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ABSTRACT
Data centers operating cost are dominated by their power consump-
tion. Renewable energy sources can reduce the operating costs
when correctly selected. Nevertheless, this is a non trivial task be-
cause it should consider different energy sources (wind, solar), stor-
age alternatives (batteries, grid-tie), workload, historical weather
patterns, incentives, and service agreement penalties. These are the
basic factors, but the model should be extensive to consider other
factors like power gating support.

This paper introduces ReRack, an extensible simulation infras-
tructure that can be used to evaluate the energy cost of a data cen-
ter using renewable energy sources. ReRack is composed of two
main components, a simulation and an optimization component.
The simulation component explores the cost effectiveness of re-
newable energy generation. It requires a model that can simu-
late both the data center power usage and the location-dependent
variability of the power generation source (solar and wind). The
ReRack optimization component finds the best ratio of renewable
energy sources for a given location and workload.
1. INTRODUCTION

Building a data center is an expensive proposition, and the en-
ergy to power it is a significant part of the expense. More so since
every watt of power used for computation requires more power to
be spent turning a fan to keep a data center’s temperature inside the
operating range. 2010 was expected to be the year in which lifetime
electricity costs associated with owning new servers would exceed
the price of the hardware itself [1]. Recently there has been a more
concerted effort to increase efficiency of power generation to cut
costs. This has made for a resurgence of renewable energy sources
as a viable alternative [2]. Taking advantage of this opportunity is
not trivial; renewable sources are inherently variable and have dif-
ferent cost characteristics depending on location (weather and local
laws). Renewable generation sources can have large variation in
output depending on the local weather patterns, so exploring their
feasibility in data centers requires some way of estimating the cost
of running a data center under different power generation config-
urations. To be feasible in data centers one would need to signif-
icantly decrease the renewable energy cost due to the generation
capacity and adapt to energy cost fluctuations found in renewable
sources. This paper proposes ReRack to provide such simulation
infrastructure.

ReRack can be used to model and optimize capital investment
and operational costs associated with power in a data center using
renewable energy sources. This paper is an overview of what and
how the model works, and the full source code will be made avail-
able upon the paper’s publication. ReRack can evaluate the cost for
a given mix of renewable sources, the weather parameters over a
period of time which affects the renewable energy generation, and

the workload of real-time and batch jobs during the same time pe-
riod. For example, to know that power associated costs for a data
center powered by 500kW of solar photo-voltaic capacity, 250kW
of wind turbine capacity, 400kWh of vanadium redox flow battery
storage, and local grid energy, doing the same workload for one
year would cost $417,086 in California, $390,902 in Texas, and
$306,220 in Michigan. ReRack not only evaluates the cost, but it
also optimizes to find the best mix of renewable sources that mini-
mize cost for workload and a location’s weather history.

2. RERACK APPROACH
ReRack has two components, the simulator and the optimizer.

The simulator estimates the energy cost for a given configuration.
The optimizer looks for the best combination of energy sources
to minimize the cost of the simulation. With this partitioning, the
problem can be handled by fairly well known techniques.

2.1 Simulator
ReRack is a simulation infrastructure that can be used to predict

the relative cost of powering a data center by exploring a multi-
dimensional range of configurations to find the most inexpensive
available. The ReRack simulation currently considers three power
generation sources (wind, solar, and grid) as well as power stor-
age, given a fixed server set and characterization and a known daily
distribution for demand. The infrastructure is built to be easily ex-
tended to allow optimizing over server size and characterization,
varying demand distributions, other power generation sources, or
nearly any other consideration.

The simulator cost function would be f (a,b,c, ...)= cost. Where
the inputs (a, b, c, etc.) are the list of all variables considered per-
tinent to the cost of a data center over the time span of a year.
This could include, but is not limited to, workload, energy gen-
eration cost, data center energy consumption model, and renewable
sources. However, instead of a simple equation, the cost function
is actually a simulator calculating the actions and effects of all the
variables used on a data center’s power usage and performance.
Usage of grid power is recorded, as is the cost of grid power at the
time it was being used. Time steps are set at 1 minute to match the
granularity at which power is metered.

To calculate this cost the simulation does the following in a loop
for every minute of a full year:

1. Calculate power supply from renewable sources
2. Calculate power demand from active machines
3. If (power is in surplus)

(a) Store it (or sell it - California & Michigan)

4. Else

(a) Tap batteries and pay to draw the remaining difference
from the grid



5. Calculate how much workload was satisfied
6. Determine how to power up machines to for the next minute

(a) Decision based on likely power generation, workload
demands, the cost of power from the grid, the cost of
breaking a service level agreement, and how far the cur-
rent time is through the billing period

At the end of the simulation the money spent buying power from
the grid is added to the amortized costs of purchasing and main-
taining the renewable sources. This is returned as the cost for that
particular solution.

2.2 Optimizer
The optimizer use is a genetic algorithm, though the particular

optimizer is not important and others could be used. The cost func-
tion is not an equation, but instead a simulation using an amalga-
mation of batteries (non-linear, truncation), weather (random data),
and goal-oriented decisions about uptime (logic). All of that "bad"
behavior in the variables makes for a simulation which can not be
expressed as an equation and a solution space which contains lots
of local minima and discontinuities; hence the use of an optimizer
like the genetic algorithm. Though, like all non-analytical methods,
the confidence in the answer as optimal is proportional to the effort
applied to the search. Maximally pre-computed inputs greatly as-
sist in keeping search times manageable and by extension, result
accuracy high. Additional factors can be considered in the model
by just incorporating the relevant new variables into the cost func-
tion, and increasing the search time allowed for optimization. In
this way ReRack provides a compartmentalized environment where
new (such as cooling costs) or more detailed [3,4] component mod-
els may be inserted with minimal effort.

The optimizer, in this instance a genetic algorithm, attempts to
find the combination of inputs to the cost function that yields the
optimal output. Here the cost function is:

f
(

weather, cost incentives, solar panels,
wind turbines, batteries, grid rate

)
= cost

Some optimizers find provably optimal solutions. A genetic algo-
rithm will not yield a provably optimal solution. However, if ap-
plied correctly, in practice it will yield "good" results which are at
or near the optimal. Part of applying it correctly is allowing the
algorithm enough time to get coverage of the search space. If the
search is limited to a single site at a time then three of the six in-
puts to the cost function become constants (weather, grid rate, and
cost incentives; all location specific). Lowering the search space to
three dimensions, pre-computing as many of the inputs to the cost
function as possible, and optimizing the cost function code makes
good coverage of the search space much easier to achieve.

The genetic algorithm code base we used was GAUL [5]. The
seed population was 1000 unique configurations spaced in a 3D-
grid, each dimension of the grid having a range from zero to twice
the total power needs of the data center if met by that resource
alone. The algorithm runs, mutating solutions and keeping the most
optimal, until the population converges to an optimal fitness. There
may or may not be more than one unique solution that produces this
optimal fitness so the top 20 solutions are output, though generally
only the first is used.

2.3 Sample Utilization
An example situation of what ReRack is intended to model would

be the following: A data center builder wants to compare the en-
ergy costs including amortization for three different locations (Ta-
ble 1). Each location has a different wind, solar, energy costs, and
grid power cost model. Each site has its own merits. California’s

California Texas Michigan

Grid power (cents/kWh) 8.3-14.0 10.2 7.8-2.2
Avg. wind (m/s/day) < 4.0 6.5 7.5
Avg. sunlight (h/day) 5.5 4.5 4.2

Table 1: Location characteristics.

central valley gets a lot of sun during the day and has relatively
cheap power at night. Very important, California has several finan-
cial incentive programs that lower the capital investment necessary.
Texas’s gulf coast gets about the same amount of sun exposure, but
also has vast amounts of wind. Though, Texas has none of the in-
centive programs found in California. Finally, northern Michigan
(not the lakes) gets neither sun, nor wind in amounts useful for re-
newable energy generation. However, the price of energy generated
by fossil fuels is significantly cheaper in Michigan than in either of
the other two states, which could out-compete renewable sources
all together.

In addition to the energy costs itself, another key factor is the
capacity to sell back the excess electricity generated with the re-
newable sources, and the energy cost model. The excess generated
electricity has very different models depending on the state. While
in California the utility company is required to buy back up to 1MW
of power, Michigan only requires 20kW, and Texas has no such pro-
gram whatsoever. Also state dependent is the energy cost model.
The energy bill is not only a factor of the kWh consumed, but the
consumption pattern. More details are provided in the following
section about the input set.

When the fixed data center is simulated in ReRack under each
of the three configurations, the tool determines that relative to the
other two choices Michigan would be the most cost effective site
for the data center, followed by California and last, Texas. Any
change in the data center itself, such as workload characteristics,
would require a new run through the tool to see if the new traces
corresponded better or worse to the availability of each of the power
sources. The new fit would not only mean a different set of costs,
but a new suggestion on the most efficient way to allocate funds
when sizing generation capacity. Winds tend to blow when temper-
ature is in flux, while the sun has its own fairly predictable window
of use. ReRack is meant to take information about specific can-
didate sites, simulate minute by minute power usage while trying
to make the best use of the available resources and find the most
efficient means of powering the data center.

3. RERACK INPUT SET AND MODELS
The previous section has provided a high level view of the ReRack

approach to simulate the energy cost for a given data center loca-
tion. This section provides more details about the input sets and
models used in the ReRack simulation.

ReRack model can be divided into a data center energy consump-
tion model, workload, service level agreement, energy generation
for wind and solar which is dependent on the weather patterns, bat-
tery model, grid energy cost, and a grid buy-back cost model.
Data Center Energy Consumption: Particulars about the data
center hardware will also make a difference in modeling it. Power
and performance characteristics of the system used are taken from [6].
Energy consumption for the system was measured and reduced to
one simple equation with inputs of percent utilization or activity
of the CPU, memory, storage device, and network. A well char-
acterized workload can provide all of the necessary inputs for the
equations.

Systems are powered up and down between available DVFS states,
always preferring the aggregate state that gives the data center as a
whole the most efficiency in power, and by extension, cost per com-
putation.



Workload: For this work we have generated workload traces at 1
minute granularity for CPU utilization. We have two traces, one
for compute heavy load which was directly measured from a data
center, and the other for interactive load which was modeled after
data from Google [7]. Figure 1 has a one day sample of the interac-
tive workload. An important part of the simulator is speculatively
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Figure 1: One day sample relative interactive workload used in
simulation.

determining the number of machines to keep powered up for the
next minute of operation. For this, queues are maintained to rep-
resent the amount of work, in the form of jobs, waiting to be done
by the data center. A set of queues is maintained for two different
types of workload. Interactive load is a high priority demand on the
data center which must be satisfied immediately. Examples of this
would be web browsing traffic or typing in user terminals. Interac-
tive load is kept in a single queue representing the quantity of work
remaining to be done, and is assumed to be satisfied in the order of
arrival. The other kind of demand is batch compute load. Large,
lower priority simulations like weather forecasts which, while not
of immediate priority, do have service level agreements which im-
pose fines if not met [8]. This type of load has a separate queue
for each minute the work was first registered. In this way, we can
know how long a job has been waiting and whether it has or will
meet the service level agreement.
Service Level Agreement (SLA): The option of completing the
work, at a cost related to the highest power load spike on the grid
so far and to the current power rates and generation, is weighed
against the option of putting off some or all of the work, at a cost
related to the service agreement [8] and the job’s time already spent
sitting in the queue. Interactive workloads are penalized for any
delay while batch work is allowed a two hour window for com-
pletion. Statistical analysis of average daily load and a two-hour
weather forecast are used with information about the system’s state
to speculate the optimal number of systems to keep powered up. A
feedback loop corrects for immediate errors in forecasting, while
more complicated logic is used to target trade-offs between intri-
cate power billing schedules and service level agreements.
Weather Pattern: The ReRack uses site specific details to deter-
mine when and in what quantity generating power sources will
be available to the data center. In the ideal situation, a two year
survey would be taken of a site which would record power output
from a small solar array and a few small wind turbines. This data
would then be used directly in the feasibility analysis of the site’s
power production capabilities. Since this information is not avail-
able in most cases, readings of solar intensity and wind speed can
be used in conjunction with solar cell efficiency and wind speed-to-
power generation curve to determine the power availability of both
sources [9]. Solar intensity and wind speed can both be acquired
easily from any number of sources (US NOAA NCDC records [10],
WeatherUnderground, individual instrument owners). Likewise,
solar efficiency and wind speed curves are easily acquired from any

manufacturer, typically posted online as part of the spec [11, 12].
Solar Model: The solar power generation is a function of the weather
patterns. Given a solar activity with an hourly granularity, the sim-
ulator estimates available power using the efficiency of the cell
found in the data sheet. This is interpolated during simulation to
a minute-by-minute granularity, and scaled to match the size of the
solar array being simulated.

A major source of cost of solar energy is the initial or upfront
cost for the solar modules. The solar model cost includes amorti-
zation over the lifetime of the product. By default, the simulator
assumes a 20 year lifespan for solar cells and a 3.5% discount rate
(use whatever rate is appropriate).
Wind Model: Wind power model is similar to the solar model. The
amortization is the same, but the wind power generation is depen-
dent on wind instead of sunlight. Data about the cost of wind tur-
bines for a large scale deployment comes from [13]. The available
wind energy is pre-calculated from hourly wind speed and the tur-
bine’s speed-to-power curve, taking into account a minimum cut-in
speed as well as a maximum cut-off speed. The a year’s worth
of hourly data points are, like solar data, interpolated to a minute
granularity during simulation.

Randomized cloud and wind gust models were incorporated into
early versions of ReRack, but removed because no data could be
found to verify their accuracy. With more focused data from site
scouting these models could be re-introduced for increased accu-
racy.
Battery Model: Batteries or energy storage can be added to a data
center to reduce the energy consumption peaks, but they have a
cost and maximum power draw constraints. Battery backup should
lower the cost of operation by storing renewable energy generated
in excess of demand for later use, but should not offset the cost
beyond the benefit. This is one of the more difficult things to deter-
mine since mathematically a battery is a non-linear element. Once
the battery backup is fully charged it stops accepting power. Rather
than modeling the aggregate behavior of batteries charging across
the entire data center, the model uses a simpler view of charge rate
as a straight line which truncates at maximum capacity. Maximum
charge and discharge rates then become constants, which speeds
simulation. The quantity of renewables and batteries to purchase is
determined later by the optimizer, as is the outcome of which site
will be the most cost effective choice. For the simulation in this pa-
per, data sheets were gathered for characterization of batteries [14],
solar panels [12, 15], and wind turbines [11]. ReRack extensibility
allows to evaluate future or alternative storage sources.
Grid Energy Cost: The grid energy cost is particular to the local
site. Typically, there is a rate schedule of the power company that
services the area [16–18], as well as any applicable local regula-
tions or rebates [19]. A power company has as many as thirty or
more different schedules. Having estimated the power needs of the
data center from the service demand, the peak possible power draw
can be determined and a schedule chosen from there. In Califor-
nia, utility companies have adopted what is called "time-of-day"
rates which provide financial incentives for customers to conserve
energy during the peak draw hours of noon to 6pm, and use more
power during the hours of 10pm to 8am (9,14). While currently
the standard in California, many states are considering adoption by
2013. Also, if there is uncertainty as to which schedule should be
targeted, the simulation of the data center system can be repeated
with alternative schedules to see which would be the best fit for the
customer.
Grid Buy Back Cost: Grid buy-back is when the customer, in this
case the data center facility, generates more power than it can use
and the power provider is legally required to buy that power from



the customer. Buy-back not available in all states, and the quantity
of power which the utility company is required to buy varies wildly
between the states for which it is available. Texas utility companies
are not required to participate in any buy-back programs. Michigan
utility companies are required to buy up to 20kW of supply from
an individual customer. California companies must be prepared to
buy up to 1MW of excess generation from a customer, placing a
credit toward their utility bill equal to the value of the power at the
time of day at which it was sold. This can mean a net draw off the
power grid at no cost for the facility if power is sold during peak
hours and drawn in the night hours as is common place for solar
and to some degree, wind.

4. RESULTS
Figure 2 is a two day window of a particular simulation. In Cali-

fornia solar power is more heavily subsidized than any other power
source [19], even requiring public utility companies to buy excess
generation back from the customer. As Figure 2 shows, credits that
can be used against the utility company’s bill build up through the
middle of the day. When the solar generation drops in the evening,
the grid credits are cashed back in as the system draws power from
the grid.

Another feature of note is that at hours 14 and 17 the service
level agreement is broken for a small amount of the work. April
31st is the last day of the month and as the billing period resets on
May 1st, the system determines that the penalties paid for break-
ing the service agreement are less than the cost of increasing the
peak kW demand for this month, which would be required to com-
plete all of the work on time. At the start of the new month the
peak is readily increased because there are many days remaining
in the month which could, at that time of day, benefit from hav-
ing the peak raised. The higher peak means the freedom to power
on more of the system to satisfy sudden spikes in demand. (The
"peak" line shown is the record of peak demand for the month of
May, not April, hence it is 0 in April). Table 2 contains the best

California Texas Michigan

Solar (kW) 1216 0 0
Wind (kW) 0 545 97
Battery (kWh) 0 0 0
Relative Cost 1.823 1.714 1

Costs After 1 Year

Renewable Generation ($) 128,799 48,105 8,562
Energy Cost ($) 275,991 393,378 212,917
Service Agr. Penalties ($) 0 0 0
Peak kW Demand Fee ($) 113,545 46,167 62,926
Total Estimate ($) 518,335 487,650 284,405

Table 2: Costs found by optimizer

configurations found by the optimizer and their associated costs
and breakdowns. The total workload satisfied over the course of
the year was the same for all three configurations as were all ele-
ments of the data center itself. What changed was the location and
all of the variables that change when location does; power billing
schedules, weather, price subsidies on renewable energy sources.
These all created different influences on cost in ways that are not
necessarily intuitive. ReRack is designed to make exploration of
power costs across any factor of the data center simple. As a case
study we implemented an additional feature; Table 3 is the same
setup implementing near-instantaneous, perfect node-level power
gating in the data center.

5. RELATED WORKS

California Texas Michigan

Solar (kW) 1207 0 0
Wind (kW) 0 322 24
Battery (kWh) 0 0 71
Relative Cost 1.154 1.057 0.231

Costs After 1 Year

Renewable Generation ($) 127,846 28,422 12,379
Energy Cost ($) 107,172 231,619 0
Service Agr. Penalties ($) 5,691 2,365 2,344
Peak kW Demand Fee ($) 87,619 38,147 51,116
Total Estimate ($) 328,328 300,553 65,839

Table 3: Costs found by optimizer, after implementing node level
power gating in the data center

[20] did a survey of recent research on power efficient data
centers. [21–25] studied power allocation within data centers and
[26–30] created simulation, sensor and management tools to enable
powering down servers under various conditions. [31–33] looked at
how to take advantage of geographic and temporal changes in the
cost of energy. [34] looked at quality-of-service aware scheduling
policies using time, energy, and a system of task rewards or val-
ues. [35] optimized data center resources for performance per watt
while we have optimized for performance per cost. [3, 4] created
models to characterize renewable supply and workload demands
but did not include a mechanism to search for an optimal config-
uration. [36] created a comprehensive cost model for computation
in data center which, like ReRack, optimized for performance per
cost, but focused on the choice of server size, utilization, and ma-
chine density. This differs from ReRack which focuses on taking
advantage of the temporal changes in power availability for a data
center largely powered with renewable sources. Also, [9, 37] have
made detailed models for predicting renewable source output from
weather data.

6. CONCLUSIONS
ReRack was designed to simplify exploration of costs associated

with power in data center using renewable generation sources. It
uses a simulator to predict the cost of any given configuration by
following the data center for a full year and amortizing investment
capitol over the lifetime of the resources purchased. Then ReRack
uses an optimizer to search the design space for the most cost ef-
ficient solution. Several additional case studies were done but ex-
cluded for brevity. Likewise, this paper has been an overview of
ReRack and the full code will be made available upon publication.
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