
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 1

Sampling in Thermal Simulation of Processors:
Measurement, Characterization, and Evaluation

Ehsan K. Ardestani Student Member, IEEE, Francisco J. Mesa-Martı́nez Member, IEEE, Gabriel Southern Student
Member, IEEE, Elnaz Ebrahimi Student Member, IEEE, and Jose Renau Member, IEEE,

Dept. of Computer Engineering, University of California Santa Cruz
http://masc.cse.ucsc.edu

Abstract—
Power densities in modern processors induce thermal issues

which limit performance. Power and thermal models add com-
plexity to architectural simulators, limiting the depth of analy-
sis. Prohibitive execution time overheads may be circumvented
using sampling techniques. While these approaches work well
when characterizing processor performance, they introduce new
challenges when applied to the thermal domain. This work aims
to improve the accuracy and performance of sampled thermal
simulation at the architectural level.

To the best of our knowledge, this paper is the first to
evaluate the impact of statistical sampling on thermal metrics
through direct temperature measurements performed at run
time. Experiments confirm that sampling can accurately estimate
certain thermal metrics. However, extra consideration needs to
be taken into account to preserve the accuracy of temperature
estimation in a sampled simulation. Mainly because, on average,
thermal phases are much longer than performance phases.
Based on these insights, we introduce a framework that extends
statistical sampling techniques, used at the performance and
power stages, to the thermal domain. The resulting technique
yields an integrated performance, power, and temperature simu-
lator that maintains accuracy while reducing simulation time
by orders of magnitude. In particular, this work shows how
dynamic frequency and voltage adaptations can be evaluated in a
statistically sampled simulation. We conclude by showing how the
increased simulation speed benefits architects in the exploration
of the design space.

Index Terms—Infrared thermal measurement, Thermal behav-
ior characterization, Thermal simulation, Thermal-aware statis-
tical sampling.

I. INTRODUCTION

TEMPERATURE is an important limiter to processor
performance. It can significantly affect leakage, clock

frequency, and reliability. Methods to accurately measure
the dynamic thermal behavior of computing devices, at run
time, are very limited. Therefore, the thermal evaluation of a
processor design is highly dependent on simulation.

Simulation allows for the evaluation of ideas early in the
design phase. However, the complexity in time and space
required to model performance and temperature can be pro-
hibitive. To address this, architects use various techniques
to reduce the execution time and resource requirements of
their simulators. Some of approaches rely on hardware-based

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

acceleration to speed up computation [1], [2], [3]. Fast al-
gorithms [4] are used to develop efficient thermal models as
well. Conventional sampling techniques such as SimPoints [5]
or SMARTS [6] are also applied to accelerate performance
and power simulation. Table I shows the scope for various
techniques proposed to accelerate simulation. The simulation
technique proposed in this work (TASS) extends the use of
statistical sampling to accelerate the temperature modeling
stage of an architectural simulator.

TABLE I
CATEGORIZATION OF VARIOUS ACCELERATION TECHNIQUES.

Stage Hardware Algorithm Sampling

Performance [1], [2] - [5], [6], [7], TASS
Power - - [5], [6], [7], TASS

Thermal [3], [8] [4], [9], [10] TASS

Statistical sampling uses a small, but representative subset
of instructions for detailed simulation. This allows the sim-
ulator to fast-forward through the non-sampled sections of
the program, which in turn results in significant speedups.
Sampling, however, introduces challenges for the estimation
of temperature. Thermal samples manifest longer dependen-
cies to previous samples compared to performance samples.
Furthermore, sampling collapses the execution time of the
application, because the progression of time is not modeled
during intervals which are fast-forwarded. This complicates
the estimation of thermal behavior, which is time dependent.

This paper evaluates the applicability of statistical sampling
to the thermal modeling of a design by directly measuring
temperature of a processor at runtime. This measurement sys-
tem uses an infrared camera to capture transient temperature
fluctuations with a high degree of confidence. Our experimen-
tal data confirms that sampling techniques have the potential
to provide accurate thermal assessments. However, the results
also indicate that thermal phases are longer than typical
performance phases. This means that architectural simulations
implementing sampling have to address two concerns: estimate
the progress of time that is collapsed via sampling, and intro-
duce longer temperature warmup periods before computing
the temperature at any given sample. Based on these insights
we introduce a sampling method that provides an order of
magnitude speedup in an integrated simulation of performance,
power and temperature, while maintaining accuracy.

The rest of the paper is organized as follows: Section II
reviews related work in this area of research, Section III

http://masc.soe.ucsc.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 2

presents the direct temperature measurement infrastructure and
evaluates its accuracy. Section IV characterizes the thermal
behavior of processors and evaluates the impact of statistical
sampling on thermal metrics. Section V discusses the compu-
tational aspects of sampled thermal simulation, and presents a
framework to extend performance sampling to account for the
thermal domain. Section VI concludes the work.

II. RELATED WORK

A majority of studies regarding thermal considerations
in processor design revolve around simulation approaches.
Skadron et al. [11] introduce HotSpot, a thermal model for
architectural simulation. Following these insights an architec-
tural simulator (e.g., SESC [12]) can be augmented with a
power model (e.g., McPAT [13]) and a thermal model like
HotSpot to estimate power and thermal metrics as well. Using
a similar framework, [11] studies different dynamic thermal
management techniques, while [14] uses such a framework to
propose a thermal-aware floorplanning scheme.

Different techniques have been proposed to accelerate the
simulation speed by accelerating different components of the
simulator. For example, Bartolini et al. [2] propose accel-
erating the performance characterization stage using native
functional emulation. While Atienza et al. [1] propose an
FPGA-based acceleration infrastructure. Sridhar et al. [3] and
Che et al. [8] implement a GPU-based acceleration of thermal
computation. Faster than traditional algorithms are considered
as well (e.g., [4], [9], [10]).

Orthogonal to these techniques is sampling [5], [6]. Sam-
pling techniques, categorized in Phase-based and Statistical
sampling, reduce the simulation time by simulating a subset of
the program execution. These techniques can also incorporate
hardware-based accelerating approaches mentioned earlier.
In [15] the impact of phase-based sampling on temperature
simulation at the architectural level is evaluated. The study
shows that phase-based sampling has the potential to pro-
duce accurate thermal metrics. However, extra consideration
has to be taken into account while applying sampling to a
thermal simulation and Coskun et al. [7] do so. Even though
they lower the simulation time for performance and power
modeling, the computation of the temperature stage remains
a bottleneck and quickly diminishes the benefit of sampling
elsewhere in the simulator.

This paper presents an in-depth study of statistically sam-
pled thermal simulation. We start with the problem of measur-
ing chip temperature. Live experiments have been previously
used in a limited way (e.g., [16], [17], [18]). Their results
depend either on performance counters or available on-chip
sensors to obtain the temperature of a processor. Other exper-
imental approaches directly capture the thermal profile of a
processor with a fine degree of granularity [19], [20], [21],
[22]. Concerns about the validation of the measurements due
to the modified cooling solutions needed by these experimental
approaches are also addressed in [23].

For the first time to the best of our knowledge, we evaluate
the impact of statistical sampling on thermal assessments using
measured temperature traces. We build on the insights from

our experiments and introduce TASS, a technique to extend
statistical sampling to the thermal domain [24]. In this work,
we show the impact of such technique on enabling architects
in their exploration of the design space. Then, we show an
implementation of Dynamic Frequency and Voltage Scaling
(DVFS) in a statistically sampled simulation.

III. TEMPERATURE MEASUREMENT

Our setup uses a FLIR SC-8000 IR camera to capture the
detailed thermal map of the chip. Its sensor operates on the
3-5µm wavelength (MWIR), a range of light where silicon is
partially transparent. As a result, the IR camera is capable of
measuring temperature “through” the chip being tested. Mod-
ern high performance processors are manufactured using flip
chips, exposing the silicon substrate. Using flip chips greatly
simplifies the task of measuring junction temperatures. The
system is capable of capturing data with a spatial resolution
of 10×10µm at 100Hz rates, and it can be used to measure
different devices in a relatively simple manner. Figure 1a
shows the major components of the measurement setup.

(a)

SAPPHIRE

DIE

PACKAGE

BOARD

OIL FLOW

(b)

65

60

55

50

45

40

(c)
Fig. 1. (a) Measuring setup; (b) Oil-based heatsink with laminar flow, (c) a
snapshot of a device with floorplan mapped on it (Temperature in Celsius).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 3

To keep the processor operational, we implement an IR-
transparent heat sink to diffuse the dissipated power under
nominal operational frequency and voltage by allowing min-
eral oil (Fluka Mineral Oil 69808) to flow on top of the
silicon substrate (Figure 1b). Fluka oil is designed for infrared
spectrography.

The setup is capable of dissipating up to 100W. We keep 2
liters of oil in the oil reservoir and connect a small radiator to
guarantee minimal temperature oscillations during each run.
Figure 1c is a snapshot of the device running a workload.
Floorplan of a processor is also mapped onto the picture.

Measurement Validation Setup: To validate the temper-
ature measurements from our setup, we perform a series of
experiments using a calibrated testchip with a 484mm2 die
area implemented on a BGA GL771 package, as shown in
Figure 2. The chip is partitioned into multiple regular blocks,
and each block has its own power supply and the ability to be
cycled independently. A thermal diode in each block senses
temperature with sub-millisecond response time granularity.
The testchip enables us to evaluate the accuracy of the infrared
temperature measurements by comparing the reading from the
infrared setup against the readings from the testchip’s thermal
sensors. We also study the impact of different cooling solutions
on the observed thermal behavior.

In our study, we isolate a single block, P, which has an
area of 4.84 mm2. It is used to generate and measure different
power densities and thermal responses. Two other blocks, S1
and S2, are also used for the validation process, especially
with respect to spatial proximity concerns.

22mm

2
2
m
m

8.8mm

1
1
m
m

S2 P S1

Fig. 2. Testchip floorplan.

A. Thermal Image Processing

Due to their operational characteristics, infrared cameras
need to be calibrated to compensate for different material
emissivities, lens configuration, temperature range for the
object/material to be measured, and many other factors.

To calibrate the camera, we perform measurements involv-
ing oil on top of the surface of an inert processor at two
different uniform temperatures: 289K (cold) and 344K (hot)
respectively. Figures 3a and 3b show different behaviors for
the infrared measurements under different oil temperatures.
We observe that for cold oil (Figure 3a), the center of the
image closely resembles the measured temperature, while the
side pixels can have up to 6◦C of error (15◦C vs 21◦C).
The opposite effect is observed when the camera measures
uniformly hot mineral oil (72◦C vs 62◦C). After calibration
the thermal error was reduced to 3%.

(a) (b)
Fig. 3. (a) IR Measured temperature with low and (b) high temperature
behavior for IR camera. (Temperature scale in Kelvin)

Oil Flow Direction Impact: Additional image correction is
performed to compensate for the different cooling efficiencies
across the die due to the direction of the oil flow. In the worst
case, we observe a maximum temperature gradient of 4◦C
between opposite sides of the test chip, which corresponds
to approximately 0.2◦C correction for each 1mm that the oil
flows over a hot block.

If all the blocks are uniformly heated, applying the 0.2◦C
mm

correction along the flow direction is a simple and effective
alternative. However, real chips do not display such uniform
temperature across their dies. Ideally, a model describing the
fluid dynamics of the oil should be used to perform the oil flow
correction. This solution is too compute-intensive, especially
considering the 4◦C worst case. Instead, we have a quick
approximation estimating the oil flow correction. For every
1mm that the oil flows over a block, we adjust the correction
by 0.2 ∗ Block Temp−45◦C

10◦C . We never let the correction be
negative. This is a simple algorithm with linear cost that
provides a fast and effective solution.

TABLE II
OIL FLOW DIRECTION IMPACT. UNCORRECTED VALUES IN PARENTHESES.

Block Top-Bottom Left-Right Right-Left Bottom-Top

P 64.9 (65.3) 64.9 (65.3) 64.9 (65.3) 64.9 (65.3)
S1 63.9 (63.9) 64.7 (65.4) 63.6 (63.6) 63.5 (63.5)
S2 48.2 (48.2) 48.1 (48.1) 47.8 (48.6) 48.2 (48.2)

To evaluate the accuracy of the correction and the impact of
the oil flow, we measure the temperature for blocks P, S1, and
S2 on the test chip while block P is powered with 7.8W. We
apply the oil from four possible directions. Table II presents
the results. The values in parentheses are the uncorrected
values obtained when the oil flow correction algorithm is not
applied. The only blocks affected by the oil flow direction are
S1 and S2 when we have a horizontal flow. Without correction,
the maximum error is 1.8◦C (S1 with Left-Right flow). After
the correction, the error is reduced to 0.9◦C.

B. Cooling solution

Non-uniform thermal resistance raises possible issues with
the IR measurement setup [25]. The characteristics of our IR-
transparent cooling solution are evaluated in order to assess the
overall validity of the thermal measurement setup. We show

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 4

the steady-state and transient response of the oil heat sink, and
reveal the observed differences with a metal heat sink.

To make the oil heat sink better resemble conventional
metal heat sinks, we developed a twofold solution. First, a
sapphire window serves as an infrared transparent composite
on top of the die to compensate for the change in heat
resistance. Sapphire window increases the thermal capacitance
and improves lateral heat spreading. Copper has a 400 W

mK
thermal conductivity while sapphire only has 45 W

mK . Figure 1b
shows the block diagram of the system with the sapphire
window.

Second, we adjust the oil flow to match the cooling per-
formance of the equivalent metal heat sink solution. However,
there are physical limits or lower bounds beyond which the
oil flow stops behaving like a laminar flow. To safely avoid oil
flow artifacts, we set the oil flow speed to 10 m

s , and restrict
the minimum oil thickness to 1mm to keep the flow laminar.

The other missing factor is the thermal interface material
(TIM). Typical TIMs have thermal conductivity between 1 and
4 W

mK . For the oil solution, we use oil to soak the surface of
the chip itself as an IR transparent TIM.

Steady State Response: The thermal resistance of the
cooling solution determines the steady-state response, and is
also referred to as the performance of the cooling solution,
because it determines the final temperature of the silicon. The
overall resistance is:

Roverall = RSi +RT IMoil +RSW +Rconv oil (1)

It should match the overall thermal resistance with the metal
heat sink, which is defined as:

Roverall = RSi +RT IMMHS +RMHS +Rconv air (2)

Since the same Roverall is desired, we can use different
T IMoil liquids (RT IMoil), adjust the SW thickness to linearly
increase/decrease the vertical thermal resistance (RSW), or
control the oil thickness/speed (Rconv oil).

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

T
e
m

p
e
ra

tu
re

 (
C

)

Block P Power Density (W/cm
2
)

Block P HS
Block P SW
Block S1 HS
Block S1 SW
Block S2 HS
Block S2 SW

Fig. 4. Temperatures for blocks P, S1, and S2 with different constant power
in block P. HS and SW stand for AMD Mobile heat sink and sapphire window
respectively.

Figure 4 shows the temperature for blocks P, S1, and S2 in
the test chip when different steady-state power consumptions
are applied to block P. The oil flows from top to bottom.
When block P gets powered from 0 to 250 W

cm2 , we measure
and observe a consistent linear increase in temperature for the
heat sink (HS) and the sapphire window (SW). This implies

that the overall vertical thermal resistance of the oil and the
metal heat sink are very similar.

We also measure blocks S1 and S2 to validate the lateral
thermal resistance. These two blocks are located in different
distances from the block P (S1 is located next to P and
S2 is 5mm away). The difference in their temperature shows
the lateral resistance of the cooling solution as the resistance
creates thermal gradients. We observe that both heat sink and
sapphire have a consistent slope.

Transient Response: The thermal time constant (TC) is
proportional to the product of overall capacitance and resis-
tance:

τoverall ∝ Roverall(CSi +CSW +Coil) (3)

τoverall ∝ Roverall(CSi +CMHS) (4)

To keep the transient response of the oil solution the same as
the metal heat sink, we would want Equation 3 and Equation 4
to match. To do so, we can adjust the oil thickness (Coil)
(there is physical limitation) and the SW thickness (CSW). As
Table III shows, sapphire has 14% less thermal capacitance
(J

mK.mm3), which means that a small thickness adjustment is
enough.

TABLE III
MATERIAL PROPERTIES. R AND C STAND FOR RESISTANCE AND

CAPACITANCE.

Material R (m.K
W) C (J

mK.mm3)

Oil – 1419
Silicon 120 918

Sapphire 40 2977
Copper 401 3441

Aluminum 250 2435

Sapphire also affects the thermal capacitance, because it has
double the specific heat of copper (0.75 J

g∗K vs 0.385 J
g∗K), but

approximately half the density. The overall material properties
are shown in Table III. As a result, copper and sapphire have
equivalent thermal capacitances, with the sapphire window
having a more attenuated thermal response.

 23

 24

 25

 26

 27

 28

 29

 30

 31

 0 100 200 300 400 500 600 700

T
e

m
p

e
ra

tu
re

 (
C

)

Time (ms)

10Hz HS
10Hz SW
1Hz HS
1Hz SW

Fig. 5. Thermal transient response for a test chip when an 10Hz and 4Hz
power pulse is applied. HS and SW stand for heat sink and sapphire window
respectively.

To validate the transient response characteristics for the IR-
transparent cooling solution, we place a 3mm thick sapphire
window with a 50mm diameter on top of the test chip. The

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 5

mineral oil is temperature-controlled by a heat exchange keep-
ing the oil temperature between 15◦C to 20◦C. We maintain
a laminar flow with a speed of 10 m

s .
Figure 5 shows the temperature of block P when a 10Hz

power pulse is applied to the block and the rest of the chip
is idle. The same power pulse is applied for the heat sink
(HS) and the sapphire window (SW). We observe that the
thermal transients of the heat sink and the sapphire are very
close. Authors in [25] mention that an oil cooling solution
with such power pulse would have a significant error for fast
transients. The measured results show that a sapphire window
solves the problem. The same conclusion is drawn with 1Hz
power pulses as well.

By combining the accuracy of fast and slow transient
responses with the validation of the cooling efficiency for the
vertical and lateral thermal resistances, we conclude that the
oil cooling solution with a sapphire window is an appropriate
vehicle to capture existing thermal phases.

IV. TEMPERATURE CHARACTERIZATION

After introducing the measurement infrastructure and study-
ing the validity of the measurements produced, we proceed to
the actual measurements. This section has two goals: first to
characterize the thermal behavior of a processor running dif-
ferent benchmarks, second to evaluate the impact of statistical
sampling on thermal metrics. We use measured thermal traces
from an AMD K8-based processor, and apply sampling to
them. The thermal metrics computed from the sampled trace
are compared with the original trace, which shows the impact
of sampling on the thermal metric, isolated from the side
effects of simulation. In [15], we studied the impact of phase-
based sampling. To the best of our knowledge, this paper is the
first to evaluate the impact of statistical sampling on thermal
metrics using measured temperature traces.

A. Temperature-Aware Metrics

Temperature has a different impact on several key design
factors such as timing integrity, reliability, leakage power, and
cooling cost. Based on the previous work [15], we define
three categories of metrics: Timing, Reliability, and Power.
The timing category tracks maximum temperature (MaxT)
and maximum temperature gradient across the chip (gradT).
The reliability category consists of 5 metrics: Electro Migra-
tion (EM), Stress Migration (SM), Time-Dependent Dielectic
Breakdown (T DDB), Negative Bias Temperature Instability
(NBT I), and Thermal Cycling (TC). We only track leak-
age power (Leak), because only the temperature dependent
component of the power consumption for the experiment is
of interest. For detailed information on each metric please
see [15].

B. Characterization Setup Parameters

To gather IPC traces we use the utility pfmon [26]. The
length of each sample in our experiments is 10ms, while just
about 2% of the instruction population is periodically sampled.

For each category of thermal metrics (performance, re-
liability, power), we report the metrics based on constants

specified for 65nm technology files. We measure an AMD K8-
based processor, running at 1.7GHz. The spatial and temporal
resolution of each temperature sample is 10 × 10 um, and 10
ms respectively.

1) Workloads: We evaluate almost all of the applications
of SPEC00 and SPEC06 suites (24 from SPEC00 and 22
from SPEC06). Reference input sets are used for all the SPEC
benchmarks. Workloads with a mixture of computation and IO
tend to display more varied thermal behavior as observed with
our IR setup. Since all the SPEC applications are designed to
be CPU bound, we complement them by also evaluating 5
workloads involving I/O: System Boot, Linux make, pdflatex,
emacs, and BDB.

For all the applications in SPEC, the execution time is
limited to 90 seconds, which is long enough to capture thermal
transitions and far longer than most architectural simulations.

C. SPEC Characterization

Table IV presents the performance, reliability, and energy
thermal metrics for our target processor executing SPEC00,
SPEC06, and IO workloads. MaxT and GradT are in ◦C. The
reliability metrics are normalized to a Mean Time Between
Failures (MTBF) of 57.08 years, in the same fashion leakage
numbers are normalized to 1.

From our experimental data, we observe some interesting
thermal aspects triggered by SPEC execution. First, there is
a lack of correlation between average IPC and temperature.
The reason for this lack of correlation is that MaxT and
GradT report the maximum temperature or the maximum
temperature difference. These values are not closely correlated
with average IPC. MaxIPC displays better correlation with
temperature, but the correlation is still low because short
IPC spikes are not long enough to increase MaxT . Better
correlation can be found between temperature and the EM
reliability metric.

By analyzing the correlations in Table IV, we can observe
that all three categories of thermal metrics have a low corre-
lation. As a result, one metric cannot be approximated from
another.

From the transient temperature data, the thermal behav-
ior for the SPEC suite can be categorized as Smooth and
Varied. The smooth category includes the applications that
are thermally predictable. For example, the thermally pre-
dictable category (Figure 6a) for the SPEC06 benchmarks
have a predictable plateau after the initial warmup. Varied
category comprises the applications that are thermally variable.
Figure 6b shows over 5◦C oscillations once the warmup is
over.

D. Length of Thermal Simulation

Figure 7 shows the error or inaccuracy suffered when only a
subset of the application’s execution is modeled for different
metrics. IPC is the metric that requires the least simulation
time; a few seconds are enough to yield relatively accurate
results.

Performance and power thermal metrics (MaxT , GradT ,
Leak) require longer simulation times, requiring over 10

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 6

TABLE IV
PERFORMANCE AND THERMAL METRICS FOR SPEC00, SPEC06, AND IO WORKLOADS.

Apps IPC MaxIPC MaxT (◦C) GradT (◦C) EM SM TDDB TC NBTI Power

C
IN

T
00

crafty 1.04 1.14 78 41 60.24 162.63 67.14 141.52 63.11 1.0
vortex 0.97 1.31 84 49 47.09 100.86 58.65 83.14 57.1 1.03

gcc 0.96 1.61 83 53 88.23 315.22 72.66 377.17 63.94 0.94
gap 0.87 1.13 86 50 45.99 76.43 57.31 64.42 57.14 1.03
eon 0.86 0.92 79 44 64.59 181.13 67.5 161.68 62.85 0.99

bzip2 0.85 1.44 86 50 46.24 64.29 53.42 53.85 54.03 1.03
parser 0.66 0.96 74 39 87.04 219.9 70.86 212.15 64.94 0.95
twolf 0.57 1.0 79 46 66.11 117.46 61.36 97.97 59.07 0.99
vpr 0.44 0.66 81 44 61.49 103.5 58.91 85.69 57.19 1.0
mcf 0.19 1.09 72 38 137.03 151.83 63.37 134.43 59.41 0.9
gzip 0.14 0.27 78 42 75.1 220.07 67.5 215.43 61.29 0.96

Average 0.69 1.05 80 45 64.14 126.08 62.98 109.24 59.82 0.98

C
FP

00

sixtrack 1.59 1.6 78 41 58.33 65.89 57.0 55.33 57.95 1.02
wupwise 1.44 1.51 75 32 66.35 40.34 51.12 37.52 53.94 1.0

applu 0.85 1.27 80 40 52.71 57.25 55.53 49.05 57.14 1.03
galgel 0.81 1.8 78 41 69.87 49.29 51.38 43.23 53.22 0.99
mgrid 0.8 1.13 68 28 100.81 72.48 58.48 60.28 59.0 0.95
lucas 0.74 1.36 88 55 52.18 43.92 50.36 42.51 51.96 1.02
apsi 0.73 1.18 76 37 70.82 94.4 62.03 78.35 60.95 0.99

facerec 0.72 1.28 83 51 91.56 193.98 68.35 182.04 62.9 0.95
mesa 0.7 1.36 69 37 121.37 162.38 67.3 143.41 63.06 0.92
swim 0.67 0.84 83 42 43.28 47.68 52.76 42.42 54.96 1.05

equake 0.64 1.32 67 32 114.8 59.36 53.47 50.19 54.61 0.93
ammp 0.6 0.82 75 38 74.84 47.66 51.53 41.83 53.67 0.99

art 0.25 0.31 73 44 104.55 645.39 90.75 1331.91 76.1 0.93
Average 0.81 1.21 76 40 71.19 66.15 57.72 58.62 57.85 0.98

C
IN

T
06

perlbench 0.95 1.26 84 50 51.29 433.68 83.43 631.42 72.36 1.01
h264ref 0.94 1.16 84 39 44.23 23.26 45.87 24.88 51.03 1.05
hmmer 0.87 0.93 100 77 22.35 109.62 59.75 94.4 57.24 1.12

libquantum 0.87 1.55 97 77 40.56 119.9 62.05 106.69 58.65 1.04
gcc 0.84 1.49 90 65 56.67 109.95 61.61 92.6 59.48 1.0

sjeng 0.82 0.92 100 75 27.42 147.06 62.78 132.23 58.54 1.09
bzip2 0.78 1.28 87 53 44.5 128.71 65.08 111.47 61.81 1.03

gobmk 0.76 0.95 95 63 29.02 72.1 55.66 61.6 55.49 1.09
xalancbmk 0.57 0.94 74 34 84.85 61.08 55.05 51.33 56.27 0.97

mcf 0.36 1.1 81 45 67.46 67.1 55.1 56.68 55.54 0.99
astar 0.35 0.93 77 34 58.73 30.58 48.1 29.51 52.38 1.02

specrand 0.09 0.12 55 17 232.41 101.1 57.31 81.73 55.91 0.85
Average 0.68 1.05 85 53 44.36 68.9 58.06 63.64 57.47 1.02

C
FP

06

namd 1.1 1.27 82 40 45.04 58.4 53.63 49.63 54.82 1.05
gamess 0.97 1.37 84 41 39.66 30.53 47.09 29.63 51.04 1.06
dealII 0.91 1.62 85 48 62.39 189.58 66.47 176.89 61.39 0.99
povray 0.88 0.95 81 48 54.75 368.56 75.76 523.19 66.3 1.01
leslie3d 0.78 0.93 81 38 45.53 20.16 43.33 22.04 48.89 1.05

cactusADM 0.63 1.08 77 35 58.92 34.33 47.69 32.03 51.15 1.02
milc 0.62 1.6 75 35 95.85 44.56 50.61 39.15 53.1 0.95

gromacs 0.61 1.2 72 32 84.96 46.53 51.55 40.38 54.03 0.97
bwaves 0.45 0.95 83 36 39.86 7.51 36.74 12.64 45.44 1.07
soplex 0.42 0.92 71 34 90.34 87.39 55.66 71.12 54.87 0.96

Average 0.74 1.19 79 39 55.87 30.75 50.89 35.52 53.54 1.01
SPEC Average 0.73 1.13 80 44 57.08 57.08 57.08 57.08 57.08 1.0

O
th

er

BDB - - 47 13 952.05 500.64 74.5 1333.86 63.24 0.7
Emacs - - 45 13 1677.6 1534.95 89.97 2081.04 69.78 0.65

Power Off - - 44 15 1813.04 1428.76 88.01 1004.08 68.25 0.64
System Boot - - 67 25 300.54 48.59 50.86 44.32 52.06 0.81

pdflatex - - 43 15 1308.97 1048.95 84.1 9532.39 67.27 0.67
Linux Make - - 93 61 48.98 7.5 41.91 16.28 48.98 0.98

Average - - 61 28 147.21 32.94 61.65 53.26 58.86 0.78

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 7

 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

 0 5 10 15 20 25 30

T
e
m

p
e
ra

tu
re

 (
C

)

Time (s)

astar
bwaves

cactusADM
gromacs
h264ref
leslie3d

namd
perlbench

soplex
specrand

xalancbmk
povray

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

T
e
m

p
e
ra

tu
re

 (
C

)

Time (s)

gcc
dealII

milc
mcf

sjeng

(b)
Fig. 6. (a) Smooth and (b) Varied application categories from thermal
standpoint.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

E
rr

o
r

(%
)

Time (s)

Reliability
GradT
MaxT
Leak
IPC

Fig. 7. Impact of simulation time on accuracy.

seconds to achieve an error of less than 20%. Reliability
thermal metrics are the most difficult to capture. They require
over 40 seconds to have less than 20% error. The plot selects
a subsection of the application execution after warmup. The
same type of results holds with warmup.

The longer execution time required for thermal simulations
demands faster simulation methodologies.

E. Studying Sampling Impact on Measured Traces

The most common method for applying statistical sampling
to architectural simulation is SMARTS [6]. Periodic sampling
is used to take many small samples at evenly spaced intervals
throughout program execution 1 . It also requires a warmup
period and detailed simulation to make sure that the microar-
chitectural state is valid at the time it is sampled.

To determine this error, we gather a thermal trace for the
entire processor, which is measured by an IR setup during
program execution. We also gather performance metrics, in
real-time, from the program executing within the same pro-
cessor. A statistical sampling approach similar to SMARTS is

1Samples are evenly spaced regarding the number of instructions between
them. The actual time between samples varies as performance varies

used to gather thermal samples from the traces. We evaluate
the impact on the accuracy compared to the full thermal trace.

We observed a key problem with Sampling. The final
temperature of each sample can be very different from the
starting temperature of the following sample. This leads to
inaccurate simulations if the samples are concatenated for
thermal simulation. Second, samples are too short to capture
significant transients within them. The overall evaluation of
the temperature is obtained by aggregating the samples, and
the transition of temperature between the samples.

Figure 8 shows the impact of statistical sampling on various
thermal metrics. There are three comparison points. Full
corresponds to the complete execution of the program, i.e.,
no sampling is applied. Oracle sets the initial temperature of
each sample to the correct temperature. This information is not
available in a sampled simulation (Next Section introduces a
framework to preserve such information). Typical sets the ini-
tial temperature of the current sample to the final temperature
of the previous sample.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

IPC MaxT GradT Reliability Power

N
o
rm

a
liz

e
d

Full
Oracle
Typical

Fig. 8. Impact of statistical sampling on the accuracy of thermal simulation.

As expected, IPC is well captured by all the methods.
Typical has around 20% error for MaxT . The most problem-
atic metric is reliability. For the thermally variable subset of
applications, the difference is even worse than the reported
normalized average values.

Insights Derived from Experimental Measurements:
• Thermal phases are longer than performance phases.
• Thermal metrics require longer simulation time.
• The simulations can possibly yield correct results if the

initial temperature for each sample is estimated correctly.

V. THERMAL-AWARE SAMPLING

The experimental data confirms accurate thermal simulation
using sampling. However, the required warmup period and
correct estimation of the initial temperatures for each sample
present significant issues.

In order to decouple thermal computations from the effects
of sampling in the performance stage, thermal simulations
perform sampling first, and then reconstruct the power trace.
Afterwards, a full thermal model computation is performed
on the reconstructed power to generate a detailed temperature
trace. Hence, the thermal stage performs the same amount
of computation with or without performance sampling (We
evaluate this method as SS in Section V-D). The slower state
transitions in temperature compared to power and performance
suggests the potential for fewer thermal calculations. Previous
studies have considered such potential, averaging the power for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 8

10K to 1M cycles in the majority of cases. Finally the thermal
computation is performed for a given timestep [11], [27], [28].
Timesteps are set to be around an order of magnitude smaller
than the thermal time constant (TC) to provide accurate
transients, thus avoiding thermal computations for every cycle.

Nevertheless, while sampling methods drastically reduce the
time spent on performance simulation, the execution time for
thermal simulation remains a limiting factor.

A. TASS Method

A significant challenge when extending sampling methods
to the thermal domain is that unlike performance sampling,
temperature sampling requires a very long warmup. In other
words, temperature has a strong dependency on the previous
state, which is at odds with the idea of sampling. However,
as mentioned earlier, temperature state changes much more
slowly than power and performance. This is leveraged to avoid
excessive thermal computations.

In general, precise estimation of temperature at time T1 = t
depends on correct estimation of three parameters:

• temperature at time T0 = t −δ

• power consumption for the (T0 : T1) interval
• the length of the interval, δ

For sampling, δ is the length of the thermal interval 2.
With a longer δ , more distribution information may be
skipped. Therefore, δ can be adjusted for appropriate trade-
offs between speed and accuracy. We set the length of the
thermal interval equal to the performance sampling intervals
(T Pr = 1, T Pr explained later in this section). Note that
thermal sampling frequencies higher than the frequency of
performance samples do not provide temperature traces that
are any more accurate. A point which previous methods
have neglected, and as a result they use a constant timestep,
which is independent of the performance sampling interval
(For example see [28]).

Furthermore, the beginning of thermal and performance
intervals must be synchronized. The only temperature value
computed for the thermal interval is located at the end of
the interval. Accurate estimation of temperature at T0 itself is
interdependent on the previous power and δ values. Therefore,
the main challenge is the correct estimation of Power and Time
for each interval. However, these values are only available for
the samples rather than the whole sampling interval. For the
fast-forwarded intervals we predict these missing parameters.

The length of sampling intervals is always a fixed number
of instructions (Table IX). However, due to the time variant
nature of CPI, the actual length of each interval varies in terms
of cycles. Using Equation 5, the problem of prediction of time
is transformed to the problem of prediction of CPI.

Ti =
i

∑
k=1

δk,δk =
Cyck

ClkFreq
,Cyck =CPIk × Inst (5)

2Thermal models like HotSpot [11] or SESCTherm [29] have an internal
time step that defines the temporal resolution of thermal computation and
should not be mistaken with the δ variable defined here.

1) Estimation For The Fast-Forwarded Intervals: We eval-
uate different methods for predicting CPI and power, as
summarized in Table V. The simulation setup is described
in Section V-C. The benchmarks are executed in full timing
simulation mode. We divide the execution into intervals sum-
marized in Table IX, and compare the estimated CPI or power
of the intervals with the actual values. Figure 9 shows the
estimation accuracy for each method.

TABLE V
DIFFERENT METHODS TO PREDICT CPI AND POWER OF THE INTERVALS

BETWEEN SAMPLES.

Method Description
Naive Average value across all the benchmarks
Last value of the last sample

MA Moving Average of last 3-7 samples,
similar to WMA, but all the weights are set to 1.

WMA Weighted Moving Average of last 3-7 samples:
as formulated in Equation 6.

For CPI, Last and WMA generate the most accurate predic-
tions. For power, MA and WMA result in the best predictions.
Based on this, we use WMA for both CPI and power prediction
as it also results in a better standard variation, and better ther-
mal results eventually. WMA works as a filtering mechanism to
smooth high frequency power and performance spikes. power
spikes in the samples affect the reconstructed trace, which will
increase the error in the reconstructed temperature even more,
given that temperature effects tend to remain longer due to the
thermal time constant effect. That is the reason we consider
standard deviation as a secondary factor when selecting the
prediction method.

 0

 10

 20

 30

 40

 50

Naive Last MA WMA

%
 E

rr
o
r

in
 p

re
d
ic

ti
o
n CPI Power

Fig. 9. Error in the prediction of CPI and Power for intervals between
samples.

Θi =

n−1
∑

k=0
αk ×θi−k

n−1
∑

k=0
αk

,αk =
1
2k (6)

In our experiments, we set n = 5 in Equation 6. The
measured CPI and measured power from intervals i to i− 5
are used to obtain an estimated CPI and estimated power for
the whole interval i. We also perform the evaluation with n= 3
and n = 7, with the result being more or less similar (n = 3
results in slightly more accurate predictions, but with a higher
standard deviation).

Instead of applying a filter, we can increase the length
of each sample (i.e. simulating more instructions for each
sample). However, this leads to longer simulation times, since

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 9

(a) Original Trace

(b) Sampled Trace

TPr=1

(c) Sampled Trace

TPr = 0.5

Fig. 10. Depiction of TPr effect. A TPr of lower than 1 results in an
even less thermal computation demand as it reduces the number of times
the thermal model is called. Consequently, the generated thermal trace has a
lower resolution.

detailed timing simulation is slow. The simple filtering process
relaxes the demand for longer sampling length, while still
providing stable estimations. As the evaluation in Section V-D
shows, the recommended performance-driven statistical sam-
pling parameters (SS) yields inaccurate results due to this spike
sensitivity during reconstruction.

2) Sampling Parameters: SMARTS [6] specifies the length
of each sample and the sampling intervals based on the
observed variability in the program behavior. Given the stan-
dard deviation (σ) and the mean (µ) of the CPI of the
sampled population, coefficient of variation of samples are
computed (V̂ = σ

µ
). The number of samples can be obtained

by n ≥ [(z · V̂).ε]2, where z = 100(1−α/2), (1−α) is the
desired confidence level, usually set to 0.95 or 0.98. ε · X̄ is
the confidence interval. Also the impact of detailed warmup
(DW) has to be taken into account as an interdependent factor
in determining the length of samples in detailed timing (DT).

We use a similar methodology. In addition, the coefficient
of variability of the power samples can also be used to
guide parameter selection. Our observation is that longer
samples need to be measured to provide stable temperature
results. Haskins et al. [30] explain efficient memory warmup
approaches, we implement a similar technique to reduce the
length of warmup in performance stage. Table IX shows the
parameters.

When thermal phases are longer than performance phases, it
implies using even longer thermal intervals than performance
intervals. We define the real number Thermal to Performance
sampling ratio (T Pr) as follows:

T Pr =
f reqT hermal−samples

f reqPer f ormance−samples
,0 < T Pr ≤ 1 (7)

For example, T Pr = 0.5 means that thermal samples occur
in half the frequency that performance samples do, i.e., each
thermal interval is as long as 2 performance intervals in terms
of number of instructions. Figure 10 depicts the impact of T Pr.
Figure 10a shows a sample thermal trace. Figure 10b shows the
trace with a temperature sample for each performance sample
(T Pr = 1, each vertical line is a sample.). Figure 10c shows the
trace obtained by T Pr = 0.5. The number of thermal samples

is half the performance samples. As a result, the trace is
generated with a lower resolution, but the thermal computation
demand is reduced to half.

We perform a set of experiments with different thermal sam-
pling intervals, while the performance sampling intervals stay
the same. The setup is explained in Section V-C. The results
are shown in Figure 11. The y-axis shows the Root Mean
Square Error (RMSE) of comparing the resultant thermal
traces against the shortest thermal interval of 10K. The results
confirm that as long as the thermal statistics are gathered
at the end of thermal interval, where the temperature is
estimated, longer thermal sampling intervals can be tolerated.
As a results, T Pr < 1 can be used to further accelerate the
simulation speed.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

10K 100K 1M 10M 100M

R
M

S
 E

rr
o
r

Fast-Forward

Full Trace Comparison
Comparison at Samples

Fig. 11. Accuracy of estimated temperature at thermal samples with different
thermal sampling intervals

B. All Together: The Simulation Flow

Figure 12 shows the simulation flow for Full simulation,
SMARTS, SS, and TASS in our functional emulation first
setup.

Full Simulation: the functional emulation keeps track of
program flow and sends the dynamic stream of instructions to
the timing model. The timing model generates the performance
information, and passes activity counters from the functional
units to the power model for power estimation. The estimated
power and execution times are passed to the thermal model to
compute the evolution of temperature transients.

In our setup, there is a feedback path from the thermal
model to both power and timing models. The feedback to
the power model updates the leakage power according to the
current temperature profile of the chip. The feedback to the
timing model notifies the model of the thermally induced
performance penalties, e.g., the performance degradation due
to thermal throttling.

SMARTS sampling: The SMARTS [6] statistical sampling
simulation selects a subset of the instructions executed by the
functional emulator to be sent to the timing model. The timing
model is the slowest component in the simulation, and the
goal of sampling is to reduce the load on this component.
To avoid a bias due to stale microarchitectural state at each
sample, Memory Warmup is performed for the non-sampled
instructions to keep track of the memory references. Note that
no detailed timing simulation is performed yet. Immediately
prior to executing the sample, the timing model will receive
a predefined number of instructions in order to warm-up the
pipeline structures.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 10

Functional

Emulation

Performance

Model

Thermal

Model

Power

Model

Memory

Warmup

S
a
m

p
le

r

Reconstructor

R,W,D,T

TPr

(d) TASS(c) SS

Functional

Emulation

Performance

Model

Power

Model

Sampler

W,D,T

Memory

Warmup

Thermal

ModelReconstructor

(b) SMARTS

Functional

Emulation

Performance

Model

Power

Model

Sampler

W,D,T

Memory

Warmup

Warmup

Functional

Emulation

Performance

Model

Thermal

Model

Power

Model

(a) Full simulation

Leakage feedback

Activities

T
im

e

F
e
e
d
b
a
c
k

Power

D
y
n
a
m

ic

 i
n
s
ts

Detail Warmup

 & Timing

Fig. 12. The flow of simulation in Full (non-sampled) simulation, SMARTS,
SS and TASS.

The majority of instructions are fast-forwarded with mem-
ory warm-up which is fast as it lacks any timing or power
information. Since the execution time collapses in a sampled
simulation (there is no timing information during warm-
up modes), SMARTS cannot perform accurate temperature
simulation.

SS: SS performs statistical sampling at performance and
power stage similar to SMARTS. It adds a reconstruction
module to reconstruct time and power, and shield the sampling
from thermal computations. The thermal model is called
periodically every 100K cycles. SS is oblivious to the sampling
at performance and power stages. Table IX summarizes the
parameters used for SS.

TASS: TASS performs statistical sampling at performance
and power stage similar to SS, and also extends the sampling
to the thermal stage. Once the samples are passed to the timing
model and the power estimation is performed, the result is sent
back to the sampler to perform extra sampling (if required,
decided by T Pr defined in Section V-A2) for the thermal
computation. Then the reconstruction module reconstructs the
execution time, and power, and eventually generates the tem-
perature trace. TASS incorporates the sampling in performance
and power stage in the thermal computation. Unlike SS,
TASS synchronizes the beginning and end of temperature and
performance samples to minimize the number of calls to the
thermal model. The size of each simulation mode (Rabbit,
Memory Warmup, Detail Warmup and Timing, defined in
Table VII), as well as T Pr are predefined through the process

explained in Section V-A2 and summarized in Table IX. For
TASS, the sampling parameters have been revised for thermal
simulation (longer samples).

Pros and Cons: In fact, sampling trades off accuracy
for simulation speed in a bounded manner. While the speed
increases by orders of magnitude, the accuracy loss is in
the order of couple of percentage points in the metrics of
interest. This trade-off is controlled by selecting the sampling
parameters as mentioned in Section V-A2 and explained in
detail in [6]. More frequent and longer samples generates more
accurate results, but the simulation will be slower.

Architects have to be aware that the optimum parameters
vary per application. However, it is desirable, and practical, to
run the evaluated experiments with only one set of sampling
parameters. A conservative sampling parameter selection can
ensure the accuracy for all the applications (i.e., slightly
more and longer samples). The sampling parameter selection
procedure is highlighted in V-A2, and is discussed in more
detail in [6].

C. Simulation Setup

Table VI lists the methods we evaluate in this work. SS
uses the same sampling parameters as suggested in [6]. It
perform thermal computation after reconstructing power trace
with 100K cycle timestep.

TABLE VI
SIMULATION METHODS EVALUATED IN THIS WORK.

Method Description

Full Full simulation, (no sampling)
SS Statistical-based sampling (Perf. + Power sampling)
TASS Thermal-aware SS, (Perf. + Power + Thermal sampling)

TABLE VII
SIMULATION MODES.

Phase Description

Rabbit Fast-forward emulation or native co-execution
Memory Warm-up Tracks Memory references to maintain accurate state
Detail Warmup Cycle-accurate modeling to warmup the pipeline,

statistics are discarded
Timing Cycle-accurate timing modeling

For performance simulation, we use a modified version of
SESC [12] that uses QEMU [31] as the functional emula-
tor executing user mode ARM instructions. The simulator
offers 4 different execution modes, explained in Table VII,
to support sampling. We configure SESC to pass activity
counters to McPAT [13] (every 100K instructions max) which
we use for calculating power. We use a modified version of
SESCTherm [29] as our thermal model. SESCTherm uses an
approach similar to HotSpot [11] to solve the thermal equa-
tions. Our implementation scales leakage power consumption
according to temperature and device properties.

We simulate two single core processors: one is an Intel
Nehalem-like high performance (HP) core, and the other is an
AMD Bobcat-like low power (LP) mobile core (Table VIII).
Table IX shows the sampling and the thermal simulation
parameters respectively.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 11

TABLE VIII
ARCHITECTURAL PARAMETERS.

Parameter Value Parameter Value

HP

Freq 3.0 GHz

LP

Freq 1.6 GHz
I$ 32KB 2w (2c hit) I$ 32KB 2w (2c hit)
D$ 32KB 8w (3c hit) D$ 32KB 2w (2c hit)
L2 1MB 16w (12c hit) L2 512KB 4w (12c hit)
Mem. 180 cyc Mem. 90 cyc
BPred. Hybrid 76Kb mem BPred. Hybrid 38Kb mem
Issue 4 Issue 2
ROB 256 ROB 56
IWin. 48 IWin. 20
Reg(I/F) 128/128 Reg(I/F) 80/64
Tech. 32 nm Tech. 32 nm

TABLE IX
SAMPLING PARAMETERS. R, W, D, T DEFINED IN TABLE VII.

Method Parameter

SS R = 0, W = 997e4, D = 2e4, T = 1e4
TASS R = 257e4, W = 250e4, D = 2e4, T = 7e4,

History Size = 5, TPr = 0.5 unless mentioned otherwise

The benchmarks that we selected from CPU2000 and
CPU2006 suites are shown in Table XI. We also use the same
set of metrics explained in Section IV-A

D. Simulation Results
We cluster the benchmarks in categories as shown in Ta-

ble XI, and averaged the result of HP and LP configurations as
they are statistically similar. The accuracy of each benchmark
is calculated in comparison with Full and average result for
each category is reported. We also report the minimum and
maximum error for each category.

1) Accuracy: The results shown in Figure 13 show SS suf-
fers from the sampling parameters that suits the performance
sampling, and are not adjusted for thermal. As a result, it does
not provide accurate results as expected (errors within 20% of
the non-sampled simulation on average).

On average, across all the benchmarks and metrics, TASS
performs accurately with 3.6% average error.

2) Speed: The last column in Table XII shows the sim-
ulation speed for each method on average across all the
benchmarks. An observation is that thermal simulation ac-
counts for a large portion of the simulation time in these
methods. The reason is that sampling reduces the simulation
time for performance simulation, whereas thermal simulation
time stays the same. While in a non-sampled simulation the
temperature simulation accounts for 20% of the simulation
time, in a sampled simulation, this ratio increases to over 80%.

The prohibitively large portion of simulation time spent on
thermal simulation shows the need for various techniques to
reduce the time spent on thermal computation. Fast thermal
models (for example see [10]) or parallelized computation
(for example through GPGPU implementation of the thermal
solver [3]) can be used to reduce this time. Extending the
sampling to thermal computation is another way of reducing
the computation demand. Nonetheless, all the above mentioned
techniques are orthogonal and can be combined to speed up
the thermal simulation even further.

Full runs at 0.76 MIPS3 on average with thermal simula-

3Million simulated Instruction Per Second. Experiments run on an AMD
Opteron(tm) processor 6172 with 120GB of memory.

TABLE X
THERMAL PARAMETERS.

Parameter HP LP
Package RC 10 ms

Ambient Temp. 308 K
Chip Thickness. 0.83 mm

Chip Area 65 mm2 26 mm2

Throttling Threshold 363 K 348 K

TABLE XI
EVALUATED BENCHMARKS.

Suite Category benchmark

CPU2000 Varied swim, gcc, mesa, facerec, lucas, bzip2
Smooth gzip, mgrid, applu, vpr, crafty, twolf

CPU2006 Varied gcc, milc, dealII, mcf
Smooth perlbench, soplex, astar, povray, namd, h264ref

tion. SS increase the simulation speed up to 2.8 MIPS respec-
tively due to reduction of simulation time in the performance
stage. However, it does not deploy thermal sampling. TASS,
on the other hand, extends sampling to the thermal stage, and
reaches a maximum speed of 30 MIPS and an average speed
of 18 MIPS. These results are generated with T PR = 0.5
(explained in Section V-A2) for TASS, which translates to
thermal fast-forwarding of 10M instructions.

TABLE XII
BREAKDOWN OF SIMULATION SPEED IN MIPS WITH AND WITHOUT

THERMAL COMPUTATIONS.

Method Speed w/o thermal Speed Speed
R W D T w/o thermal w/ thermal

Full - - - 1.0 1.1 0.8
SS - 49 0.4 0.3 44 2.8

TASS 20 19 0.9 1.0 22.5 18

Extending sampling to the thermal stage accelerates sim-
ulation speed around 7 times, while the accuracy degrades
from 4.7% to 6.7% on average. It also affects the maximum
error with the same rate. Table XII shows the breakdown
of execution time for each simulation mode, as well as the
simulation speed with and without thermal sampling. The
execution time with thermal for the thermal-aware method
(TASS) is an order of magnitude less than their thermal-
unaware counterpart (SS). SS without thermal is faster than
TASS as the sampling parameter for TASS is adjusted for
thermal accuracy. The execution time at different stages of
simulation is distributed more or less evenly in the same order
with thermal time now being around 25% of total execution
time for both methods. Therefore, according to Amdahl’s law,
further reduction in thermal simulation time once the sampling
is employed will not result in radical increase in the overall
simulation speed (33% maximum).

E. Case Study: Dynamic Thermal Management

Modern processors adapt to the thermal effects, and imple-
ment different DTM techniques and policies. In this section
we explain how these techniques can be implemented in a
statistically sampled simulation. Hence, we implement two
DTM policies: Throttling and DVFS. This section shows an

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 12

 0

 5

 10

 15

 20

 25

 30

Varied00 Varied06 Smooth00 Smooth06

M
a

x
T

 E
rr

o
r

(C
)

SS TASS

(a) Max Temperature

 0

 5

 10

 15

 20

 25

Varied00 Varied06 Smooth00 Smooth06

%
 R

e
lia

b
ili

ty
 E

rr
o

r

SS TASS

(b) Reliability

 0

 5

 10

 15

 20

 25

 30

Varied00 Varied06 Smooth00 Smooth06

%
 P

o
w

e
r

E
rr

o
r

SS TASS

(c) Power
Fig. 13. Average, minimum, and max error of different methods.

example of how architects can benefit from an integrated sam-
pling infrastructure (performance, power, and temperature), as
it drastically reduces the simulation time, and increases their
productivity and depth of exploration.

For throttling, when the chip temperature exceeds the
threshold (e.g., 90◦C, close to junction temperature), the pro-
cessor stops the execution to prevent physical damage to the
chip. Engagement of throttling and resuming of the execution
involves a delay. The delay is included into the time it takes the
processor to cool down. The performance impact of throttling
is fed back to the performance domain as well.

DVFS is another technique that we implemented. With
DVFS, the processor adapts the operating voltage and fre-
quency of its core to manage its thermal behavior. DVFS
policies are managed by the operating system. The temporal
resolution is OS ticks, which is usually in order of millisec-
onds. In statistically sampled simulation, we update DVFS
state at each sample, and the state remains unchanged for the
intervals between samples. The interval between samples are
usually in order of millisecond as well (the exact value changes
based on the processor’s performance).

TABLE XIII
DVFS STATES AND POLICIES.

State Frequency (MHz) Voltage (V) DV FS−P DV FS−T

S0 3000 1.1 T < 86 T < 80
S1 2700 1.045 86 ≤ T < 87.5 80 ≤ T < 85
S2 2400 1.00 87.5 ≤ T < 88.5 85 ≤ T < 87
S3 2100 0.945 88.5 ≤ T < 90 87 ≤ T < 90
TT - - T > 90

Any changes in voltage and frequency of the core causes
CPI to change. The reason is the relative difference in core’s
speed compared to the memory subsystem. In the sampled
simulation, the estimated length of each interval is obtained
as formulated in Equation 5. Both parameters affected by
DVFS appear in this formula (ClkFreq and CPI). As a result,
the length of each sampling interval will expand in time by
lowering the frequency and voltage, and shrink otherwise. As
it can be seen, by updating DVFS state once per sampling
interval, the implementation easily integrates into the TASS
framework. Table XIII summarizes different techniques and
policies we implement for our case study.

The DTM policies we implement are as follows:
Throttling: When a block in the processor reaches a trigger

threshold (90◦C, defined in Table X), the clock is gated and
the processor stops processing. It will reduce the power con-
sumption of the chip down to the static power. The processor
remains throttled until the temperature drops well below the

defined threshold (e.g., 86◦C).
DVFS-P: The processor implements 4 frequency-voltage

states, as summarized in Table XIII. The goal is to maintain the
processor’s performance level while keeping the temperature
below the throttling threshold.

DVFS-T: The processor implements 4 frequency-voltage
states, as summarized in Table XIII. The goal is to minimize
critical temperature across the chip, and lower the average heat
dissipation.

1) Impact on performance and temperature: We ran the set
of benchmarks for 5 billion instructions (around 2-5 seconds
of execution). We evaluate the T hrottling and DV FS policies.
Figure 14a shows the impact of DTM policies on processor
performance. Figure 14b shows the average temperature of
the hotspot across the chip throughout the execution. The
maximum temperature does not exceed 90◦C, because at that
point throttling will be in effect. While DV FS−T substantially
reduces the hotspot, the reduction causes performance loss.
DV FS − P, however, improves both the performance and
thermal profile. This is done by maximizing utilization of
higher frequency states while keeping the hotspot temperature
just below the throttling threshold. DV FS−P and DV FS−T
improve EnergyDelay product of the processor by 24.8% and
25.2% respectively.

Table XIV shows the utilization of each state on average.
For example, with T hrottling policy, 100% of instructions are
executed in S0. No execution is performed while the core is
throttled. Nonetheless, the processor spends 26.6% of the time
in throttling state. DV FS−P, on the other hand, had a different
distribution for the number of executed instructions in each
state. It reduced the throttling time to less than 7%.

As it can be inferred from Figure 14a and Figure 14b, the
Varied category of benchmarks provides more potential for
the processor to exploit DVFS for higher energy efficiency,
and to reduce the average hotspot formation across the chip.

TABLE XIV
DISTRIBUTION OF EXECUTED INSTRUCTIONS AT EACH DTM STATE

(S0-S3). FOR TT, THE PERCENTAGE OF TIME SPENT IN THROTTLING IS
PROVIDED. NO INSTRUCTION IS EXECUTED IN TT.

State T hrottling DV FS−P DV FS−T

S0 100 41.2 28.7
S1 0 19.6 20.8
S2 0 20.6 23.0
S3 0 18.6 27.5

TT 26.6 6.8 4.0

2) Length of Simulation: As discussed in IV-D, thermal ef-
fects develop slower than performance effects. Hence, thermal

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 13

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Varied00 Varied06 Smooth00 Smooth06

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Throttling DVFS-P DVFS-T

(a) Execution Time

 82

 83

 84

 85

 86

 87

 88

 89

Varied00 Varied06 Smooth00 Smooth06

T
e

m
p

e
ra

tu
re

 (
C

)

Throttling DVFS-P DVFS-T

(b) Average Hotspot Temperature
Fig. 14. Performance of each DTM policy.

studies require longer simulations. For example, comparing
T hrottling and DV FS−P for 500 million instructions (after
skipping 1B), both DTM techniques perform equally in terms
of impact on performance of the processor and its thermal
behavior. The reason is that this amount of instructions on
a modern processor accounts for less than 0.4 second of
execution. It is not long enough time for the progress of
temperature effects. However, slow simulation speed prohibits
the architect from performing longer simulations.

In addition, adjusting the parameters for a DVFS policy
involved several set of such runs for the set of benchmarks.
Full integrated simulation of 500M instruction for our config-
uration takes around 10 hours for each benchmark. Sampled
simulation at performance stage only and performing full
thermal computation (SS) reduces this time to 3 hours, which
is still prohibitive even for a short 500M simulation. Sampled
simulation at both performance and thermal stage (TASS)
takes less than 15 minutes to finish, which makes it possible
for architects to run longer simulations and to adjust the
configuration through several iterations. This renders a fast
technique such as TASS a necessity.

VI. CONCLUSION

This work explores several key aspects of the thermal
evaluation of modern processor designs. We start from ex-
perimental methods to capture temperature metrics during
run time. Then we study the techniques for thermal-aware
architectural simulation and how to increase their speed and
accuracy.

We describe the implementation and validation of a mech-
anism for directly measuring the thermal characteristics of
processors nominally at run time. The measurement setup uses
an infrared camera for studying the thermal behavior of a
computing device. Using such measurement system, we study
and evaluate the impact of direct deployment of statistical sam-
pling on thermal simulation. The experimental data confirms
that sampling can potentially result in accurate estimation of

thermal behavior; However, the sampling-based architectural
simulation should first consider that thermal phases do not
match the performance phases and longer thermal phases
require a longer warmup period. Secondly, accurate sampled
evaluation depends on the accurate estimation of the initial
temperature of the samples.

For a typical integrated architectural simulation, thermal
computations can take over 80% of the total simulation time
after applying sampling to the performance and power simu-
lation stages. We present a technique for applying sampling
to the thermal modeling stage. The evaluation shows that our
approach reduces the thermal computation time to as low as
25% of the total simulation time, and speeds up the simulation
by an order of magnitude. All while still providing accurate
results within 3.6% of the non-sampled simulation. We discuss
implementation of runtime adaptations in the processor (e.g.,
DVFS), and through a case study, we then show how architects
can perform a more extensive exploration of the design space.

REFERENCES

[1] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
and J. Mendias, “A fast hw/sw fpga-based thermal emulation framework
for multi-processor system-on-chip,” in Proceedings of the 43rd annual
Design Automation Conference. ACM, 2006, pp. 618–623. 1, 2

[2] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, “A
virtual platform environment for exploring power, thermal and relia-
bility management control strategies in high-performance multicores,”
in Proceedings of the 20th symposium on Great lakes symposium on
VLSI. ACM, 2010, pp. 311–316. 1, 2

[3] A. Sridhar, A. Vincenzi, M. Ruggiero, and D. Atienza, “Neural network-
based thermal simulation of integrated circuits on gpus,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 31, no. 1, pp. 23–36, 2012. 1, 2, 11

[4] Y. Yang, Z. Gu, C. Zhu, R. Dick, and L. Shang, “ISAC: integrated space-
and-time-adaptive chip-package thermal analysis,” Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, vol. 26,
no. 1, pp. 86–99, 2007. 1, 2

[5] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ACM SIGARCH Com-
puter Architecture News, vol. 30, no. 5. ACM, 2002, pp. 45–57. 1,
2

[6] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS: acceler-
ating microarchitecture simulation via rigorous statistical sampling,” in
Computer Architecture, 2003. Proceedings. 30th Annual International
Symposium on. IEEE, 2003, pp. 84–95. 1, 2, 7, 9, 10

[7] A. Coskun, R. Strong, D. Tullsen, and T. Simunic Rosing, “Evaluating
the impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in Proceedings of the eleventh in-
ternational joint conference on Measurement and modeling of computer
systems. ACM, 2009, pp. 169–180. 1, 2

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” Journal of parallel and distributed computing,
vol. 68, no. 10, pp. 1370–1380, 2008. 1, 2

[9] Y. Zhan and S. Sapatnekar, “High-efficiency green function-based
thermal simulation algorithms,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, no. 9, pp. 1661–
1675, 2007. 1, 2

[10] A. Ziabari, E. K. Ardestani, J. Renau, and A. Shakouri, “Fast thermal
simulators for architecture level integrated circuit design,” in Semi-
conductor Thermal Measurement and Management Symposium (SEMI-
THERM), 2011 27th Annual IEEE. IEEE, 2011, pp. 70–75. 1, 2,
11

[11] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, “Temperature-aware microarchitecture,” in ACM SIGARCH
Computer Architecture News, vol. 31, no. 2. ACM, 2003, pp. 2–13. 2,
8, 10

[12] J. Renau, F. Basilio, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,” 2005,
http://sesc.sourceforge.net. 2, 10

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2013 14

[13] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: an integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on.
IEEE, 2009, pp. 469–480. 2, 10

[14] E. K. Ardestani, A. Ziabari, A. Shakouri, and J. Renau, “Enabling power
density and thermal-aware floorplanning,” in Semiconductor Thermal
Measurement and Management Symposium (SEMI-THERM), 2012 28th
Annual IEEE. IEEE, 2012, pp. 302–307. 2

[15] F. Mesa-Martı́nez, E. K. Ardestani, and J. Renau, “Characterizing
processor thermal behavior,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 1. ACM, 2010, pp. 193–204. 2, 5

[16] A. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE’07. IEEE, 2007, pp. 1–6. 2

[17] A. K. Coskun, T. S. Rosing, and K. C. Gross, “Proactive temperature
management in MPSoCs,” in Proceeding of the thirteenth international
symposium on Low power electronics and design (ISLPED), 2008, pp.
165–170. 2

[18] T. Heath, A. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini,
“Mercury and freon: temperature emulation and management for server
systems,” in ACM SIGARCH Computer Architecture News, vol. 34, no. 5.
ACM, 2006, pp. 106–116. 2

[19] H. Hamann, J. Lacey, A. Weger, and J. Wakil, “Spatially-resolved
imaging of microprocessor power (SIMP): Hotspots in microprocessors,”
in Proceedings of the tenth intersociety conference on Thermal and
Thermomechanical Phenomena in Electronics Systems, 2006, pp. 125–
129. 2

[20] F. Mesa-Martı́nez, J. Nayfach-Battilana, and J. Renau, “Power model
validation through thermal measurements,” vol. 35, no. 2. ACM, 2007,
pp. 302–311. 2

[21] A. Nowroz, R. Cochran, and S. Reda, “Thermal monitoring of real
processors: Techniques for sensor allocation and full characterization,”
in Proceedings of the 47th Design Automation Conference. ACM, 2010,
pp. 56–61. 2

[22] R. Cochran, A. Nowroz, and S. Reda, “Post-silicon power character-
ization using thermal infrared emissions,” in Proceedings of the 16th
ACM/IEEE international symposium on Low power electronics and
design. ACM, 2010, pp. 331–336. 2

[23] E. K. Ardestani, F. Mesa-Martı́nez, and J. Renau, “Cooling solutions
for processor infrared thermography,” in Semiconductor Thermal Mea-
surement and Management Symposium, 2010. SEMI-THERM 2010. 26th
Annual IEEE. IEEE, 2010, pp. 187–190. 2

[24] E. K. Ardestani, E. Ebrahimi, G. Southern, and J. Renau, “Thermal-
aware Sampling in Architectural Simulation,” in Proceedings of the
2012 ACM/IEEE International Symposium on Low Power Electronics
and Design, ser. ISLPED ’12. New York, NY, USA: ACM, 2012, pp.
33–38. 2

[25] W. Huang, K. Skadron, S. Gurumurthi, R. Ribando, and M. Stan,
“Differentiating the roles of ir measurement and simulation for power
and temperature-aware design,” in Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on. IEEE,
2009, pp. 1–10. 3, 5

[26] S. Jarp, R. Jurga, and A. Nowak, “Perfmon2: a leap forward in
performance monitoring,” J. Phys.: Conf. Ser., vol. 119, p. 042017, 2008.
5

[27] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ACM SIGARCH
Computer Architecture News, vol. 28, no. 2. ACM, 2000, pp. 83–94.
8

[28] V. Nookala, D. Lilja, and S. Sapatnekar, “Temperature-aware floorplan-
ning of microarchitecture blocks with ipc-power dependence modeling
and transient analysis,” in Proceedings of the 2006 international sympo-
sium on Low power electronics and design. ACM, 2006, pp. 298–303.
8

[29] J. Nayfach-Battilana and J. Renau, “SOI, interconnect, package,
and mainboard thermal characterization,” in Proceedings of the 14th
ACM/IEEE international symposium on Low power electronics and
design. ACM, 2009, pp. 327–330. 8, 10

[30] J. Haskins Jr and K. Skadron, “Accelerated warmup for sampled
microarchitecture simulation,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 2, no. 1, pp. 78–108, 2005. 9

[31] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference.
USENIX, 2005. 10

Ehsan K.Ardestani is a PhD candidate in Com-
puter Engineering at the University of California,
Santa Cruz. His research interests include computer
architecture, power modeling, power and thermal-
aware design, and simulation methodology for scal-
able multicore systems. He received his BS and
MS degree in Computer Engineering and Computer
Architecture from Isfahan University and Amirkabir
University of Technology, Iran, respectively. He is a
member of the IEEE and IEEE Computer Society.

Francisco J. Mesa-Martı́nez is a collaborator with
the MASC group. His research interests include
computer architecture, thermal modeling, power-
aware thread scheduling, physical and design error
tolerance, behavior based control approaches, non-
Von Neumann computation, and data compression.
He has a MS in Electrical Engineering from the Uni-
versity of Southern California, and a PhD in Com-
puter Engineering from the University of California,
Santa Cruz. He is an IEEE and ACM member.

Gabriel Southern is a member of MASC group,
currently pursuing a PhD in Computer Engineering
at the University of California, Santa Cruz. His re-
search interests include low-level hardware/sofware
system interaction and parallel processing. He re-
ceived the B.S. degree in computer engineering
from the Univeristy of Virginia, in Charlottesville,
Virginia, in 2002, the M.S. degree in computer
engineering from George Mason University, Fairfax,
Virginia, in 2008. From 2002 to 2006 he served as an
officer in the U.S. Army. He is a member of IEEE.

Elnaz Ebrahimi is a member of MASC group,
currently pursuing a PhD in Computer Engineering
at the University of California, Santa Cruz. Her
research area is elasticity in microarchitecture de-
sign and its applications towards managing timing
variability and power efficiency in processor design.
She received her BS in Computer Engineering from
San Jose State University, San Jose, CA in 2008.
She received her MS in 2011 from the University of
California, Santa Cruz.

Jose Renau is an associate professor of computer
engineering at the University of California, Santa
Cruz. His research interests include computer ar-
chitecture, low-power and thermal-aware designs,
thread-level speculation, and prototyping. Renau has
a PhD in Computer Science from the University of
Illinois at Urbana-Champaign. He is a member of
the IEEE Computer Society and the ACM.

