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Abstract—SoCs are required to maintain information private when requested by the Operating System (OS) or the application.
From a high level point of view, there are time domains, typically processes or threads, and there should be no time information
leak between them. At the same time, cores inside SoCs are supposed to be fast levering many predictors and resource sharing
for efficiency. Using predictors like caches and branch predictors can have side effects that leak information across time domains.
Specifically, the challenge is that the code executed by one time domain affects the performance of another. This time impact
information leak can be exploited as a side channel attack.
The goal of this work is to classify the different side channel time information leaks that result from different predictors available
in typical high performance cores. The work focuses on side channels that result of changes in execution time, not other
side channels like Electro-Magnetic Interference. The proposed classification points that time side effects or leaks can be due
to program data, address, program counter, or just execution time. Each of those information leaks can happen during the
speculative or the non-speculative execution. This work also goes over all the predictors in current out-of-order cores, and shows
mechanisms to avoid the time-based information leak.

Index Terms—Spectre, Information Leak, computer security.
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1 INTRODUCTION

The Information Leak definition on the Merriam-Webster
is “to become known despite efforts at concealment.” SoCs
should protect the information from the applications to leak
outside the application. Nevertheless, there are many side
channel attacks that break this protection by leveraging the
application side effects. In modern out-of-order processors
(OoO), the most common source of information leak is
timing side channel.

Timing side channel leaks are a powerful tool for hackers.
In the late 90s [14], it became known that many encryption
algorithms were susceptible to time side channel attacks.
Specifically, it was observed that different data had different
branch prediction performance, and this information leak
could be observed by other applications or code sections,
which compromised the algorithms. Since then, most en-
cryption algorithms are execution latency free to avoid
information leak through the branch prediction timing side
channel. Other works have shown that similarly potentially
dangerous information leak happens with the data caches,
prefetchers, and potentially with any prediction in the core.
More recently, the Spectre [13] class of attacks leverage
time changes in the cache caused by speculatively executed
instruction. In all these attacks, the information is leaked
because the attacker has a clock or performance counter
from the processor, and is able to measure the time impact
resulting from executing some code. All these leaks could be
avoided if the attacker did not have the capacity to gather
any performance information on the code under attack.

A first, but faulty, observation is that all these attacks
are a result of having a clock or performance counter.
Simply preventing a process of getting good quality clock
information is not enough to prevent attacks. For example,
the attacker can have a fast loop to create its own local
clock. Even better, the attacker can have several threads
collaborating to create a global clock. These lower quality
clocks are good enough for an attack, at most they just
slowdown the information leaked to a lower rate. Even

with a low 1ms accuracy clock which is very easy to build,
the attacker just needs to repeat the same attack millions
of times to have enough time resolution. Since controlling
the clock is not a viable source to solve the problem, this
work focusses on the execution time information leak, not
on avoiding clocks. This work goes over the details on local
vs global clock, and points to the concerns of each one, but
the protection is not achieved by avoiding to have a clock.

Since avoiding the clock is not possible, a solution pro-
posed [17] has been to expose to the ISA places where the
side channel time leak can happen, and ways to mitigate
it or hide it in software. This can be classified as a soft-
ware solution with hardware support. Examples of such
“cooperation” are the patches to prevent Spectre/Meltdown
that include retpoline patches to handle branches in the
compilers, or KAISER Linux patches to separate address
spaces. Although having the capacity to fix, in software,
missing timing leaks is important for potential bugs in the
hardware isolation, it is a better approach to avoid the
time leaks in hardware. Since some of those protections can
have overheads, the Hypervisor can decide which hiding
techniques should be applied.

The ultimate goal of this work is to avoid time leaks from
one code section to another. An attacker application can not
infer anything from another application if it does not see any
performance counter on the other application, or it does not
have any change in execution time as a result of another
application running, or it has exactly the same execution
program path as a result of another program running. If
the attacker application does not have any of the previous
changes, we say that there is no time leak. As a result, there
can be no side channel time leak attack. This work classifies
these types of leaks and ways to avoid them.

One thing to remember is that there are several side chan-
nel leaks besides time leaks. Two other main side channels
that have shown capacity to expose protection concerns are
Electro Migration Interference (EMI) and power manage-
ment. By measuring EMI [21], it is possible to infer program
execution information. This is a difficult side channel to



avoid, but it requires close proximity to the device under
attack. Power attacks [27] force out of range DVFS operating
conditions to break encryption. This attack also requires
precise timing information about the execution time of the
code under attack in the secure zone.

There are many side channel attacks. The focus of this
work is to avoid information leak in modern processors due
to timing side channels when the processor is supposed to
conceal the information. Examples of such time leaks are
caches or branch predictors.

This work proposes to use the concept of time domain
to any application or code section that wants to avoid
time leaks to other time domain sections. The time domain
concept is independent of the current OS constructs. The
SoC could assign a whole VM to a single time domain, or
each UNIX-like process can have a different time domain.
In fact, the time domain can be assigned even to small code
sections like libraries or functions. The smaller the code,
the higher the overhead. In a way, current SoC without any
protection place all the applications, operating system, and
even Hypervisor in the same time domain because there is
time leaks across them. The proposal is that the Hypervisor
could assign time domains and provide protection across
time leaks. This work considers that the there is a leak when
the execution time in one time domain can be measured by
another time domain. A typical example is when a predictor
performance impact can be seen by other time domain. this
work also considers a time leak when the precise execution
time can be inferred.

To be more precise, this work creates a classification of
time leaks. Briefly, if the time leak has dependence with
some data value, the time leak is due to data. Similarly,
if the leak is due to some address operation by the core
like load/store addresses, the time leak is due to addresses.
Sometimes, no address or data or program counter affects
the execution time. For example, when one core executes a
program or time domain it can use all the memory band-
width, another core would be affected by but potentially
there is no difference between the data, address, or PC. In
this case, it is a time leak due to execution time perturbation.
Attacks that rely on knowing how long other applications
execute also falls in the execution time perturbation leaks.

Ideally, the processor should have zero time information
leaks in speculative and committed instructions. In this case,
the execution time of all the instructions in a time domain
should be the same no matter what other time domains
have executed before or concurrently. This is called a SoC
with Safe[D4A4P4E4] time protection level. DAPE because
neither Data (D), Address (A), Program Counter (P), or
Execution Time Perturbation (E) information is leaked. 4 is
the time level of protection: 0 for no leak protection, 1 for
operating system vs application protection, 2 for protection
across different cores, 3 for protection within the same
core, and 4 for protection all the other levels protected and
also inside the same address space. Section 3 provides a
classification that it is applicable to all types of processors.
Each processor can have a classification time level which
indicates which time level of information leak protection
provides.

The document starts providing some basic concepts (Sec-
tion 2) on time leaks. Then, it goes over the time leaks
classification (Section 3). Then, it continues with a high
level overview of different hardware and software time

leak protection techniques (Section 4). Section 5 details
an example out-of-order processor that provides several
time level protection at boot time using a subset of the
techniques. The document finishes by applying several time
leak related attacks on the example out-of-order processor
to see the protection degree and the point of failure.

2 BASIC REQUIREMENTS

In order to have a working system without time leaks, it is
necessary to have time domains (Section 2.1).

There is a subset of attacks that send a request to a time
domain, and it waits for a response. These are difficult to
avoid time leaks. Even if the code was executed by a totally
opaque alien CPU, just by waiting for the request answer,
the human computer could infer the time that it took to
execute in the alien computer. This request/acknowledge
time leak attacks can only be avoided by denying a global
clock to the attacker. Section 2.2) goes over clocks and how
to provide/deny a local/global clock.

2.1 Time Domains Identifiers (TDI)

A time domain (TD) should not leak information to an-
other time domain. A time domain is different from other
constructs like operation system (OS), UNIX processes, or
libraries. Any section of code can have associated a time
domain. As such, a different time domain can be a dynamic
library, an application, the OS, but also a small portion
of code section. Some code sections may not have any
associated time domain, as such they keep the existing time
domain.

Each time domain has a unique identifier (TDI) across
the whole SOC. The TDI has to be shared across the whole
SoC. It is possible to pass the equivalent of “process id”
through the whole system, but it is easier to just extend
the physical address space with some TDI. Each core has
only one running TDI at a given time 1. All the physical
address memory requests, instruction and data, going out
of the core are extended with a TDI field. The TDI field is
divided in OS and user level. Table 1 shows the breakdown
of the physical address in TDI-OS, TDI-user, real physical
address. The real physical address can address the whole
memory available in the system. The TDI is just used for
time domain management.

The number of bits in the TDI are implementation de-
pendent, but the TDI-OS should have enough to encode as
many as available cores. Similarly, to avoid flush overheads,
the system should have enough TDI-user. For example, if
the physical address space has 44 bits, bits from 44 to 55
could be used as TDI. In such scenario, the hypervisor/OS
can assign the TDI. A source of complexity is how to deal
when the SoC runs out of TD identifier. If the whole TDI is
completely flushed to storage and/or DRAM, there are no
side effects left on the system, and the TDI can be re-used.

The TDI is controlled by the program counter running on
a given CPU. There are two main ways to change the time
domain in a given core: PC switch and system call.

On a PC switch, the core checks the TDI assigned to the
new program counter (PC). If the new program counter
does not have a TDI associated (TDI==0), there is no time
domain switch. If there is a new TDI, the core switches to

1. This work assumes no SMT threads in a single core



TABLE 1: Time Domain Identifier (TDI) field options. nz stands for non-zero value.

TDI-user TDI-OS Real Meaning

0 0 nz Hypervisor mode no time isolation
nz 0 nz Hypervisor mode with time isolation
0 nz nz OS mode TDI
nz nz nz Normal user level TDI

the new time domain, setting the TDI-user, but keeping the
TDI-OS field. This time domain switch can trigger several
changes in the SoC.

On a system call, the calling time domain clears the TDI-
user bits to zero, and sets back the TDI-user bits at system
call return. Inside the OS, there can be changes like in user
mode if different pages inside the OS are marked with
different TDIs. The advantage of having a TDI-OS is that the
OS time domain can be shared across many user level TDIs.
Nevertheless, to provide non interference of performance
through the OS, it is possible for the OS set the non-zero
TDI-user. On a Hypervisor call, the TDI-OS bits are cleared,
and restored at Hypervisor return.

It is important to notice that an application switches to
another TDI as soon as the memory address of the program
counter executed touches another TDI. For example, if an
application (TDI-x) has two dynamic libraries with two dif-
ferent TDIs (TDI-y and TDI-z), when a function call enters
the first library, the new TDI-y-user is set for the whole
core. When the library returns, the TDI-x-user is restored,
and when the second library is called, the TDI-z-user is set
for the whole core. A similar mechanism happens whenever
there are calls and context switches. The application can also
have code sections or libraries not mapped with specific
TDI or TDI-user set to zero. In such cases, the TDI is not
changed.

If there is no hypervisor or OS support to assign TIDs,
the system can not provide protection for all the time levels.
Without hypervisor/OS support, the SoC can still assign a
fix TDI for a each core, and not mark any code section for PC
switch. This system can provide at most time leak protection
between cores, and between user and OS, but not within
core user level applications or even between applications
inside the OS.

2.2 Clocks and Performance Counters
Attackers can build not so accurate pseudo-clock programs
with typically tight loops, or just leverage existing high
precision performance counters available in the core. The
proposal is to not provide performance counters or high
quality clocks to any application unless the operating sys-
tem (Hypervisor) has granted access. The main reason to
provide these counters to the application is for debuggers
or benchmarking.

Even if performance counters are granted, the perfor-
mance counters should be only per time domain. Applica-
tions should not sample performance counters across time
domains. Otherwise, any time of protection is gone. This
totally visible non-protected mode is still possible if the
hypervisor sets the hypervisor bit in the address space even
for the OS and the applications. Nevertheless, sharing per-
formance counters is a bad idea as it even voids protection
across virtual machines.

In this work distinguish between performance counters,
global clock, and local clocks.

Performance counters are the most dangerous time leak
because provide architectural insights on what happens
inside the application. No need to infer branch prediction
with time counters if the performance counter tells the
outcome directly. As such, we propose to have performance
counters only per time domain. Any performance counter
across domains voids the time level protection provided.

We group in the performance counter category, any
counter that the SoC provides about stats or state. This
includes temperate sensors and power consumption sen-
sors. For example, if the SoC has a counter for total
power consumption, exposing this counter breaks isolation
across cores. Just by reading the temperature or the overall
power, one virtual machine (VM) in a core can create
power/temperature signatures to know what is running
on the other core. The goal of this work is to provide
time leak protection, but it is not so beneficial if the SoC
provides gratuitous counters for shared resources. The SoC
can provide local performance counters like local branch
predictor, or local cache miss rate. It even can "estimate"
power if it measures only the core used by the time domain.
Nevertheless, providing temperature is a bad idea because
it has a slow moving average and crosses core boundaries.
Global shared counters could be provided only under the
following conditions: (1) The counter is not affected by SoC
different time domains, like ambient temperature; (2) there
is a single OS running on the SoC, then the OS could have
access to all the counters; (3) the counter is from a resource
used only by one time domain, like cache miss rates per
time domain; (4) the counter is a proxy created using
performance counters, like estimated power consumption.

The same way that counters cross time domains are not
provided, the SoC should not allow to change parameters
cross the SoC. For example, if the SoC has a single volt-
age/frequency domain, one time domain could not change
the setting for the other time domains. In such a system the
counter change should be ignored if there are several time
domains running. If the options are changeable per time
domain, it is possible to follow the recommendation, but the
parameters should be context switched per time domain,
and they should be considered just a “recommendation”
never a mandate to follow. If the change request to get
out of safety margins for voltage/frequency, the request
should be ignored. Overclockers should run the OS and
user level applications in Hypervisor mode, then they can
change/read everything because it says that there is a single
time domain. At boot time, there could be an option for
sticky hypervisor mode.

A global clock is different from a local clock. A local clock
ticks only when the application has an assigned core for
execution. A global clock ticks or advances all the time. The
local clock stops advancing when there is a system call or
context switch. The global clock continues advancing. Ap-
plications should request to have local and global clocks to
the hypervisor/OS. Both pose different concerns, but a local



clock is less problematic than a global clock. Nevertheless,
a group time domain with local clocks could cooperate to
build a global clock. For example, different time domains
can cooperate with a Precision Time Protocol like the IEEE
1588-2008 [11]. This attack could provide sub-microsecond
precision with just 10 updates per second.

As mentioned, the attacher can build a clock with a simple
loop program. One thing that is possible is to deny a global
clock when only one thread is involved. The attacker can
create a loop program to create a pseudo-clock, but this
loop is executed only when the time domain is active. If the
time domain is sleeping, the counter does not increase. If the
OS/Hypervisor does not provide a global clock counter to
the time domain, it can not have a high precision clock. The
only way is to rely on an additional time domain that may
be active, and interchange information between the time
domains or to request another thread in the same domain.

If the application only talks to other time domains
through the operating system, the OS can know what API
can leak. For example, writing to the disk does not allow
to build a high precision clock. Same for other calls like
getpid. Nevertheless, any call to get data from outside
time domains either disk or network could be used as
a communication channel to create a global clock. Even
reading once from outside does not allow to build a clock, it
requires a read/write/read or write/read/write loop. This
restricts the set of applications that the OS can guarantee
lack of global clock, but when guaranteed the time domain
can not get information even like in the case of the alien
core with the request/acknowledge time leak.

In many constrained applications like javascript browsers,
each time domain has a single thread. If they are not able to
build a global clock, they can not build histograms or traffic
patterns usually needed to perform time leak attacks. If the
system provides time level 4, this is not an issue, but if the
system provides time level 2 and denies a global clock, it
still can guarantee protection. It is important to notice that
a time level 2 has some time leaks, but it is still secure if a
global clock can not be build by the attacker. Since avoiding
a global clock is very restrictive, we think that it is more
interesting to avoid the time leak, but this section is about
how to deny a global clock to the application.

Avoiding a global clock is also the only way to avoid
a request/acknowledge time leak. For these reasons, we
propose to deny global clock in a system when possible
even when time level 4 is implemented.

2.3 Sharing between Time Domains

The SoC runs multiple time domains and memory protec-
tion that typically provides data/address isolation between
them. Notice that we say typically because time domains
are about avoiding time leaks, not to avoid data leaks across
memory protection domains like process in OS. Two time
domains could share the same address space which allows
to share data without constraints. This data sharing can be
used to create a communication channel that allows to create
a global clock or to directly pass information about the
local performance counters. Time domain isolation is about
not allowing to indirectly measure any performance on
other time domains. The technique proposed (Section 4.1)
guarantees that two time domains running in different cores
can not infer any time leak even if they share address space.

Sharing address space complicates the system, but it is
a common thing through dynamic libraries. The advantage
is that the code is read-only shared, and that the private
variables are per linker address space. This means that for
this common case there are no read/write shares. Since
there are only read shares, the techniques proposed should
provide isolation.

If there is a shared writable memory region between time
domains, there may be a way to track the communication
extending/modifying the coherence protocol, but we leave
out of the scope of this work.

This means that the OS/hypervisor can effectively mon-
itor the most common communications between time do-
mains. For an attack to work, it needs to perform the
attacking test many times. Being able to detect when attack
is attempted is a way to avoid most of the attacks. For
this to work, the time domains do not leak precise time
information unless active communication happens between
the attacking and the target.

2.4 Statistical Source Anonymity
One of the techniques [1], [3], [8], [23], [28] that secure
network provide is the capacity to create fake traffic to
obfuscate the real network traffic. This area of work is
usually called statistical source anonymity, and there are
many algorithms used. The system should be able to be
tuned to have different algorithms.

A basic algorithm is to have a mean, a standard deviation,
and to randomly generate periodic traffic. Other papers use
more advanced models that mimic fractal characteristics of
network communication.

The same techniques to detect network fingerprinting
and generate fake network traffic could be used to hide
the time information leaked when it is not possible to
avoid the time leak. If the system does not provide time
level 4, and/or does not provide global clock avoidance,
it can leverage statistical source anonymity to obfuscate
the pattern. Example of such systems for hardware is the
Sanctum [7] that provides statistical source anonymity even
between the OS and applications.

2.5 Dynamic Adaptation
To achieve better performance, the SoC is allowed to re-
configure or perform dynamic adaptation periodically. Each
dynamic adaptation leaks time information, but time do-
mains have exactly the same performance given the same
partitioning.

If the dynamic adaptations were performed randomly,
there would be no time leak. The issue is that they are
performed to adapt to the SoC demand. As such they leak
information about the overall SoC workload. The goal here
is to have a slow and infrequent non-reactive adaptation.
As such, it is not possible to leak time information for
the reason of the adaptation. The higher the concerns on
security the lower the adaptation speed. It is even possible
to keep the same time domain with a given adaptation.
When a time domain is created the same partitioning can be
provided. There are many options on how to manage this.

For simplicity, in this work we propose align the dynamic
adaptations to some constant intervals. For example, the
SoC can dynamically reconfigure once every 10M cycles.
When the 10M cycle is reached, all the pipeline stages



affected by the adaptation are flushed, and a new SoC
resource allocation can be accepted. The local clocks do not
advance during the time to adapt. If a system in the SoC has
an adaptation recommendation, the application is delayed
until the common cycle to adapt is reached.

The dynamic adaptation can leverage the same idea than
statistical source anonymity (Section 2.4). The main differ-
ence is that instead of generating fake traffic, it statistically
decides the cycle for dynamic adaptation.

3 TIME LEAK CLASSIFICATION

Not all the SoCs needs or provide the same level of pro-
tection. The goal of the proposed classification is to better
understand the sources of time leaks, and being able to
provide a meaningful way to categorize current systems
without having to enumerate list of security bugs affected
for each SoC. This section explains the different protection
levels (time level), the different information leaks, and the
methodology to test the hardware for each time level.

The classification considers four sources of time Leaks
for speculative (Spec) and non-speculative (Safe) executed
instructions. A Safe instruction is an instruction that com-
mits or retires. A Spec instruction is an instruction that the
processor speculatively executed and that it never commits
or retires. A time leak happens when an attacker time domain can
see the execution time of another attacked time domain. If there
are no performance counters across time domains, the way
to see time impact in the attacked domain is to measure the
execution time perturbance in the attacking time domain,
or to directly/indirectly read prediction table contents. For
each speculative or non speculative instruction, there can be
a different type of source for the time leak.

• Data (D): We say that there is a Data leak (D) if different
data values can potentially trigger different execution
time perturbances in another time domain. Most typical
leaks come from addresses, but data can directly leak
if left in predictors like data value predictor.

• Address (A): An Address (A) leak happens when
different load address values can trigger different ex-
ecutions in another time domain. Address leaks are
very common in current processors, typical but no
exclusive cases are data cache replacements, memory
disambiguation predictors, and prefetchers.

• Program Counter (P): A program counter leak (P)
happens when different time domains see different
time impacts depending on a single instruction being
executed. Typical, but not exclusive, cases are branch
predictors and instruction caches.

• Execution Perturbance (E): Sometimes the execution of
a time domain creates a time perturbance in another
time domain. The perturbance does not leak data, or
address, or even PC, but it is possible to know that
the other time domain is running because there is an
execution time perturbance. Ideally, there should be
zero change in performance no matter what the rest
of the SoC does.
If there is any concept of global time in the time
domain, it would see that there was a time on inactivity.
Similarly, for a system call, there is another time domain
switch. The application can record the time before the
syscall and compare after. The execution time pertur-
bance is against local clock.

The classification also consider the Time Level (0-4) pro-
tection provided for each leak source category.

• No Protection (0): When the time information leak
can cross all the time domains, we say that there is
no time domain protection. A typical example with
no protection are the caches, in most current systems
even applications executed in different cores can have
time information leak due to replacements or inclusive
caches.

• Multicore/Process Protection (1): When the time in-
formation can not leak across different cores, we say
that the system is secure for multicore (1). If time
domain run in different cores, a time level 1 guarantees
no change in the local and global clock, performance
counters, and execution path.

• Operation System Protection (2): Applications do fre-
quent calls to the Operating System (OS). When the
execution time in the OS can leak to the application
or user level, we say that there is a lack of Operative
System protection or that the Time Level 2 is not
met. Time leaks from the operating system should not
affect the application level. Similarly, the hypervisor
information should not leak to the operating system.
The application/user level is allowed to leak to the
operating system, and the OS is allowed to leak to the
Hypervisor. Time level 2 guarantees no change in the
local clock, local performance counters, and execution
path. Notice that it does not guarantee global clock
because the user level application is inactive during the
system call, as a result a global clock could measure this
time impact.

• Same Core Protection (3): Creating isola-
tion/separation between different cores is easier than
within a core. A time level 3 protection guarantees that
there are to time leaks between different processes in
the same core. Since processes can be context switched
when sharing a core, time level 3 protection provides
the same guarantees as time level 2 protection.

• Same Address Space (SAS) Protection (4): When the
SoC can guarantee that the information is the time
leaks can not happen threads in the same address
space, we say that the SoC provides Same Address
Space Protection or Time Level 4. No current processors
that we are aware provides this degree of protection,
but it is interesting for applications like browser that
could execute different clients in different threads while
providing time leak protection. Another useful example
are verifiable JIT code that the application can pass to
the kernel, and the kernel executes it. The verification
could check for malicious accesses, but the time leak
will protect for side channel leaks. A time level 4
protection guarantees that there are not changes in the
local clock, local performance counters, and execution
path independent of what the other security domains
execute.

To reduce the repetition, it is equivalent to say Safe2
and Safe[D2A2P2E2] When all the accesses have the same
protection level, it is not necessary to detail each one. (Spec3
= Spec[D3A3P3E3]

To reduce the number of options, we make the time
domain protection levels cumulative. This means that a
Time Level 4 implies that the SoC provides protection for



TABLE 2: All the possible classifications possible based on the combinations of source of information leak and time level
protection.

Leak Source Protection Time Level
None (0) Multicore (1) OS (2) Core (3) SAS (4)

Safe

D Safe[D0] Safe[D1] Safe[D2] Safe[D3] Safe[D4]
A Safe[A0] Safe[A1] Safe[A2] Safe[A3] Safe[A4]
P Safe[P0] Safe[P1] Safe[P2] Safe[P3] Safe[P4]
E Safe[E0] Safe[E1] Safe[E2] Safe[E3] Safe[E4]

Spec

D Spec[D0] Spec[D1] Spec[D2] Spec[D3] Spec[D4]
A Spec[A0] Spec[A1] Spec[A2] Spec[A3] Spec[A4]
P Spec[P0] Spec[P1] Spec[P2] Spec[P3] Spec[P4]
E Spec[E0] Spec[E1] Spec[E2] Spec[E3] Spec[E4]

SAS, same core, multicore, and Operating System. Similarly,
a Time Level 2 provides protection for multicores and OS. It
is possible to see a system that provides multicore protection
and no Operating System protection. For such cases, we can
say that the SoC provides level 2 (OS) but not 1 Time Level
protection (multicore). We ordered in this way because time
level 1 can provide global clock protection while time level
2 only can provide local clock protection. Based on the
classification from Table 2, we can categorize current cores:

• Intel Skylake, ARM A75, and Apple A11 have a
Safe[D2A0P0E0] and Spec0 Most Intel CPUs without
Spectre [13] security patches have a very low protection
level. This is in-fact the security hole exploited by
Spectre. The data in the speculative path can break
pass security levels, and leave cache side effects vis-
ible across time domains. Non-speculative loads leak
addresses but not data in these processors. The reason
is that data would not have a side effect across domains
unless it is used by a branch predictor or load address.
In speculative mode, the attacker can insert false spec-
ulative path instructions to leak the data, but this is not
possible in non-speculative data.

• AMD Zen, and ARM A72 have a Safe[D2A0P0E0] and
Spec[D3A0P0E0] The reason is that in these cores when
a speculative load has a TLB protection problem, the
load does not return data even thought it is in the
speculative path. This means that the same application
can not leak data values across domains.

Notice that the previous cores have a very low degree
of information leak protection. This section shows potential
attacks that could be created unless these time side channels
are closed.

• Data, leaking data is the worst type of leak. Many
works propose value prediction like the ones proposed
for L2 caches [5] or execution like EOLE [19]. None
of those works deal with time leaks, this means that
this works have a Safe[D0] which is the easiest way to
create attacks. Runahead [18] is another technique used
by several processors that can also have the same Time
Level if implemented as suggested in the literature 2

• Address, leaking addresses is a way to indirectly leak
data and to also leak significant information across
cores. Leaking addresses across domain can point to
code and/or data in another time domain. In fact, this
side channel is the typically used to pass information
in most attacks. The attacker code creates cache or

2. IBM Power6 and NVIDIA Denver implement runahead, which
may make them susceptible to time leaks similar the Meltdown.

branch prediction disturbances in one time domain,
and it can be seen in another time domain. Most attacks
rely in cache allocation with some malicious code, but
no attacking code may be necessary. For example, an
attacker can learn about the prediction rate for a given
address. If the code has new cache misses, it may be
because it reached a new set of data.

• Program Counter is known to be a security risks, and
most recent encryption algorithms are branch-less as
a result. If the SoC provides a Safe[P3] and Spec[P3]
protection level, it is possible to use several encryption
algorithms safely.

• Execution Perturbance is the most challenging side
channel to avoid. Examples is when the operating
system executes code for a keyboard interrupt. Some
works [4], [25] point that by looking at activity rate in
the keyboard, it is possible to infer the typed password.
This means that an attacker can just monitor perfor-
mance perturbances that happen periodically due to
keyboard interrupts and infer the password.

3.1 Desired Support

The classification helps to understand the different time
levels and their respective protection. From a practical point
of view, there are three very interesting overall categories:
Spec4 Safe1 Safe2 and Safe4
Spec4: An SoC supporting this level means that it behaves
like a trivial in-order non pipelined core from a time leak
point of view. This means that the developer does not
need to worry about speculation for time leaks. Things like
speculation fences in ARMv8/x86, retpoline, or KAISER
become unnecessary. Spec4 level means that the processor
speculative path does not leak, but it does not say anything
about the non-speculative instructions. The Spec4 protection
guarantees the same local and global time, local and global
performance counters, and execution path.
Safe1: Provides the Spec4 advantages, and it also provides
performance isolation when the different time domains
execute in different cores. A Safe1 SoC guarantees that time
domains across cores can not affect the local or global clock,
local or global performance counters, and execution path. It
is a very strong isolation as long as the time domains run
in different cores. Safe1 allows to deploy different virtual
machines (VMs) in different cores, and guarantees that no
performance interference between the cores. This means that
servers like Amazon/Google could have different VMs and
guarantee the same performance independent of what the
other VM is doing. The only interferene can happen as a



result of the hypervisor/OS managing the VMs because a
Safe1 does not provide Safe2 isolation.
Safe2: Provides the Spec1 advantages, and provides OS
protection. In Safe2 the user level application can not see any
local clock, performance counter, or execution time change
as a result of different code executed inside the OS. It is
important to remember, that Safe2 can not provide global
clock protection if there is a coordinated attack to build
a global clock. In a VM environment, it means that a the
VM attacking the other VM needs to access outside the SoC
to build a precise clock, and then it can measure the time
that the hypervisor/OS takes in hypervisor/OS calls for the
calling VM.
Safe4: Provides the Safe2 guarantees, but allows to share
the same core between different VMs and single address
space (SAS) time domains and guarantees no performance
interference in the local clock, local performance counters,
or execution path.

3.2 Time Leaks without Time Impact
The goal of this work is to avoid time leaks across time
domains. The reason is to improve security or protection
between applications, but it also has a side effect of increas-
ing repeatability because other running applications do not
interfere with the executing application.

As previously mentioned, besides time leaks, the system
has to deny sharing any performance counter across time
domains. Gaining any insight in branch prediction or cache
statistics is even more capable of leaking information than
a time attack.

Similarly, most structures can not be shared across time
domains. Sharing entries in the caches have a clear time
leak because of the performance impact. Most structures
would have a time impact, but it is possible to leave
some information across time domains. For example, a
load-link store/conditional pair tend to arm a register. If
this register is left across time domain switches, a store
conditional would fail/pass differently depending on the
previous thread execution potentially leaking time and ad-
dress information. The testing (Section 3.3) infrastructure
should cover all these cases because the same execution path
and time should happen in a time domain independently
of what happened in another time domain.

3.3 Testing for Time Leaks
Understanding how testing works helps to understand the
different classification categories. This section explains some
mechanisms to test for time leaks in a hardware develop-
ment platform. In a way, it is easier to explain the test that
each time level should pass than going over all the details
on what the time level protection requires.

For each category show in Table 3, we can create a
specific set of tests. For all the tests, we have a one or
more time domains that are going to be changed (attacked
time domains). We also have a single time domain that
is going to be the attacker time domain. We introduce
different types of changes or perturbations in the attacked
time domains, and we should not observe any changes
in any of the metrics in the attacker time domain. This
means that the attacker time domain has the same local
time or local performance counters or execution path. Notice
that the testing infrastructure can not cover multithreaded

applications because those are not deterministic by nature
in current SoCs.

To test for Spec[D] we can inject random changes in
data values for speculatively executed instructions, and they
should have no time effect in any other time domain. In
general, data value changes can have effects in the attacked
time domain, but not in the attacker time domains. In Spec
tests, data value changes should not have any time impact
neither the attacker or attacked time domain.

The challenge in the Spec verification is that random data
changes will affect the execution path if the speculative
instruction is not discarded. To solve this issue, there could
be a two pass simulation to detect all the instructions
fetched but that were never committed. In a second run,
the testing environment injects fake/random data values
to the discarded instructions. There should be no time
effect in other time domains. Even better solution based on
typical testing infrastructures is to have an emulator in the
testing setup. An emulator can be coupled with the fetch,
and automatically detect which instructions are fetched that
do not correspond to the commit path. Those speculative
instructions are target for random data modifications.

To test for time level 1 (multicore), one core runs the
attacker time domain, and other cores the attacked time do-
mains. Random changes in the Spec[D] path in the attacked
time domains should not affect the attacker local or global
clock, local performance counters, or execution path.

To test for time level 2 (OS), the testing platform should
create attacked applications with system calls. Whatever is
executed inside the system call Spec[D] path should not
affect the user level code. For a time level 2, this means
no effect in the local clock, local performance counters, and
execution path.

To test for time level 3 (core), the same test as the time
level 2 is performed, but all the time domains can freely
execute in any core. This means that the test should include
cases were the time domains share cores, or migrate, or
multiple combinations. Since the attacker time domain can
have context switches and thread migrations, it can have
a lower overall performance, but it should not have any
change in the local clock, local performance counters, and
execution path.

To test for time level 4 (SAS), we do the same test as
time level 3, but the attacker and attached time domain can
share the same address space. The time domains can share
data addresses, but they can not use this information as
a source of execution path divergence. The reason is that
different context switches can slowdown/speedup some
time domains. If the attacker time domain can “read” the
memory contents, it can see the progress. Time level 4
protection is not against accessing data directly, but not to
have any time impact.

In all the tests for time level 3, random code changes in
the miss path should have no impact on the execution time.

One thing in all the time level tests is that the Spec[D] ran-
dom changes may result in a exception/missprediction/etc
in the microarchitecture. This can not be made visible to
the attacker time in any way. Neither local time, local
performance counters, nor execution path.

The same technique can be applied for addresses (Spec[A])
and program counter (Spec[P]) Instead of changing data, the
address or an individual instruction is changed. Spec[E] is a
bit more more challenging because it requires replacement



of a set of instructions in the speculative path for other
random instructions. Those random replaced instructions
should not have any effect in time in other time domains.

Testing for Safe time leaks is a more straightforward
solution as it does not require multiple runs, but it is a
bit more challenging to create programs for testing. To
test for Safe[A] the random program/instruction generator
(RIG) can generate programs were data values are different
but all the other operations are the same. In this case, all
the programs should have exactly the same time effects
in other time domains. This technique can be leveraged to
detect data (Safe[D] address (Safe[A] and program counter
changes (Safe[P] One challenge to remember is that dif-
ferent data/address/PC values have different IPC for a
given benchmark because they affect the execution time
like branch prediction accuracy, but they should not have
different impact on other time domains. This is the thing
that the test covers, no impact or time leak in another core.

To handle safe time perturbances (Safe[E] the RIG can also
insert code sections. The code sections should not affect the
execution time in other time domains. The attacker time
domain should have the same local clock, local performance
counters, and execution path.

Both Safe and Spec need to handle context switches and
system calls. This means that creating random system calls
or context switches should not affect the time perturbance
in other time domains as long as the same amount of time
is spent in the operating system or other domain. The test
considers the local clock, local performance counters, and
execution path.

It is possible to extend the testing infrastructure to include
multithreaded applications in the attacked time domains.
This is OK because we are only measuring the attacker.
Adding a multithreaded attacker is more challenging. The
main reason is that multithreaded applications are not deter-
ministic when context switched. The testing does not Nev-
ertheless, the same perturbations can be applied if one set
of cores runs several multithreaded attacked time domains,
and a different set of cores run the also multithreaded
attacker time domain. Notice that this last test does not
allow for Time Level 3 testing with multithreaded attacker.

A time level 3 with a multithreaded attacker requires the
OS to context switch all the threads in a time domain when
one of the threads is context switched. If one of the threads
goes to sleep, it is not necessary to context switch the whole
time domain. This is a feature not supported by current OS
and that requires being able to synchronize multiple cores
for context switch.

If a platform supports time level 3 testing, it can automat-
ically support a time level 4 testing. The only constraint is
that the attacker time domain is not allowed to read from the
same address space that the attacked time domain writes.
The attacker time domain is allowed to write in the other
time domains, but the test does not allow to read.

Dynamic adaptation (Section 2.5) also complicates testing.
The same dynamic adaptation sequence should be applied
for the different tests checking the same time domain perfor-
mance. This is fine when clear boundaries for adaptations
are available. When the same test is run, we change the
attacked time domains. As long as we maintain the same
attacked domain dynamic adaptations or resources, we
should guarantee no changes in performance independent
of the dynamic adaptations or resources in the attacked time

domains.

4 PROTECTION TECHNIQUES

4.1 Protection Hardware Techniques
To have a successful time side channel attack, there has to
be two main components: The attacker must have a clock or
event counters sensitive to other time domains or a change
in execution path; the time domain under attack (attacked)
may have a difference performance or leave different impact
on the SoC depending on the data/address/. . . used.

Eliminating any of the previous components avoids time
side channel attack. We know that the local clock can
not be avoided, and that the global clock is difficult to
avoid if there is a coordinated attack from multiple security
domains.

It is possible to measure the performance of other time
domain directly, or by observing all the information left as a
result of predictors in the processor. If a time domain leaves
cache/predictors information populated to be used by other
time domains, they can infer the work done. To avoid all this
time dependent information leak, the SoC could do flushing
(Section 4.1.1), off-loading (Section 4.1.2), and partitioning
(Section 4.1.3).

While the previous techniques make sure that informa-
tion resources are not shared across domains, isolation
(Section 4.1.4) ensures that other resources like bandwidth
utilization are separated between time domains.

Being able to build a global clock allows to do attacks
that use an request/acknowledge protocol or even context
switches. This can happen even with isolation, partitioning,
flushing, and off-loading. This time leak can be mitigated
with regularization (Section 4.2.1) that works by hiding
the starting time for time domain tasks. A more strict
technique is homogenization (Section 4.2.2) that enforces
that code sections have repeatable execution times when
executed multiple times. A complementary technique that
helps regularization, and homogenization is to have a non-
value dependent operation when possible (Section 4.1.5).

If the goal is just to protect from speculative time leaks,
it is possible to avoid speculative updates (Section 4.1.6)
and/or fix them (Section 4.1.7), avoid speculative data (Sec-
tion 4.1.8). All these overheads can be reduced by leveraging
the point of no return (Section 4.1.9) from modern OoO
cores.

4.1.1 Flushing
Flushing guarantees no information leak between time do-
mains by flushing its context on each switch.

For large structures, it may be interesting to do partial
flushes because it takes time to flush and/or too much
history may be lost. To reduce the overhead, is possible to
do a partial flush. A partition or partial flush can use a hash
function to select a subset of the resource. A partial flush
deallocates a chunk of the resource at time domain switch.
This partial flush has two implications to the hashing func-
tion and to the decide how much is flushed each time.

From a time point of view, a partial flush allows the secure
domain to detect the percentage of structure flushed. This is
not a problem if the percentage flushed in independent on
the length or execution time of the time domain. This means
that if we were to flush 25% of a table like Branch Target
Buffer (BTB) each system call, and allow the OS only to use



that 25% of the BTB table, there would be no time leak. This
is because there would be always a constant overhead, but
it would be the same overhead independent of the work
done inside the OS.

The partition also can be done dynamically (Section 2.5).
In the rest of the document we refer to these options as Full
Flushing, Static Flushing, and Dynamic Flushing.

One additional mechanism that should help flushing is
a background state machine that tries to writeback dirty
lines. An opportunistic FSM can look for idle cycles, and
increase the amount of clean lines. The advantage is that
flushing is very cheap for clean lines, but costly for dirty
lines. The same FSM could have a threshold to guarantee
that a percentage of the cache ways are always clean. We
call this FSM the dirty bit cleaner or Janitor FSM. There
can be a Janitor for each cache with a different policy and
thresholds.

One thing to consider is that flushing could take a variable
amount of time. This may be a concern with dirty lines.
If the core delays the time context switch because there
were many dirty lines, it is effectively leaking through
the global clock that there are many dirty lines. There
are several solutions to this problem: worst case, reserve
channel, moving average, and/or “in cresendo”.

The worst case flushing limits the maximum percentage
of the cache lines that can be dirty, and then always charge
the amount of time needed to write back the maximum
percentage even if only a subset is dirty.

A second approach, we reserve a channel or bandwidth
(BW) in the SoC for dirty lines displacement. This is difficult
to manage unless time domain switch is coordinated. It is
not clear how to handle it.

A third approach is to have a slow moving dynamic
adaptation of the maximum percentage of lines that can be
dirty.

A fourth approach is to give displace BW “in cresendo”
(or increase) to the new time domain as it switches. This
allows to reserve a BW for displacements. This is very
reasonable because the time domain should not have dirty
lines after just starting.

Unless otherwise stated, the more reasonable is to have a
dynamic adaptation, and to reserve BW for displacements
during the beginning of the time domain context switch.
Having a Janitor would help to reduce those percentages.

4.1.2 Off-Loading
Off-loading is a variant of flushing. Like flushing it can be
full, static, or dynamic. The difference is that instead of just
invalidating, the entries are read and checkpointed. When
the same time domain is re-executed again, the checkpoint
is recovered.

To avoid blocking, the checkpointing and recovery can be
done lazily. The entries are marked invalid, and the check-
pointer state machine creates a backup. If the entry needs
to be used by a new security context before checkpointing,
when the entry is read, the value can be checkpointed. If it is
not possible, the entry is just not checkpointed and marked
invalid at recovery. Effectively the same as flushing for that
entry.

Combining off-loading with flushing can have a signifi-
cant advantage. For a time domain switch, a small percent-
age of the structure can be statically flushed. Meanwhile, the
rest of the structure is off-loaded. Typically, it is not needed

to off-load the whole resource. In systems like caches, it is
reasonable to off-load just the MRU set, and to flush the rest
of the sets.

As long as the off-load and flushing have a constant time
independent of the data/addresses/. . . flushed/off-loaded,
there is no time leak. We call the approach of always off-
loading a fix percentage like the MRU set a Static off-
flushing. The Dynamic off-flushing version is possible but
the complexity makes it less interesting.

4.1.3 Partitioning
For some resources, it is not easy to flush or off-load. This
is the case for most shared resources like last level caches or
directories. For such shared resources, the best approach is
to partition. Again, the partitioning can be static or dynamic.
SecDCP [29] shows a mechanism to dynamically partition
a last level cache.

For resources with different utilization ratio, it should
have a better performance to have dynamic partitioning.
The best example is the last level cache. For some resources
with more homogeneous workload, it should be simpler to
have a static partitioning. For example, a size directory is
mostly a function of the caches in the system. This means
that it should be efficiently partition for different cores.

The decisions to handle dynamic partitioning are re-
sourced based. In this work, we call these techniques either
Dynamic Partitioning or Static Partitioning.

4.1.4 Isolation
Partitioning guarantees that entries in resources from one
time domain do not affect other time domain. This avoids
aliasing and interference. Isolation provides separation or
QoS for resources that handle transactions like memory
bandwidth.

Even for high performance systems without side channel
time leak information worries, resources have some degree
of isolation to guarantee that a core does not hog all the
resources. For example, a quad core may allow a single
core between 0 and 50% of the total memory bandwidth. To
provide isolation, the constraint is a bit more stringent. The
core has a fixed percentage of the bandwidth, not a range. A
naive implementation would give 25% of the bandwidth to
each core in a quad core system. This works but it is not very
efficient. The solution is similar to the dynamic flushing/off-
loading/partitioning. Adjust periodically the BW allocated
does not leak as long as it is not based on some time leak
that did not exit before.

A solution is to allocate the reserved BW based on the
number of active cores. This means that more cores will
result in a lower bandwidth, but once they are executing
there would be no leak beyond the fact that other cores are
running, this is not considered a fine grain time perturba-
tion. To further optimize the BW utilization, it is possible
to dynamically adjust the BW assigned to each core based
on average executions. In the rest of the work, we call these
Static Isolation or Dynamic Isolation.

4.1.5 Non-Value Dependent Operations
Branches, memory operations, and ALUs operate over dif-
ferent data. When the value of the data has a different
execution time, we expose the time domain to have a time
leak side channel. A time leak can also be exposed when the



resource is pin-down for multiple cycles and it can not be
killed. For example, if a long latency square root operation
can not be killed, it can delay the branch prediction flush
effectively leaking that there was a long latency square root.

If ALU operations have a variable latency due to data, it
is possible to infer the value contents. Since it is not easy to
hide the execution time of memory operations the best way
to deal with this type of attack is to have a fixed latency for
all the values. Some cores and papers propose telescopic
units [12] to early exit for simple operations like divide by
1 or 2. This may improve the overall performance, but it is
a source of concern for time leaks.

Non-value dependent operation is mostly a floating point
and vector issue. In those cases, it means that the operation
should executed with the same latency no matter the value.
In floating point, this means no telescopic units, and that
dealing with denormals should have also the same latency.

Non-value dependent time operations for branches and
loads is a high bar that introduces significant overheads.
A more efficient solution that still provides fine grain
execution perturbation protection is homogenization (Sec-
tion 4.2.2) or to do code transformations usually done in
encryption to guarantee the same execution time.

4.1.6 Avoid Speculative Updates
If an SoC performs flushing, off-loading, partitioning, and
isolation, there is no need to avoid speculative updates.
The reason is that speculative updates can only be as a
result of the current time domain, and the other protection
techniques guarantee that there are no time leaks or perfor-
mance events between time domains.

Nevertheless, enforcing all these techniques can have a
higher performance overhead. For that reason it is inter-
esting to avoid speculative updates. The update is delayed
until the instruction becomes non speculative. In many cases
like the branch predictor or prefetcher, it has a very small
overhead to avoid speculative updates.

4.1.7 Fix Speculative Updates
Sometimes speculative updates are not possible to avoid or
delay. This is the case of the global history register (GHR)
for a branch predictor, or the return address stack (RAS)
updates for function call and returns. In cases were the spec-
ulative update is needed, the hardware must guarantee that
the update does not change loose any information stored
before, and that if the branch is flushed, the information
can be recovered.

A solution in those systems is to have two structures.
One updated speculatively, and another updated when the
instructions become non-speculative. If there is any flush in
the pipeline, the speculative structure is restored with the
non-speculative one.

4.1.8 Avoid Speculative Data/Address
To provide even more protection during the speculative
path, it is possible to not allow to use speculative data in
the speculative path. For example, a stride prefetcher could
use the load address, but it is equally OK to just use the
retired load address and increase the stride delta. In the
simple cases when the speculative data can be avoided, it
is a way to make sure that the speculative path does not
time leak sensitive information.

4.1.9 Point of No Return (PNR)
In this document we propose to classify SoCs time based
on the degree of protection of speculative (Spec) and non-
speculative or safe (Safe) side channel time information leak.
If a processor does not have any speculation, it automat-
ically has the highest level (Spec4). The problem is that
modern OoO can not achieve high performance without
speculation. A partial solution that mitigates the problem
is to leverage the fact that a fraction of instructions are non-
speculative.

Point of no return or PNR [16] was proposed as a point in
the reorder buffer (ROB) were older instructions than PNR
are guarantee to eventually commit. No instruction between
the PNR and the retirement point can trigger a branch
misspredictions or an exception. This guarantee means that
any load/store instruction has full address resolution and
knows about TLB permissions, any instruction that can trig-
ger an exception is cleared, and that branches are resolved.

Using ESESC for SPEC2006, an modern A72-like proces-
sor has around 25% of the instructions in the ROB beyond
the PNR. This means that for security reasons 25% of the in-
flight instructions can be considered non-speculative. These
non-speculative instructions can update the prediction ta-
bles without risking to pollute information.

In the same way that instructions retire in-order, instruc-
tions pass the PNR in-order. In this work, we use the word
commit for the point when instructions pass the PNR and
retire for the point that instructions are removed from the
ROB. Both happen in-order, but on average there are 25%
of the instructions that have committed but they still can
not retire.

Notice that this is different from most definitions were
commit and retire have the same meaning. To be more
specific, a load or store goes through 4 phases. Commit,
Retire, and performed. A load always does commit first,
then performs, and then it can retire from the ROB. Perform
is the moment that the load is visible to other cores. For
loads this tends to be the point that the value is bound
to the register file. Typically, a store is performed, when
the cache line gets an exclusive (M or E) state and the
store contents is copied to the cache. As a result, a store
is a bit more complicated in a release consistency mode.
Stores always commit first, but the perform and retire can
happen in any order. Typically, a more conservative Total
Store Order (TSO) processor may restrict the load sequence,
commit first, perform second, and retire third.

4.2 Mitigation Hardware Techniques
The following techniques do not avoid time leaks, but they
help to mitigate the existing time leak by trying to scramble
it and make it useless.

4.2.1 Regularization
Isolation is a high protection bar but that may be required
for Operating System code. Nevertheless, even static iso-
lation and partitioning do not provide a Safe3 protection.
The example previously explained is the keyboard interrupt,
but the same is true for most interrupts like the network.
If the system is fully loaded, one application must be
context switched when the interrupt happens. An inefficient
but simple solution is to always reserve one core for the
operating system (Safe1 suffices in this case). When a core



is available for interrupts and IO, there may be no need to
do regularization if the different interrupts are executed by
the same time domain. This is the typical case in the Linux
kernel were there is no isolation inside the kernel.

For such attack, there must be a global clock, but as
we know it can be created with a coordinated attack. To
provide some protection even with a global clock, we can
do regularization.

Regularization solution is to create fixed application inter-
ference periods even when no interrupt is generated. Notice
that regularization does not avoid time leaks, but it hides the
leak to make it useless. Regularization copies the principles
from statistical source anonymity and create fake workload.
Regularization creates spurious starting execution times
for time domains. Namely, a keyboard interrupt may be
adjusted to happen only in multiplies of 5ms, and there
can be several spurious fake interrupts after the interrupt
for a period of time. This would not affect the keyboard
performance, but it will obscure the keyboard rate pattern.
The same is true for other interrupts.

Periodic events can be adjusted to happen at some more
regularized time periods, and the SoC should generate fake
events even after the activity is finished to further hide the
impact. The result is that an attacker can know that there
was a coarse period of activity but no fine grain execution
time perturbation. When the regularization is applied to all
the interrupts and IO traffic, the attacker can not know the
exact starting time for these events. Periodic traffic is a very
secure method for source anonymity, but it is considered
to have a high overhead in networks. The overhead in
hardware is not as high for those infrequent events.

For each interrupt type and/or IO handling there should
be a discrete interval to regularize. In addition, there should
be also the capacity to generate some fake workload. A
simple case would be to generate a variable number of fake
interrupts afterwards at similar time intervals. More compli-
cated traffic mimicking using Statistical Source Anonymity
(Section 2.4) models.

The longer the regularization, the coarser the time execu-
tion perturbation that we can protect. The cost is a lower
efficiency on the system. There is a point when it is just more
efficient to allocate a core for all the interrupts. When the
traffic mimicking and regularization overhead is too high,
the SoC can switch and reserve one extra core to that time
domain. Typically, it would reserve one or more core for the
Linux as the OS has higher performance demands.

4.2.2 Homogenization
Homogenization is a proposal to hide the variable latency
when executing code blocks. When a code section is exe-
cuted, it should have the same IPC no matter what.

Performance modeling using simulation points [9] or
program phases [15] know that repeating code phases tend
to have the same performance or IPC. There is variation
on the branch prediction/misses, but on average there is a
repeatable performance. The SoC can track the performance
per program phase. By tracking the average and standard
deviation per phase, it is possible to enforce that the code
section has some consistent IPC.

Homegenization could also be adjusted. For example, a
very strict solution is to always execute the code section
with the worst possible execution time found up to the
moment. This is different from assuming that everything

mispredicts. The larger the code section to homogenize, the
higher the chance of having lower performance impact.

To implement this approach something like the program
phase [10] can be used to track program phases and the
associated average and standard deviation IPC. Once the
expected IPC is known, enforcing extra delays is trivial.

A hardware only solution can have significant overheads,
an interesting extension is to leverage the software to
annotate the code. The software could also annotate the
code section to protect with homogenization. In that case,
it can indicate that the time should always be the same.
For example, an encryption algorithm can use branches and
indicate the code section for homogenization.

While in the homogenization section, the OS should not
try to context switch. Otherwise, it may require to remember
the amount of code executed in the homogenized section.

The same homogenization hardware can also be used to
detect potential attacks. If a code section with a very tight
standard deviation starts to have very different results, it is
possible than an attacker is trying to test the system to gain
insights.

Because of the software/hardware interaction and the
open opportunities/challenges, this document does not fur-
ther explore this option, but the overall idea and implemen-
tation is presented here so that the work remains open.

Having a “worst case” is still not a perfect solution. For
example, if there is a password checker that checks very
slowly the “1234” password, and very fast otherwise. An
attacking system that could see the response time can infer
with just one measurement that the password was “1234”.

4.2.3 Sanctum

Sanctum [7] provides extensions in the memory hierarchy to
provide memory page coloring and randomize the address
space. Their concept is that if the physical address spaces are
randomized there may be a time leak, but the attacker can
not know the source. The same idea works with oram [26].

We consider this memory scrambling not a time leak
protection but another security level to handle the global
time clock leak.

4.3 Protection Software Techniques

4.3.1 OS/Hypervisor Shuffling

The OS/Hypervisor could try to execute different time
domains that do not communicate in different cores when
the load is low. There reason is that techniques like flushing,
off-loading, and partitioning have an overhead each time
that there is a switch between time domains.

Although it creates more overheads and flushing. It is
better for security to place in the same core time domains
that communicate with a synchronous interface. Otherwise,
another “attacking” time domain can detect the time to
complete the synchronous communication (See Section 6 to
show a potential attack). The reason is that a coordinated
attack to build a global clock requires to run in different
cores or to communicate outside the SoC.

The challenge here is that time domains do not provide
data isolation. To handle the OS has to create a new
OS/process for each time domain.



5 OUT-OF-ORDER IMPLEMENTATION EXAMPLE

While the previous section goes over the different tech-
niques to secure the time leak side channel, this section goes
over the main structures and predictors in a modern OoO,
and shows an example of how to use some of the previous
techniques. The described SoC always provides Spec4, and
at boot time it can be configured to provide Safe1, Safe2
or Safe4 at additional performance overhead. In most ISAs
like ARMv8 or RISCV, there is not supported to indicate a
switch between security domains in the same address space
(level 4). In this work we assume that the upper bits on the
physical address space indicate the time domain.

5.1 Software/ISA Changes

Before starting with the hardware, there is a list of features
that must be enabled in the software to provide a secure
system when something more than Spec4 is configured at
boot time.

• The TDI assignment with 12 bits is used, with 4 bits for
TDI-OS, and 8 bits for TDI-user (Section 2.1)

• The Hypervisor should assign time domains. The OS
can request time domain ID changes to the Hypervisor,
but only within the assigned pool. (Section 2.1)

• There is a local and a global cycle count counter. All
the other performance counters are local per core. The
OS has a local and a global cycle count but not global
performance counters. (Section 2.2)

• Any control register that may cause a slowdown or
measure directly or indirectly the performance in an-
other core is only visible to the Hypervisor. (Section 2.2)

• Any cache management or control register only works
over the partition assigned to the time domain. Only
the Hypervisor can perform operations that apply to
all the SoC.

• If there is a single OS running, the OS has access to all
the resources behaving like a Hypervisor from a time
domain point of view. The only exception is that it can
not assign TDIs besides the assigned by the Hypervisor.
In the single-OS case, the Hypervisor bit in the physical
address space is set even in the OS, but it is managed
by the Hypervisor.

• There are new control register to assign TDI-user/TDI-
OS to super pages. This control register is restricted to
te Hypervisor.

• The hypervisor can disable dynamic partitioning per
core, and assign fix static partitioning per core. Not
even the hypervisor can assign a resource partitioning
per TID.

• There is new control registers for homogenization (Sec-
tion 4.2.2). The application marks the beginning and
end of the code section to homogenize. The hardware
enforces that the execution time for the code section
is always the maximum of the value provided by the
code instrumentation or the worst recorded execution
time. There is a table managed by the Hypervisor that
points to all the homogenization code sections and IDs.
When the OS or application want a new code section,
they must request the new ID to the Hypervisor.

5.2 Hardware Changes
5.2.1 Basic Features

• The system calls can not be performed until they reach
a PNR and all the older memory operations are locally
performed.

• The dynamic adaptations on the system are delayed
randomly to be between 1ms and 2ms intervals. All
the SoC pauses to perform whatever adaptation is
necessary as explained in Section 2.5. If the adaptation
is for a resource that only affects a core like a branch
predictor, other cores do not need to pause to perform
the adaptation.

• All the instructions by the memory operations and
branches have a fix latency to execute. This means
that the core implements the Non-Value Dependent
Operations (Section 4.1.5). The core implements homog-
enization for crypto-like engines that require also to
enforce branch and memory latencies for algorithms
(Section 4.2.2).

5.2.2 Data Caches
The caches are large performance predictors. As such, we
should have several techniques to handle them. The system
tries to reduce the amount of sharing caches, and avoids
inclusive caches. We propose that there should be a private
instruction and data cache (DL1, DL2, IL1, IL2) per core.
The private L2 can be exclusive or free running, but not
inclusive. The shared L3 or last level cache should not be
inclusive or exclusive, just free running. Ideally, the shared
L3 is just a small cache next to the memory controller and
directory. We propose to avoid large inclusive last level
caches, and instead use cooperative caching approaches [6]
without shared last level caches.

Another difference is that we propose to have a Janitor
(Section 4.1.1) to reduce the amount of dirty lines when
possible.
Non-speculative load/stores are loads or stores performed
when they are beyond the PNR. One significant difference
from previous works is the cache miss allocation. Since the
caches are not inclusive, on a L1 cache miss, the line is
allocated only to the DL1, not the L2 or L3. If the line was
already in the L2 or L3, the value can be left there or not,
but cold misses go to L1 only.
Speculative loads have a special behavior and different to
support Spec4.

While in Spec4, a speculative load cache miss allocates
in the DL1 only if it can displace a clean line with the
lowest LRU priority 3. The allocated speculative line is still
kept with the lowest LRU priority. Notice that the lowest
LRU priority could potentially displace still speculative line
which can be a performance issue. To avoid this case, when
the lowest LRU line[s] are still speculative, we propose to
allocate the line in the Store Completion Buffer (SCB). If
the SCB is also full, the load waits until it becomes non
speculative (PNR). When loads become non speculative, the
associated SCB entry is displaced to the DL1 or the asso-
ciated DL1 speculative line is marked as non speculative
and promoted to MRU or at least increased the priority to
avoid being LRU. On context switch or system call return,

3. The solution works if instead of just the lowest LRU, we pick
one of the two lowest priority lines, if we always flush the two
lowest LRU clean lines.



all the lowest clean LRU lines from the cache are flushed
independent of being speculative or not.

This makes speculative loads not to impact the displaced
lines on the system. The lower level caches are also not
affected because caches are not inclusive.

While in Safe2 and Safe4, speculative loads could be-
have like non-speculative because the caches are flushed at
boundaries. Nevertheless, for verification simplicity we pro-
pose to keep the same Spec4 method enable for speculative
loads.
Speculative Stores can trigger prefetches but unlike stores,
they can not trigger invalidations in the coherence network,
but they can not go to the SCB until they pass the PNR, as
a result they are not speculative side effects. The prefech
information goes to the SCB line in the overflow case of
speculative loads. If the store is flushed, the associated spec-
ulative clean entry from the SCB is cleared. The previous
mechanism is the same in Spec4, Safe2 and Safe4.
System call. The SoC has a different behavior when in Spec4
or Safe2/Safe4 mode. In Spec4 and Safe1 mode the LRU
speculative entries in the cache are invalidated at system
call.

To support non interference Safe2/Safe4, a partition of
the cache is given to the OS at system call. The lines do
not change line state on syscall but at system call return.
By default, a static policy flushes 25% percent of the LRU
DL1 cache unless a different percentage is given to the
OS/Hypervisor or a hardware learning mechanism. By
default, the OS does not allocate on the DL2 cache. At
OS/Hypervisor call, the dirty lines that are going to be
flushed are being written back. After system call return, half
of the write back BW is given to clear the dirty L1 lines for
a given amount of time as indicated in the “in crescendo”
technique.

In Safe2/Safe4 mode, the allocated lines to the OS are
flushed on a system call return. The lines flushed are the
LRU from each set. For example, a 25% flush in an 8 way
means that 2 cache lines per set are flushed at system call
return. Flushed means writeback and invalidate.

Per core, there is also a state machine (FSM) to detect
frequent system calls. The FSM tracks the amount of instruc-
tions in user mode vs system mode. It partitions the caches
according to the ratio. The caches switch to partition instead
of flush. A fix partitioning is given to all the system calls,
and the OS cache lines are not flushed at system call return.
The OS portion of the cache lines can not be displaced or
even used by the user level application. If there is an OS
allocated cache line hit while in user mode, the SoC triggers
a fake cache miss and populates the user mode of the cache
and invalidates the OS mode. This is because the OS level
can not have on the user level, but the user level is allowed
to have a time impact on the OS level.

The OS partition mode gets the 25%, 50%, 75%, or 100%
of the 64KB 8 way DL1 cache, but it allows to allocate more
ways on the DL2 cache. The partitioning decision could be
done independently for the DL1 and DL2, but for simplicity
a 25% of the DL1 is fixed for OS. The DL2 is a 16 way cache.
The OS can have 6.25%, 12.5%, 25%, 50%, 75%, or 100% of
the DL2 cache depending on the percentage of instructions
executed in the OS vs user level.

Hypervisor calls are supposed to be more infrequent. For
Hypervisor, we propose to allocate only 1 way in the DL1
cache and 0 ways in the DL2, the DL1 way is flushed at

Hypervisor call return.
Context switch does not have effects when in Spec4, it just
needs to flush the LRU speculative lines like in the system
call return case.

On a Safe1/Safe2/Safe4 mode, all the clean lines are in-
validated, the dirty lines are written back and invalidated,
and the user level DL1 MRU lines are off-loaded 4. The new
context switch may have some off-loaded lines (MRU-only),
these lines are repopulated (prefetch-like) to the DL1. Both
off-load and flush should not have a variable time visible
to other time domains.

To avoid the time leak and worst case delay for the
flush, we have the Janitor to guarantee that only a small
percentage of the lines are dirty. We also propose to give
have of the displace BW for a given period of time after time
context switch as indicated in the “in crescendo” technique.
The off-load has always a worst case penalty because there
are always MRU lines unless there is a too frequent context
switch in which case we should be in partition mode and
no flushing is necessary.

If there are frequent context switches between a small set
of security domains, the SoC can decide to partition the DL2
and avoid DL2 flushes. Since the DL2 can populate fast the
DL1, we propose not to do static partitioning on the DL1.
A state machine monitors the context switch ratio. If it is
high, it switches to partition mode. This is not a reactive
but a slow moving average adaptation to avoid time leaks.
Similar to the system call case, there is a FSM that monitors
the amount of time domains executed in the last 10M cycles.
It a partitions the DL2 cache based on the amount of time
domains giving a last 12.5% of the DL2. If a time domain
executes less than 12.5% of the instructions, does not get
any DL2 partitioning.

5.2.3 Instruction Caches
Instruction cache are speculatively updated, but typically
they do not use any speculative data/address/pc because
the instruction cache is driven by the branch predictor. In
this work, the branch predictor is always not speculative.

In Spec4 mode, the instruction cache behaves slightly
different from a traditional instruction cache because there
is a corner case when a speculative branch triggers a branch
missprediction, but it was incorrectly speculated. In this
case the speculative branch triggers a speculative update to
the instruction cache. We performed simulations in ESESC,
and waiting until the branch becomes not speculative has
under 2% performance impact for SPEC. A more aggressive
option is to allow to go to the instruction cache, but not to
trigger instruction cache misses or LRU updates until the
last branch redirection becomes non-speculative (passes the
PNR). This solution has even a lower performance impact.
System call does nothing in Spec4 or Safe1.

In Safe2/Safe4 mode, we propose to mimic the DL1 behav-
ior. We give 25% of the instruction cache to the operating
system. If there is no partitioning, the IL1 ways allocated
to the OS are invalidated at system call return. The IL1 is a
32KB way 4 way instruction cache. No ways in the IL2 are
given to the OS by default.

The same FSM used for the data cache also controls the in-
struction cache (IL1) and IL2 partitioning. The IL2 is a 128KB

4. If the off-load buffer is too small, a percentage of the lines are
off-loaded, the others are flushed. The off-loaded should be selected
with a stride pattern.



8 way cache. The IL2 can be dynamically partitioned like the
DL2. The same percentages allocated to the DL1/DL2 are
given to the IL1/IL2.
Context switch does nothing in Spec4.

In Safe1/Safe2/Safe4 mode, we can not leave any side
effect to other applications. In this case, we again propose
a similar mechanism to the data cache. The only difference
is that the IL1 does not off-load like the DL1. If there are
frequent context switches, the IL2 is partitioned like the
DL2.

5.2.4 TLBs

The TLBs are different from the caches in the sense that the
L2 TLB is inclusive with respect to the L1 TLB. If a line is in
the L2 TLB, it can be brought to the L1 TLB speculatively
and it is not marked speculative. The data L1 TLB is a 256
entry 2 way associative TLB. The data L2 TLB has 2048
entries 8 way associative inclusive TLB.
Speculative update: In all the modes, we propose to reserve
2 data L1 TLB entries for speculative updates. Once the
associated speculative load/store passes the PNR, the entry
is promoted as non-speculative and inserted in the L1 TLB
and L2 TLB. Similarly, if the load/store is flushed the
associated speculative entry is also flushed. If more than 2
entries are required for speculative updates, the associated
load/store waits until there are free speculative entries. If
the load/store is no longer speculative, it allocates entries
directly to the L1 and L2 TLB.

We could allocate lines speculatively without reserving
entries in Safe2/Safe4 modes because the L1 TLB is inval-
idated at context switch and system call return, but the
propose to keep using the same 2 L1 TLB speculative entries
to simplify verification.

One thing that must be addresses is the page walker.
Traditional page walkers allow the L1 and/or L2 caches to
cache recently used entries. The reason is that this allows
to improve page walk time significantly. In this work, the
page walker can also allocate entries in the cache, but only
once the page walk has finished, and it is beyond the PNR.
System call does nothing in Spec4 and Safe1 mode.

In Safe2/Safe4 mode, we propose to in invalidate the
whole L1 TLB at system call return, and keep the L2 TLBs
contents. This is an overkill because the OS/Hypervisor is
unlikely to require all the L1 TLBs. Nevertheless, populating
the L1 TLB from the L2 TLB is just a few cycles (2-6) for the
first page touch. This is a very low overhead.

The data L1 TLB is fairly large with up to 256 entries, the
L2 TLB has by dynamic partition by default. The dynamic
partition is explained in the context switch case. Similar to
the data cache, there is a FSM that tracks the percentage of
instructions in OS vs user. The L1 TLB is never partitioned,
but the L2 TLB can.
Context switch does nothing in Spec4.

In Safe1/Safe2/Safe4 mode, we invalidate the whole L1
TLB at each context switch like in the system call returns.

The L2 TLB has a dynamic partition by default. A FSM
tracks the last 64 time domains executed per core. It only
marks a time domain as executed if it has a L2 TLB miss.
Based on this, the dynamic allocation randomly assign more
or less sets to a given time domain. The FSM also tracks the
ratio in L2 TLB misses of OS vs user. The minimum that can
be allocated to OS mode or application is 2 set or 16 entries.

To manage the allocation, for each time domain there
is a 128 bit vector indicating the sets allocated. The hash
function can only create values for these entries. At dynamic
adaptation boundaries, the time domain that run since the
last adaptation randomly steals entries from another time
domains but between themselves. If there are no other time
domains to steal from, they can steal between themselves
randomly based on the L2 TLB misses ratio but at a lower
rate. Each 1M instructions executed, there can be 2 sets
stolen by default, and 2 sets every 2M if no other sets are
available. The stolen sets can be dedicated to user level or
OS depending on the FSM estimated load. If a time domain
has no L2 TLB entries left, it is removed from the last 64
active time domains.

If a new time domain starts to execute, it picks to replace
the time domain that has the least entries in the alloca-
tion. By default, it starts with 4 sets, which can be stolen
randomly from other time domains but not time domains
executed since the last adaptation. If there are no other sets
available, it can randomly steal from anyone.

5.2.5 Data Cache Prefetcher
There are several types of data prefetching, and each has a
different potential solution. As usual with prefetch requests
in several cores, prefetches can not trigger an invalidate
in the coherence network or force a displacement of dirty
cache lines. If any such events were to happen in any
cache the prefetch is dropped. This section analyzes 3
typical prefetchers (Stride, Region based, Next Line). In
the proposed design, the stide prefetcher has 256 entries.
The region based prefetcher has 8 learning entries, and 128
learned entries.

5.2.5.1 Software Prefetching: is processed in Spec4
mode only once the associated instruction passes the PNR.

Having software prefetching complicates the
Safe1/Safe2/Safe4 modes. As a result, we propose to
drop all the software prefetches in those modes.

5.2.5.2 PC Stride Prefetchers (Stride): can be updated
at retirement and it does not degrade the prefetcher quality.
Simulation based results show a noise level impact be-
tween update at execute and update at retirement. Some
processors update predictors at retirement to avoid the
pollution of the wrong path and to guarantee an in-order
update. Other processors handle the updates at execute to
avoid remembering the full address until retirement. Both
solutions are reasonable for performance. For security, it is
better to update at retirement to avoid speculative updates
(Section 4.1.6)

The prefetch information should be sent when the asso-
ciated load/store reaches execution. To avoid leaking the
speculative address, the prefetcher can use the last retired
address and increase the stride delta by the number of
same PC loads between the executing load and retirement.
Extra tables can track this distance making the speculative
prefetch request not to use any speculative data, and there-
fore safe for Spec4 information leak.
System call does nothing special for Spec4 or Safe1 mode.

In Safe2/Safe4 mode, the stride prefetcher tables learned at
the OS should not affect the user level. To do so, we propose
to reserve 1/8 of the stride prefetcher for OS. This avoids
the need to flush. The reason is that the OS can significantly
benefit from stride prefetcher due to memcopy/clear be-
haviour. Clearing entries at system call return would affect



the learning. As expected, the user level prefetch entries
are not trigeered while in OS mode, and viceversa. Stride
prefetchers do not need many entries and going from 256
to 224 has barely any performance difference.
Context switch does nothing special for Spec4.

In Safe1/Safe2/Safe4 mode, we propose to off-load the last
16 stride prefetcher used entries at context switch. If the new
user level application share the same OS, the OS portion
of the prefetcher tables are not flushed. The non re-loaded
entries are cleared to zero.

5.2.5.3 Region Based Prefetcher (SMS): are more ag-
gressive prefetchers, and they tend not to prefetch to the
L1, just the L2 or L3. The SMS [24] is a type of spatial
prefetcher. Those prefetchers monitor just L1 misses to learn
that a region of code has a frequent update pattern. When
the region is significantly used, it prefetches the rest of the
region with a given learned pattern. Those predictors have
two phases: Learning and Prefetching. The learning can be
done at retirement without any overhead. The prefetching
is better to be done at execute, but this will leak speculative
path address.

To support Spec4, we propose to learn at retirement, and
to use the load/store address once it has passed the PNR
(Section 4.1.9).
System call does nothing special for Spec4 or Safe1 mode.

In Safe2/Safe4 mode, the prefetcher can be triggered at
execute as long as it does not displace dirty data because
the cache policy would be cleared at context switch and
system call return.

Like in the stride prefetcher, 1/8 of the stride prefetcher
is reserved for OS.
Context switch does nothing special for Spec4.

In Safe1/Safe2/Safe4 mode, the Region based prefetcher
behaves similar to the stride prefetcher. The last 8 used
entries from the prefetch table are off-loaded. These entries
can be OS or non OS. The other entries are invalided.

5.2.5.4 Next Line Prefetcher (NLP): has several simi-
larities to the region based prefetcher but it does not have
learning phase. The plan is to delay the next line prefetch
until the associated load reaches the PNR.

The NLP does not have learning tables. As a result,
there is no state to clear/off-load at system call or context
switch. In Safe1/Safe2/Safe4 mode, the plan is to allow the
prefetcher to go in speculative mode as long as it does not
displace dirty data in the cache.

5.2.6 Instruction Cache Prefetcher

If the instruction prefetcher uses data from the retired or
safe instructions, it is safe to prefetch in Spec4 mode. For
example, the TLB entries can be used to prefetch in the
instruction cache because they are updated at retirement.
It is not OK to use the front-end RAS, but OK to use the
retirement RAS for instruction prefetching. It is also OK
to use a next line prefetching in Spec4 mode because the
addresses are as a result of non-speculative addresses.

In Safe1/Safe2/Safe4 mode, it is OK to use any speculative
or non-speculative information to prefetch in the instruction
cache because the instruction cache contents would be
flushed before switching to another security domain. For
verification simplicity, we propose not to speculative update
the instruction cache even in those safe modes.

5.2.7 TLB Prefetcher
We plan to have the same operating all the modes for
simplicity. We propose to perform a page walk to populate
the TLB for speculative load/stores. When the associated
load/store that triggered the TLB entry reaches the PNR,
the entry is promoted to non-speculative and it is pushed
to the L2 TLB if it was not there. If the load/store is
flushed the speculative entry and associated page walk is
killed. This is the same mechanism as used by speculative
load/stores in the processor. The system has two page
walks, the speculative page walk can be killed if needed.

To avoid page walk traffic, the prefetcher can allocate the
entry and the consecutive prefetch entries on each page
walk miss. In this case, the consecutive entries may be
allocated to the L2 TLB. If such support is implemented, the
L2 TLB allocation would happen only after the associated
load/store passes the PNR.

5.2.8 Coherence and Directory
The L1 and L2 are not inclusive so the coherence is not an
issue with other cores. The directory has static partitioning
like LLC papers do (Section 4.1.3). The fixed partition pro-
posal is to give 1/n of the directory to each core. Then, cores
do not pollute each other. When the same security domain
is in different cores, the directory shares entries between the
these cores.

If a invalidation comes from one security domain to
another security domain with request to modify, the di-
rectory should raise a protection warning. If two security
domains share write pages, the isolation is compromised.
The directory will invalidate and work on the other domain
over those shared addresses as a traditional directory but it
would not provide time leak protection. If the request for
sharing across domains is a read-only, it will replicate the
directory entries, and Safe4 isolation would be guaranteed.

One counter intuitive behavior of the partition design is
that there can be sharing between two time domains. Even
if this happens, the directory would double allocate the
entries, and trigger the same performance as a directory
miss even though it request the other line to share. This
is possible because the directory miss (memory access) is
much slower than a coherence management in the directory.

5.2.9 NoC Bandwidth
In this work, the network on chip (NoC) is the interconnec-
tion network between the caches and the memory controller.
Cores can affect each other performance by creating a high
NoC traffic demand. The proposal is to have NoC with
quality of service implementing a Fair Weighted Queue
system per router with a static partition were each active
core has the same BW allocated. This QoS has show a great
isolation between network requests.

If cores are idle, only 1/8 of their bandwidth is reserved.
The dynamic adaptation changes the bandwidth assigned
at course boundaries. This would mean that a time domain
would get 1

8∗n of the system bandwidth were n is the
number of cores from start until the first adaptation. To
compensate and boost starting cores, we give 15

8∗n during
the second adaptation, and switch back to 1

n
afterwards.

NoC with strong QoS guarantees waste bandwidth, but
we think that this is not an issue. The NoC BW is much
higher than the memory BW. If most of the cores share data



actively, they should have the same time domain. As such,
they do not waste bandwdith and get a larger chunk of the
NoC system. If the apps have different TIDs without data
sharing, they are mostly talking to the memory, as such the
NoC BW is over provisioned. The result is that strong NoC
QoS guarantees should not have significant performance
impact as long as they just affect BW and not latency.

5.2.10 Memory Controller

The memory controller has a small cache associated. This
LLC-like cache is statically partitioned by the number of
cores.

Besides the small cache associated to the memory con-
troller, the memory controller also manages open/close
pages. A FSM tracks the number of page misses per time
domain, and it assigns open page rights to each time domain
based on the miss rate request. The dynamic adaptation
is not very frequent, but not avoid rushes, each dynamic
adaptation only 2 more open page can be assigned to a time
domain at most. At least, there is one page right per core.

If a core sends a new time domain request, and it does
not have any open page right, the memory controller can
always flush invalidate all the entries in that core and assign
those to the new time domain.

One thing that also must be done is to not leverage
other time domain open pages. If a core time domain
has an open page, and another tries to access the same
physical page, it should trigger a fake open page request
or charge an equivalent delay to the request. As in the case
of caches, there can be prefetching between the application
time domain, but not across time domains. The prefetcher
across time domains are dropped.

One difficult source of time isolation is the DRAM
Rowhammer time leak [20]. Rowhammer means that adja-
cent DRAM pages can result in data corruption. To avoid it,
systems can slowdown an memory request if two adjacent
pages access are too frequent. Here the challenge is that one
time domain may “overload” a Rowhammer page which
can affect the performance of another page used by another
time domain. As a high level explanation, in Rowhammer
a page and the adjacent page can be accessed “n” times per
second at most.

The proposal is simple, just allow at most 1
2∗n request

per time domain. This can slowdown the worst case for a
given application, but since there are 2 adjacent pages it
guarantees not overload even when both time domains are
working on close by pages.

5.2.11 Memory Dependence Predictors

The Memory Dependence Predictor is a structure that typ-
ically benefits from frequent flushes to avoid learning too
much. The MPD entries are only allocated at retirement. As
such it does not need changes for Spec4 mode. In our MPD,
we track the last 64 loads that triggered a NUKE in the
system.

In Safe1/Safe2/Safe4 mode, we propose to reserve 4 of the
entries for the OS. We propose to always flush all the MPD
at context switches.

5.2.12 Taken/Not-Taken Branch Predictors

The plan is to implement a TAGE branch predictor.

In Spec4 mode: The Global History Register or path
history used by the global predictors must be updated spec-
ulatively. This GHR is corrected on branch miss predictions
in current processors leaving no side effects. Current cores
either checkpoint or create a shift register for the GHR. As
a result, current processors already have a perfect fix for
speculative updates. Current processors implemented some
Fetch Target Queue (FTQ) that insert entries at fetch, and
deallocate at execute. The overhead of fixing at retirement
is that the entry must be kept from fetch to retire instead
of execute. Based on ESESC simulations from a typical 4-
way OoO core, the FTQ must increase from 48 entries for
an ARM A72-like core to something like 64 entries.

Most processors update the prediction tables at execute
because it guarantees that only as many updates as branch
ALUs ports are needed. Updating at retirement does not
degrade prediction accuracy, but it requires to handle the
case that multiple retiring instructions could be branches.
If the retire width is the same as the fetch width, there is
a guarantee of only one update at retirement. As such, we
propose to update the branch prediction taken/not-taken
tables at retirement.
System call copies and restores the GHR at system call. The
OS and user level mode do not share a GHR. Besides this,
system calls do nothing special in Spec4 and Safe1.

In Safe2/Safe4 mode, we update at retirement as required
by Spec4 mode, but we also dynamically partition the branch
predictor for the OS/Hypervisor. As in the case of the
caches, we propose a dynamic partitioning that learns per
system call and has a slow moving average to adapt. We
plan to use the same FSM as in the data cache, but to have
4 partition options for OS.

If there are no frequent system calls, the OS gets 6.25% of
the PHT entries, and those entries are invalidated at system
call return. If the cache is partitioned, the OS still gets the
same 6.25%. If a new OS time domain is called, the OS is
invalidated.

If there are frequent system calls, the data cache FSM can
find the percentage of OS. The OS dynamic partition can
have 6.25%, 50%, or 100% of the PHT entries of the TAGE
and bimodal. In each case, the OS/Hypervisor has a hash
function that restricts the usage on the PHT tables to only a
subset of the PHT entries. During partition mode, a system
call return does not flush the OS entries but it does not allow
the user level application to access to entries.
Contet switch the GHR is reset to the PC starting the
context. It does nothing else special in Spec4.

In Safe1/Safe2/Safe4 mode, we propose to have a parti-
tioning mechanism were the hash function allows to divide
the PHT entries. Unlike the TLB that tracks 64 partitions,
we propose to have 1 or 2 partitions. Since there i a 6.25%
reserved for OS all the time, this means that in one partition
mode, the user level gets 93.75%. In two partition mode, it
gets 46.875%.

By default, there is a single partition. In this case, when-
ever there is a context switch, the PHTs switch to a 2
partition mode. 46.875% of the entries are invalidated, and
the new context executes in the new partition. If there is no
context switch back to the original time domain, the whole
PHT is allocated to the new time domain after the dynamic
adaptation.

If there are frequent context switches, the PHT switches to
2 partitions, keeping ithe 46.875% of the PHT to each time



domain. If a new context is executed while 2 partitions exist,
the oldest time domain is invalidated.

To avoid flushing and relearning when partitioning, we
propose to keep the same hash function in all the partition
modes. The only difference is that the least significant bit
may be force to 0/1 with 2 partitions, or allowed to be se-
lected by the hash function. As a result, the non partitioned
entries can be kept when switching in/out of partitioning.

5.2.13 BTB
BTBs are large like the Taken/Not-Taken branch predictor
tables. As such similar update policies apply to them.
Namely, the BTB should be updated at commit when the
in-order as control flow instructions (CFI) pass the point of
no return (PNR).

Current processors tend to update the BTB at execute.
The advantage is that there is a guarantee of only as many
updates as branch execution units, and that the BTB port is
free. A straightforward implementation updating the BTB
at commit and require one read port for prediction and
one write port for commit. This solution works without
degradation of performance, but requires extra ports in
the BTB. The T/NT Branch Predictor tables had a similar
problem, and we suggested to have banking. The difference
is that a 512 entry BTB needs updates less than 3% of the
cycles.

The same update at commit point policy is recommended
for BTBs. Current cores have 2 or more levels of BTBs.
The smaller but faster BTBs are speculatively updated with
the larger more correct BTBs. This BTBs can be exclusive,
inclusive, or free running. Although modern cores update
at decode, the prediction accuracy does not degrade for
updating at retirement. The cost is that the BTB update
information must be preserved until retirement, this means
that the FTQ must also keep BTB information. Since the PCs
are already in the FTQ, the additional information is small.

In Safe1/Safe2/Safe4 mode, we propose to follow the same
breakdowns and mechanism as in the PHT predictor.

A simpler but less performing solution is to speculatively
update the BTBs but flush the whole BTB at system call
returns or context switches. This is an interesting approach
for small BTBs.

5.2.14 RAS
In Spec4 mode, we propose to have a RAS at front-end and
another safe at retirement.

The return address stack (RAS) must be updated at fetch.
Unlike other predictors the update can not be delayed
to retirement. Nevertheless, a solution to to fix the RAS
recovery is to have 2 RAS: One a fetch, and another at
retirement.

If there is a branch miss prediction, the speculative path
can incorrectly update the RAS. The pipeline flush will copy
the retirement RAS to the fetch RAS. In this way, speculative
updates have no side effects.

Although this approach has some overheads, some
SPARC processors implemented this because it improves the
RAS accuracy avoiding to have overflows for speculatively
executed instructions.

To handle the branch misspredictions, there can be a
retirement RAS and a front-end RAS. Each fetch boundary,
the front-end RAS pointer is checkpointed in the FTQ. When
a branch is recovered, the checkpointed RAS pointer is

recovered, and the contents from the retirement RAS are
copied to the front-end RAS. Notice that in some cases
the recered branch may still not be at retirement. In these
cases, not the whole RAS is copied. The entries between the
retirement RAS pointer and the recovered RAS checkpoint
are not copied. The reason is that the retirement RAS still
does not have those updated values. Alternatively, a state
machine could traverse starting from the retirement RAS
and update the front-end RAS. If the front-end tries to use
a RAS entry before the checkpoint is created, we can either
stall fetch. Stall should be better than using a bad prediction
because it is very likely to be a miss predict.

Not related to timing attack is the ROP [22] attach. In ROP,
the function call return is changes to address some sections
of code and allow to execute malicious code. Having a non-
speculative RAS can help to reduce the ROP attacks even
in non-speculative cases. If there is a return, and the RAS
and code in the stack does not match, the application may
be suffering a ROP attack.
System call does nothing special for Spec4 and Safe1.

In Safe2/Safe4 mode, system calls reserve 8 entries in the
RAS. If the OS had a perfect behavior, we could allow
the RAS to perform as usual, and invalidate the OS used
RAS entries at function returns. Instead, we propose that at
system call 8 entries from the RAS (bottom) are allocated
to the OS. The OS wraps around only in this 8 entries. At
system call return, the 8 entries are invalidated.
Context switch does nothing for Spec4 mode

For all the other modes, we propose to invalidate the
RAS at context switch. If the context switch are frequent,
we could off-load the top 2-4 entries in the RAS.

5.2.15 SMT

Symmetric Multithreading (SMT) is the technique used by
several cores to share a single core between two different
processes. This is a special challenge for side channel time
leaks. Cores share resources like predictors but also other
resources like issue logic, physical register file. As a result,
isolating two threads in the same core is a very difficult
task unless a fix partitioning of core resources is assigned
to each thread. The partitioning can change at run-time, but
it should not be the result of specific instructions but trends.

Solving the SMT problem is even more challenging. Par-
titioning should work but it would have a potentially sig-
nificant performance impact. Even more complicated may
be the bandwidth and resource constraints outside the core
must be tagged per core thread. This is an area that needs
more research to find acceptable solutions.

The current state-of-the-art solution is that there are soo
many issues that the SMT contexts should belong to the
same security domain because there is no way to avoid
time leaks without a significant remodeling and most of the
SMT resources are statically partitioned or dynamically par-
titioned with a slow re-partitioning which is not necessarily
the most efficient way to handle SMT.

5.2.16 Runahead Mechanism

Runahead [18] introduces challenges to the speculative exe-
cution. Now, the core executes several incorrect instructions.
Applying Spectre ideas to a SoC with runahead, the attacker
can force the core to execute bad code and to have some side
channel side effect like the caches.



If we just do not update on speculative run-ahead mode,
we have none of the benefits of run-ahead. If the processor
wants to enable a run-ahead, the simplest solution is to have
also enabled the Safe2 and Safe4 mode. Then, speculative
updates have no side effect.

5.2.17 Data Value Predictors
If the core has data value predictors, the simplest way
is not allow to pass this information across security do-
mains. Value prediction can work in Spec4 mode if the
value prediction tables are flushed at system call return
and/or context switch and updated at retirement. The
load/stores/branches can still use value prediction specu-
lative data and being managed by the Spec4 mechanisms.

If the SoC is in Safe4 speculative accesses can be allowed
too.

6 CHECKING ATTACKS

SPectre/Meltdown: Both Spectre and Meltdown get pro-
tected by a Spec4 protection layer. The reason is that spec-
ulative execution avoids time leaks. Spec4 does not flush
or invalidate resources at context switch which is a good
idea to avoid interference. If only Spec4 is implemented, the
logical thing would be to use a process id in all the branch
predictor tables tags in BTB and TAGE. Nevertheless, this is
not needed. If a Safe2 is provided, all those resource sharing
are avoided and further security is achieved.

Floating Point: Floating point variable execution time can
be exposed and leveraged to do some attacks [2]. This attack
measures the time to perform an SVG filter in a browser, and
as a result it can infer the pixel values in another website.
As a result of this type of attack, browsers like Firefox
have switched to use fix point operations instead of floating
point ones. Nevertheless, a similar type of attack is possible.
For our classification, this is a "data" dependent time leak
because the data value affects the execution time of the
floating point operation. Spec4 would not protect against
this attack. Since this attack is performed by another thread,
only Safe4 would provide protection. But to be specific about
this attack, the non-value time dependence (Section 4.1.5)
implementation is enough to protect against this specific
attack.

6.1 Coordinated Attack on Bad Crypto

To understand the limits, this shows a potential attack that
even Safe4 can not protect from. Imagine a bad crypto
engine that checks the "1234" password very slowly, and
all the other passwords very fast. This code runs in a server
or security domain that performs this check and nothing
else.

One thing is that the attacker should not be able to see
the time that it takes to call the password check unless it
performs the attack. Since the fast/slow interaction would
not be detected by the attacker time domain, there should
be no way to leak this.

The only potential attack is for the attacker to perform
this attack would be if the password check is connected with
some IO operation. In this work, we have not extended to
protect the IO channels with QoS. If the IO is not included,
and the attacker can detect the interference, it may be able
to infer the encryption key. If the password/checker can be

used by the network, even a QoS may not be able to protect
as the attacker may be in a man in the middle router.

From the techniques section, the only effective way to
protect against this attack is to have the code instrumented
with homogenization support (Section 4.2.2) and the system
to implement a Safe4 protection level. Then, the hardware
would enforce that the fast check would be slow too.
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