” the substrate, which flips the image.

4.1 Applications
The system under test boots Linux. For the evaluation, we

gather thermal and power statistics for the first 20 seconds of
each application measured. When the applications are launched,
we use the serial port to trigger the multimeter. As a result,
we have the measurements synchronized with the application
initialization.

To have a diverse set of applications we execute 14 different
applications. We execute the majority of SPEC 2000 bench-
marks (ammp, applu, apsi, bzip2, crafty, equake, gap, gzip, mcf,
mesa, mgrid, parser, twolf) and a matrix kernel. This kernel
performs matrix multiplications at 1Hz frequency (0.5 seconds
matrix multiplication, 0.5 second idle).

5. EVALUATION
The main objective of the paper is to propose an infrastructure

to capture temperature with high resolution and obtain the asso-
ciated power and performance traces. We feel that such thermal,
power, and activity rate traces are very valuable to the research
community. Since these traces utilize several GBytes of data, it
is impossible for us to include all the values on the paper. The
evaluation focuses on the accuracy of the proposed measuring
setup and highlights potential applications.

5.1 Main Results
Figure 11-(a) shows the temperature and power profile for

the first 20 seconds of execution (2500 frames) of applu from
SpecFP2000. The solid lines correspond to a run where the oil

was heated to 33.5C. The dashed lines correspond to a run with
a 22C oil temperature. As expected even though the initial oil
temperature difference is just 11.5C the total temperature dif-
ference after 20 seconds is slightly higher (13C). The power
consumption is higher on the high temperature (HT) run than
on the low temperature (LT) run. The reason is that as we in-
creased the oil temperature the leakage power also increased.
The plot shows that on average for a 13C increase, total power
consumption increased by 5.3%.

Figures 11-(b) and 11-(c) show the average temperature for
several floorplan blocks as applu and apsi execute respectively.
The floorplan blocks, starting from highest to lowest average
temperature, are the register file, data cache (D$), floating point
unit (FP0), clock generator, memory controller (MC), and in-
struction cache (I$). For both applications, the temperature across
blocks is somewhat correlated. However, there are several sit-
uations where the data cache temperature increases while the
register file temperature decreases (1.5s for applu (Figure 11-
(b)), 4s for apsi (Figure 11-(c)). In both cases, we found a
phase where the access to the register file decreased and the rate
of memory operations increased. For most of the applications,
the register file is close to 10C hotter than any other floorplan
block.

Figure 12-(a) shows the number of retired instructions for 4
seconds of execution (4K samples) of applu and apsi. Since the
retired number of instructions and sampling rate are known, it
is easy to infer the IPC information for each benchmark. Since
thermal throttling is disabled in our test processor, there is little
deviation between the runs using different temperature oil for
cooling.

Figure 12-(b) shows in further detail statistics for the data
cache behavior for both accesses and misses, as well as the num-
ber of FP operations dispatched during 4 seconds of execution
(4K samples). Lastly, figure 12-(c) shows the complete behav-
ior for instructions retired, replayed, and cache accesses during
20 seconds of sampling.

5.2 Thermal Imaging
This section shows the raw thermal images and provides addi-

tional insights on the image processing performed on this paper.
As section 3.2 states, the IR camera does not have the same

accuracy over all the pixels. The central pixels have a higher
accuracy than side pixels. To compensate for that error, we per-
form a different linear correction for each pixel. Figure 13-(a)
shows the corrected thermal image for a single frame, including
a floorplan overlay.

The overlay on Figure 13-(a) does not cover the whole pic-
ture. The upper part of the figure shows part of the L2 cache.
The picture seems to indicate that the pixels outside the die vis-
ible on the left and lower part are as hot as the die itself. The
measurements on these areas have two artifacts. First, the emis-
sivity is different outside the die area. Second, the fluid has tur-
bulence outside the die. This turbulence creates fluctuations in
the thermal measurements. As a result, measurements outside
the die area are not accurate for our setup.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

20181614121086420

P
o

w
e

r
(W

),
 T

e
m

p
e

ra
tu

re
 (

C
)

Time (s)

HT Avg Temp
HT Avg Power
LT Avg Temp

LT Avg Power
 60

 65

 70

 75

 80

 85

3.02.52.01.51.00.50

T
e

m
p

e
ra

tu
re

 (
C

)

Time (s)

RF
D$

FP0
Clock

MC
I$

 60

 65

 70

 75

 80

 85

43210

T
e

m
p

e
ra

tu
re

 (
C

)

Time (s)

RF
D$

FP0
Clock

MC
I$

(a) (b) (c)

Figure 11: Thermal and power data for the first 20 seconds of applu (a); temperature profile for the memory controller
(MC), register file (RF), instruction cache (I$), data cache (D$), and floating point unit for applu (b) and apsi (c).

0 1 2 3 4

Time(s)

0

10000

20000

30000

40000

R
e

ti
re

d
 I

n
s
tr

u
c
ti
o

n
s

Applu Ops Retired

Apsi Ops Retired

0 1 2 3 4

Time (s)

0

100

200

300

400

500

Applu D$ Misses

Apsi D$ Misses

Applu D$ Accesses

Apsi $D Accesses

5 10 15 20

Samples (x1K)

0

5000

10000

15000

20000

25000

30000

35000

Applu D$ Access

Applu D$ Miss

Applu Op Ret

Applu FP replay

Apsi D$ Access

Apsi $D Miss

Apsi Op Ret

Apsi FP replay

(a) (b) (c)

Figure 12: Retired instruction statistics for 4 seconds of applu and apsi execution (a); detailed view for the D$ accesses
and misses (b); execution behavior for 20K performance counter samples (c). Vertical axis represents number of opera-
tions/instructions.

65

60

55

50

45

40

82

72

67

62

57

52

87

77

82

72

67

62

57

52

87

77

(a) (b) (c)

Figure 13: Full-thermal image with overlapped floorplan (a); hottest captured image (b); and its average temperature per
block (c).

9

Figures 13-(a) and 13-(b) show that there is temperature
variability inside the floorplan blocks. It is this variability that
prompted an extension to our thermal model so that each floor-
plan block could be modeled with fine granularity. Therefore,
although we report the average temperature for each floorplan
block, our thermal model internally computes multiple temper-
ature points for each block.

Figures 13-(b) and Figure 13-(c) show the frame from crafty
(SpecINT2000) with the maximum temperature measured. On
this frame the register file reached 84C. The average tempera-
ture per floorplan block is shown on Figure 13-(c).

6. CONCLUSIONS
In this paper we propose a system capable of simultaneously

measuring the power, temperature, and performance character-
istics of a modern high performance processor. This is all done
with a very fine degree of granularity. We believe the develop-
ment of such infrastructures is necessary in order to develop and
validate advanced thermal and power models.

The main contributions of this paper are not only the devel-
opment of a working measurement system, with the necessary
hardware and software support and integration. But also the
description of failed setups that may provide added insights to
future developments in this area of experimentation.

The setup was described in detail, and further data and soft-
ware is available publicly. Our goal is to allow other research
groups to reproduce our approach, to improve on it, and to ap-
ply it to different research topics in the computer architecture
community.

Acknowledgments
We like to thank the reviewers for their feedback on the paper.
This work was supported in part by the National Science Foun-
dation under grants 0546819; Special Research Grant from the
University of California, Santa Cruz; Sun OpenSPARC Center
of Excellence at UCSC; gifts from SUN, Altera, and ChipEDA.

7. REFERENCES
[1] BIOS and Kernel Developer’s Guide for AMD Athlon 64

and AMD Opteron Processors. Advanced Micro Devices,
Inc., Apr 2004.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
Framework for Architectural-Level Power Analysis and
Optimizations. In International Symposium on Computer
Architecture, pages 83–94, Jun 2000.

[3] C. Cafforio, E. Di Sciascio, C. Guaragnella, and
G. Piscitelli. A simple and effective edge detector. In
ICIAP ’97: Proceedings of the 9th International
Conference on Image Analysis and Processing-Volume I,
pages 134–141, London, UK, 1997. Springer-Verlag.

[4] Y.K. Cheng, P. Raha, C.C. Teng, E. Rosenbaum, and S.M.
Kang. ILLIADS-T: An Electrothermal Timing Simulator
for Temperature-Sensitive Reliability Diagnosis of
CMOS VLSI Chips. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and
Systems, 17(8):1434–1445, Aug 1998.

[5] Sung Woo Chung and K. Skadron. Using On-Chip Event
Counters For High-Resolution, Real-Time Temperature
Measurement. In Thermal and Thermomechanical
Phenomena in Electronics Systems, 2006, pages 114–120.
IEEE Computer Society, May 2006.

[6] F. Devernay and O. Faugeras. Straight lines have to be
straight: automatic calibration and removal of distortion
from scenes of structured enviroments. Machine Vision
and Applications, 13(1):14–24, 2001.

[7] H.F. Hamann, J. Lacey, A. Weger, and J. Wakil.
Spatially-resolved imaging of microprocessor power
(SIMP): hotspots in microprocessors. In Thermal and
Thermomechanical Phenomena in Electronics Systems,
2006, pages 121–125. IEEE Computer Society, May
2006.

[8] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE
Computer Society, 2003.

[9] F. Mesa-Martinez, J. Nayfach-Battilan, and J. Renau.
Power Model Validation Through Thermal
Measurements. In International Symposium on Computer
Architecture, Jun 2007.

[10] F. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau.
Power model validation through thermal measurements.
In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture, New
York, NY, USA, June 2007. ACM Press.

[11] K. Skadron, M. R. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-Aware
Microarchitecture. In Proceedings of the 30th Annual
International Symposium on Computer Architecture,
pages 2–13, Jun 2003.

[12] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache
Access and Cycle Time Model. IEEE Journal on
Solid-State Circuits, 31(5):677–688, May 1996.

[13] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron,
and M. Stan. Hotleakage: A temperature-aware model of
subthreshold and gate leakage for architects. Technical
Report CS-2003-05, Univ. of Virginia Dept. of Computer
Science, March 2003.

10

