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ABSTRACT occurs in general-purpose environments like web servers or

While technology is delivering increasingly sophistichéad g?gﬁrgo\m'émgé%gaegg tﬁ?ﬁgfﬁg:ﬁ_\’vhere the performance is

powerful chip designs, itis also imposing alarmingly high e o : ) , o
ergy requirements on the chips. One way to address this prob- Likewise, curbing high power consumption to limit high
lem is to manage the energy dynamically. Unfortunately, curtemperatures is useful in all systems. It enables lowet-cos
rent dynamic schemes for energy management are relativeRackaging and cooling systems for the chips. It also makes
limited. In addition, they manage energy either for energythe chip more reliable. Finally, it may enable a more aggres-
efficiency or for temperature control, but not for both simulsive design or a higher clock speed.

taneously. To address these two issues, namely energy efficiency

In this paper, we design and evaluate for the first time arfnd temperature control, many low-power architecturaitec
energy-management framework that tackles both energy efffiques have been proposed and implemented. For example,
ciency and temperature control in a unified manner. We callhey include putting the system in sleep mode [28]; scaling
this general approach Dynamic Energy Efficiency and Temthe voltage and/or frequency [11, 13, 25]; switching con-
perature Management (DEETM). Our framework combineg€Xts to a job that consumes less power [27]; reconfiguring
many energy-management techniques and can activate thdirdware structures [1]; gating pipeline signals, for exam
individually or in groups in a fine-grained manner accordingPle to control speculation [5, 23]; throttling the instrioct
to a given policy. The goal of the framework is two-fold: cache [28]; clock optimizations, including multiple clack
maximize energy savings without extending application ex-2nd clock gating [10]; better signal encoding [10]; low powe
ecution time beyond a given tolerable limit, and guaranteénemory design techniques [15] like bank partitioning or di-
that the temperature remains below a given limit while mini-vided word line; low power cache design techniques like
mizing any resulting slowdown. The framework successfullycache block buffering [33], sub-banking [9, 30], or filter
meets these goals. For example, it delivers a 40% energy réaches [20]; and TLB optimizations [17].

duction with only a 10% application slowdown. While most of these techniques are likely to be useful for
the upcoming, energy-consuming chips, we feel that their ef
fectiveness can be enhanced. To start with, while some of

1 INTRODUCTION these techniques have been used adaptively [1, 8, 5, 23, 25,

Continuous technical advances are fueling the trend toward’]; many others have been designed to be always active. In
more sophisticated and powerful chip designs. Such design%ea“ty’ for many of the latter, it would be advantageous to
including high-end microprocessors, chip multiprocessor UM them on and off dynamically, based on the requirements
systems on a chip, and other advanced embedded systems 8f¢he application and the environmental conditions. They
quickly increasing their functionality and clock rates.form  could enable useful energy-performance tradeoffs.
tunately, they are also increasing their energy consumptio In addition, most of these techniques were proposed to
requirements alarmingly. work independently of each other. If we combined many of
One way to address this problem is to manage the ener hem in a single framework that can activate and deactivate

consumed in the chips. There are two main aims of energf}€M individually or in groups according to a given policy,
management: to ensure that the energy is used efficiently a E%e resulting system could be both more powerful and more
to guarantee that power consumption is never so high that tHéexible.

chip reaches dangerous temperature levels. Finally, proposed dynamic approaches have targeted either

Efficient energy use is desirable in all systems. HoweverSneray efficiency [1, 8, 23, 25] or temperature control [§, 27
it is critical in portable devices, where battery energyinis-|  0ut not both simultaneously. If a multi-technique framekvor
ited. It is also an important way to reduce cost in system&an combine support for both aspects, it can become a fairly
that have periods of idle time, also called slack [25].” SlackcOmPplete approach to energy management.
appears not only in interactive and real-time systemssital  The general approach of dynamically managing energy
- " i by the National Sci Fatiad for both energy efﬁf(_:fiency and ctjemperature control we call
*This work was supported in part by the National Science Fatial Dynamic Energy Efficiency and Temperature Management
under grans NSF Yourg Ivestitor Avard VP 9457456, ME19%51. (SEETM) The contribution of this paper is the design and
IBM and Intel. evaluation for the first time of one such DEETM frame-
work. Our framework supports a combination of energy-
management techniques. It is implemented with a combina-
tion of software and hardware for fine-grained energy man-
agement. The framework has two goals: (i) maximize the




savings of energy in the chip without extending the executio until the new IPC shows that the tolerable slack is used up.
time of the application beyond a given tolerable limit, aimd ( 14 544t to changing conditions, these algorithms run peri-

guarantee that the temperature of the chip remains below @dically. The period between runs we dsacrocycle Since

given limit while minimizing any resulting slowdown. In our : ;
evaluation, we show that the framework satisfies these goal heeﬁrt:/éloaalt%grrﬂlgsm%%%%tyg%egrtlg ga\éfatcrf(emsgcmrg C@%ﬁg?ﬁg’?
For example, it delivers a 40% energy reduction with only & o 1-(a)).

10% application slowdown.

This paper is organized as follows: Section 2 presents thtLad
design and implementation of our framework for DEETM,;
Section 3 discusses how we evaluate it; Section 4 evaluat
the framework; and Section 5 presents related work.

The thermal macrocycle should be set roughly to the time
ken by the thermal sensor to detect a change in temperature
ter a technique is activated. Since heat transfer ocdurs a
e ms level [31], the thermal macrocycle has to be of the or-
der of a few ms, possibly 1-15 ms. If the macrocycle is too
short, '[hhe Therm}gl alllgr(])rith? will ]E)verreact,lsince_ thergds H

enough time to feel the effect of any newly activated tech-
2 A FRAMEWORK FOR DEETM nique. However, if it is too long, we risk damaging the chip
In this section, we describe our framework for DEETM: its With a temperature that is over the limit for too long. The ap-
main ideas (Section 2.1), the algorithm used (Section 2.2)propriate length of the macrocycle is different in eachesyst
the software interface (Section 2.3), some related issSers (It depends on the heat dissipation characteristics of tig ch
tion 2.4), and the techniques included in the framework {Secand the sophistication of the distributed thermal sensor.

tion 2.5). Selecting the slack macrocycle is not as delicate. However,
since the Slack algorithm decides what fraction of the time
. to activate each technique for, based solely on the IPC at the
2.1 Main Ideas 9 ' y

beginning of the macrocycle, we need to pay attention to two

Advanced chips can benefit from a dynamic framework thatSSues. First, the macrocycle should be short enough not to
manages energy in a fine-grained manner to accomplish t\/\kﬂ'ss significant changes in application behavior. Othezwis
goals. The first one iemperature controlguaranteeing that e resulting slowdown may be very different than initially
the temperature of the chip remains below a given limit while€xPected. In practice, a macrocycle of the order of a few ms,
minimizing any slowdown. The second goaleiergy effi-_ possibly 1-15 ms, is appropriate.
ciency contral maximizing the savings of energy in the chip  The second issue is that slack macrocycles should all have
without extending the execution of the application beyond ahe same duration and not be cut off short. The reason is
tolerable limit. that, when the Slack algorithm runs, its calculations uge th
For the framework to be versatile, it should include multi- €XPected duration of the macrocycle to decide the length of
ple techniques for energy management. Different techsiquelime to activate each technique for. Cutting the macrocycle
may target the energy consumption in different component hort makes such calculations inaccurate. We will see later
of the chip, for example processor cores, I-caches, D-gacheOW We address this issue.
or DRAM arrays. They may, instead, target the same compo- n the following, we describe the two algorithms in detail.
nent but do so with a different energy-performance tradeoffNote that both algorithms want to deliver large energy reduc
In such an environment, the framework can dynamically actitions without excessive slowdowns. Consequently, they pre
vate the techniques individually, concurrently, gradgalith  fer techniques that minimize the product of the energy con-
a priority order, or even in a mutually exclusive manner. sumed by the application times the execution tirarefgy-

As initial support for the framework, we assume that thedelay product{10]). As a result, both algorithms pick the
chip contains a distributed thermal sensor along the line§echniques to activate in the same order. Such order follows
of the PowerPC [28] and a counter with the number of in-fanking set up by the OS or application based on the expected
structions executed. In addition, it contains two register €nergy-delay productimpact of each technique.
MaxTempandMaxSlowdnwhich are set in software with the
maximum temperature allowed and the maximum job slow-Thermal Algorithm

down that can be tolerated, respectively. The Thermal algorithm is typically implemented as an in-
terruptdhanﬁle:jin the OrS]. A:ternar;cively, i';] could be imple-
; St mented in hardware. The algorithm is shown in Figure 1-
2.2 Algorithm Description (b). If the thermal sensor indicates a temperature higleer th
Our framework includes two algorithms: a temperature-MaxTemp the next highest-priority technique not yet in the
limiting one calledThermaland an energy-saving one called Thermal Set is added to it. Otherwise, if it indicates a tempe
Slack They try to satisfy the first and second goals discusse@ture lower than a low-threshold valtéinTemp the lowest-
above, respectively. These algorithms control the actimat Ppriority technique in the Thermal Set is removed.
of a set of energy-management techniques. If we have added a new technique to the Thermal Set, be-
At any given time, the set of techniques that are active idore leaving the algorithm, we set the Current Set to the max-
called theCurrent Set These techniques may have been seimum of Current and Thermal Sets. This is done to ensure
lected by the Thermal or by the Slack algorithm. The sethat the new technique is immediately active. If a technique

of techniques that are selected by the Thermal algorithm i&as removed from the Thermal Set, however, it cannot be
called theThermal Set removed from the Current Set until the Slack algorithm runs.

The two algorithms work as follows. When the Thermal = MinTempis set to minimize instability. A sophisticated de-
algorithm runs, it compares the current temperature to th&ign can keep a differedMinTempfor each of the technigues.
temperature limit. Depending on the result, it may add orTo choose the appropriatdinTempfor a given technique,
subtract one technique to or from the Thermal Set. When th#e can use past profiles to estimate the temperature reductio
Slack algorithm runs, it first deactivates the Current Set tghat the technique delivers under usual conditions. Then, w
measure the baseline IPC value of the application. Then, getMinTempto slightly less thatMaxTempminus the average
activates the Thermal Set and possibly additional teclesiqu value of such a temperature reduction. With this approach,

2



Slack Macrocycle O(ms) L | Thermal Macrocycle O(ms) | Microcycles Of1 s)
- 4 ey
Ly Ju [y ! Ly T L o time
LU Il LUl Il LU 11l Ll
'y ¥ 2% ¥ Y ¥ 2%
I
Thermal Algorithm | | | o | D | o
R dosre e B R doss P A |
Slack Algorithm I I I | | | |
e | e e e - - I e e o L e - e |
(a) Timing Diagram
Temp > MaxTemp? |—Yes—)| ThermalSet += Technique | | MaxSlowdn= 0 ? |7Yes
T
| ¢ No
v
'\f | CurrentSet = Max(CurrentSet, ThermalSet) | | CurrentSet= 0 I(\
Temp < MinTemp ? IiNo—P ¢
| Sl Im i Measure Stable
Yes Baseline IPC
v ]
| ThermalSet-= Technique | > | CurrentSet = ThermalSet |Yes
\4
(b) Thermal Algorithm | Measure Stable |</

| Temp > CrisisTemp ? |—No
I

Yes

Effective IPC
| Effective IPC is Higher? |-/
[
No
A4

|(YSS% Slowdown> MaxSlowdn ? |—N0>| CurrentSet+= Technique

CurrentSet == %LastTechnique
if not in ThermalSet

| Sleep while Temp > EndCrisisTemp |

(c) Thermal Crisis Support (d) Slack Algorithm

Figure 1:Algorithms used in our framework.

we minimize the chances that the deactivation of a technique With this new effective IPC, we can compare the slowdown
brings us back to ovdviaxTemp caused by setting the Current Set to the Thermal one, to the

Note that, in some cases, we may not be able to prevent t ar1]>_<|rﬂum tolerable slf)\t/\r/]dog:v rI\/(axtSISov¥dD1_.thIftrI]\/laxSI?¥]v_drr1] )
temperature from rising over the limit. For example, such a> 11915 %0 BUIMEN TE Ll 5 i e A e -
situation may be caused by a virus. For this reason, the chi rlorlllgycte_lqhnlque not yetin it a”d aga_lllnhmeaSLf.re the elec-
must include support for a thermal crisis. One possible such'& " ISI ?rocer;s_s r'f r?ﬁggtesrntht I?tﬁpp ;cat:jows 0
support is shown in Figure 1-(c): if the temperature reache O‘r’]".nr'f e?#a”wo OrSI 9 derth Iaxt tOV\r/1 n Gt)hs ?"r‘]’ 0"[‘;”

a CrisisTemptemperature, the hardware unconditionally sets> Ngher thamvlaxsiowdn the fast technique that has been

; : added to the Current Set is marked as active for only a frac-
g‘ﬁ;g%%gto sleep until the temperature is safely lower thation of the Slack macrocycle, such that the final slowdown

ends up being no higher thaiaxSlowdn The only excep-
i tion is when this last technique added belongs to the Thermal
Slack Algorithm Set, in which case, it cannot be deactivated. Finally, when w

The Slack algorithm is implemented in hardware instead oféach this point, the algorithm exits.

as an OS routine. The reason is that, every time that it runs, Every time that we go through the loop of adding a new
it needs to repeatedly measure the number of instructions eXechnique to the Current Set, the hardware may need to take
ecuted by the application ats-level intervals. After several several measurements spaced one microcycle apart, until a
such measurements in the background, the algorithm makegaple IPC is obtained. Unfortunately, it is possible tit,
the decision. These intervals we chlicrocycles(Figure 1-  the same time, the application also goes through a change in
(a)). We will see that, for higher accuracy, a microcyclefis o jts regime that induces a change in IPC. In this case, to avoid
the order of a fewus. confusing our algorithm, we proceed as follows. If the ef-
The Slack algorithm is shown in Figure 1-(d). If no slow- fective IPC suddenly becomes higher after activating a-tech
down can be tolerated, the Current Set is simply set to th&ique, it is clear that the regime changed. If we pressed on
Thermal Set. Otherwise, the Current Set is deactivatedato thwith more techniques until we reached the original targ€, IP
the hardware can measure the stable baseline IPC of the appif€ would be slowing down the application beyond the toler-
cation. To compute the IPC, the hardware reads at microcyclable limit. Consequently, as shown in Figure 1-(d), we stop
intervals the counter of instructions executed. It may take ~  the algorithm and restart it from the beginning.
eral readlngs_unt_ll a reasonably stable IPC is obtainede Not |f' instead, the regime Change is in the Opposite direction,
that by deactivating all techniques for sevemalwe do not  oyr algorithm will not notice it: we will assume that the tech
risk a dangerous temperature surge because the time is te@yue just activated is solely responsible for the large 1eC
short. duction. However, this is fine. Our algorithm will end up
We then set the Current Set to the Thermal Set and, to fingroducing a conservative solution: in the final system, the
out the re5u|ting slowdown, calculate the neffectivelPC. true S_|OWdOWﬂ relative to the baseline execution will bes_les
The new effective IPC is the new measured IPC plus a corthan it could be tolerated. Consequently, the end user is not
rection if the Thermal Set includes techniques that changgegatively affected.
the clock frequency.



Note that some of the techniques used may have non-trivia2.4 Related Issues
activation delays. Such is the case, for example, for vekag . . .
frequency scaling, which takes 10-28 to activate or deac- WO important related issues are whether to implement the al

tivate [11]. Such delays, however, are negligible compare@rithms in hardware or in software, and whether to make the
to the duration of a macrocycle. For example, if a slackdecisions in a centralized or distributed manner in the .chip
macrocycle takes 2 ms, activating and deactivating voitage'Ve consider these issues next.

frequency scaling takes only about 2% of the macrocycle :

Furthermore, because the impact of voltage-frequency scaf-4-1 Hardware vs Software Implementation

ing on the IPC is fairly predictable, we do not need to deac-The Thermal algorithm is implemented as an OS interrupt
tivate it at every beginning of a macrocycle to estimate thenandler. While the Slack algorithm could also be imple-
baseline IPC. This fact further reduces overhead. mented in software, we choose to implement it in hardware.

Finally, since both the Thermal and the Slack algorithmsThis is in contrast to related algorithms proposed in thee-lit
may update the Current Set, we need to prevent inconsistefture that exploit system idleness in software [4, 25].

cies. To this end, and also to ensure that slack macrocycles A software implementation of the Slack algorithm would
are not cut off short, we propose the following timing (Fig- certainly be sufficient if we restricted our work to a certain
ure 1-(a)). We choose the slack macrocycle so that a therma|ass of energy-management techniques or to a certain class
one contains several slack macrocycles plus agewAfter  of applications. Specifically, suppose that we restricted o
the OS has executed the Thermal algorithm and is about to reechniques to those that induce predictable slowdowns like
turn execution to user mode, it sets the hardware to trigger t V0|tage_frequency Sca”ng_ In this case, the OS can S|mp|y

next run of the Slack algorithm in a fems. We set this delay  activate the technique for the time duration that will induc
so that, when the Slack algorithm finally runs, it finds theruse the desired slowdown.

application in a warmed-up state. From then on, the Slack al- | . . . . .
gorithm runs periodically, always in the background. Fipal __Likewise, software might be enough if we restricted the
when an interrupt triggers the Thermal algorithm again, the2Pplications to those that, by repeating certain hightlepe

first action of the OS is to temporarily disable the hardwareerations, easily tell how fast they are executing. For exam-
that triggers the Slack algorithm. If it so happens that thePl€: consider video streaming applications. Their speed ca
Slack algorithm was running at the time, this action stops it°€ €asily monitored by recording the number of frames per

and automatically sets the Current Set to the Thermal Set. Unit of time that are being processed. It is easy for the OS
to know what is the slowdown caused by a certain energy-

management technique by simply checking the new frame
2.3 Software Interface rate. There is no need to measure the IPC.

However, we want our Slack algorithm to deliver accurate
solutions for all classes of techniques and applications. T
ee why it requires a hardware implementation, recall tieat t

The MaxTempandMaxSlowdrregisters presented above are
part of our framework’s software interface. In additiont fo

each energy-management technique, the interface cortain ; o
register with the relative priority of activation of the tec lack algorithm repeatedly measures the IPC of the applica

nique (Figure 2). All registers are set by the OS, aIthougi‘Fon' While software can support measurements at ms-level

A ; ; ntervals, only a hardware solution can support measuresmen
MaxSlowdrcan also be set by the application. With this Sljp'atps—level intervals. In practice, we need a hardware solution

ggrt,ﬂcr)#er ﬂ%ﬁgtgﬁﬁgﬁnsﬁc'de what techniques to include aonIy if the behavior of the application changes significaatl
y ' ms-level intervals while staying relatively uniformad-level

intervals.
MaxTemp . .
Maxsiowdn [ ] ~We have evidence thais-level measurements are benefi-
cial in our applications. To understand why, consider a loop
%o 0 Stack In general, IPC measurementg@tlevel intervals will yield

Macrocycle Time Priority

fairly uniform values, irrespective of the duration of tio®p,

Technique 1 | | as long as s includes a few iterations. However, IPC mea-
Technique 2 | | | O surements at ms-level intervals will yield uniform valuedyo
Technique 3 | [ | if the loop lasts for many ms. In our applications, much of the
: : : [ wrour code appears to exhibit more uniformity,at-level intervals
Technique rf | [ | than at ms-level intervals. Consequently, we set the iaterv
between measurements (microcycle) to a fewand, there-
Figure 2:Software interface of our framework. fore, implement the Slack algorithm in hardware.

2.4.2 Distribution vs Centralization

However, the OS should also have a means to directly ovefye now consider how to apply our framework to chips with
write the decisions taken by our default algorithms. This camyltiple processor cores. Ideally, we would like to run the
pability can be useful when the OS has specific informatiorframework in a distributed manner. Each processor would
on the performance or energy characteristics of the applicahaye its own framework, running algorithms that read local
tion that is running. Such information may be available fromsensors and make decisions on what techniques to activate
a profile of the application. locally. This approach is appealing because, potentiedigh

One way to extend the interface is to allow the OS to over{rocessor may be running a very different application.

write the decisions of the algorithms as shown in Figure 2. |5 practice, while some energy-management techniques
We add one input/output register for each technique in theie those that modify the cache hierarchy can be easily con-
framework. For a given technique, the register indicates th{ro|led on a per-processor basis, other techniques ared@st
fraction of the slack macrocycle for which the technique istro|ied for the whole chip. Consider, for example, voltage-
activated. While these registers are automatically sehby t frequency scaling. Using a different voltage and frequency
Slack algorithm as it adds techniques to the Current Set, thein each processor neighborhood introduces complexity and
can also be overwritten by the OS. makes communication between the processors trickier.



One possible alternative is to use per-processor frameeach access to them, while fast, consumes significant energy
works to run the algorithms and then, after a global synchro- 1 544ress this problem, a small I-cache can be placed be-
n'rf)‘;t'c%n. szi%’l rrlgkse fafle?flgrgﬁlw geg'cs’r']?g h-H;ﬁVéﬁvgr’efﬁgg dan afween the I-memory and the processor. Accesses to this cache
P IS likely to su y Ization ov * are not faster in number of cycles than accesses to the glread

The approach that we take is to run the algorithm in a cenfast I-memory. However, they consume much less energy. As
tralized manner. Signals from the different processormeig a result, this cache works somewhat like a filter cache [20].
borhoods bring information from the distributed sensors to P ; ; ;

. If this filter cache is deactivated, all fetches go directly t
a central framework module. The module feeds the highe emory, enabling a fast yet energy—consumingg systemy. If
temperature and the sum of all the instructions executed to stead, the cache is activated, hits in the cache take the sa
centralized algorithm. While this approach requires a morgje "yt consume much less energy. Misses, however, force
careful timing design, it simplifies the decision-makingpr the fetch to go to memory, adding up additional latency and
Cess. energy consumption. Overall, with the cache activated, the
system is likely to be slower but consume less energy.

2.5 Energy Management Techniques An alternative design could be to eliminate the filter cache

. _ _ and add sub-banking to the I-memory. In such a design, how-
The different energy-management techniques in the framesyer, accesses to an I-memory sub-bank could suffer one ex-
work will target different components of the chip and impactira cycle of latency. The result'is likely to be a slower syste
the energy, execution time (delay), and energy-delay @du than'the one with the filter cache.
of applications differently. In this section, we select a,fe

representative techniques to include in the prototype éram Voltage-Frequency Scaling
work that will be evaluated in Section 4. Reducing both the voltage and the frequency of the chip

All the techniques that we select reduce the average powd$ & well-known technique [11, 13]. Dynamic energy is pro-
consumption at the expense of slowing down the application@ortional to the square of the supply voltage, while dynamic
However, while some techniques reduce the total energy corROWer is proportional to the frequency and to the squareef th
sumed in the application run, others do not. Consequentlyoltage. To apply this technique, we simply reduce linearly
the techniques in the first group may or may not decrease th@€ voltage and frequency of the whole chip¥g; ;,., and
energy-delay product, while those in the second group agwaycﬁ,;,\)/éThls change works for the linear section of the scaling
increase it. :

Among the techniques in the first group, we include: sub-Reduced Memory Voltage
banked data caches [9, 30], filter instruction caches [20], We lower the voltage of only the DRAM array to
voltage-frequency scaling [11, 13], and reduced memoryy, ..., ... This can be done by changing the reference volt-
voltage [16]. In each of these cases, when the technique isge used in an on-chip voltage converter according to the out
activated, the system goes from a default configuration to @uts of a detector [16]. Voltage changes have to be managed
lower-energy, lower-performance one. These techniques cearefully because they induce non-linear changes to stmsi
be used for both the Thermal and Slack algorithms. characteristics. In this technique, to scale down othearpar

Among the techniques in the second group, we includders as we scale down the voltage, we use circuit simulations
slowing down data cache hits and putting the processor t4§) addition, during the low-power mode, we also change the
light sleep. These techniques simply introduce extra delay DRAM refresh intervals. The procedure that we use is out-
reduce the average power. Due to their energy inefficiencyined in [36].

we will try to keep them out of our Thermal and Slack algo- Sjowing Down Data Cache Hits

rithms. However, they may contribute to the thermal crisis This technique progressively reduces the number of out-

support. >
) . _ . standing data loads and stores that a processor can have and,
We now briefly describe these techniques, while a moreater, increases the latency of cache hits. More specificall
detailed description can be found in [36]. The values used fothe number of allowed outstanding accesses is progregsivel
their parameters are listed in Section 3.1. Our framework cahalved. Once we reach 1 load and 1 store, we progressively
be easily extended to include other techniques. increase the cache hit latency one cycle at a time. When this
Sub-Banked Data Cache technique is to be deactivated, we undo these changes in re-

, . . verse order.
With cache sub-banking, a cache access activates only part

of the cache line selected instead of the whole line [9, 36]. T Light Sleep Mode

support sub-banking, the cache is augmented with additiona |n this technique, we put the processor in a light sleep mode
decoding logic and transmission gates. When sub-bankingpr a period of time. We do not turn off the PLL, clock distri-

is not activated, this logic adds negligible delay to theheac pution, or DLLs to minimize any wake-up penalty. We sim-
access time. ply gate the clock at the output of the DLLs. Since, by de-

When sub-banking is activated, a cache access consum@llt, we were already clock-gating all the units not ushi t
less energy. This is because the number of activated bit lind€Chnique cannot save much energy. In fact, because we are
and sense amplifiers is reduced. However, the presence of t§geping the PLL, DLLs, and clock distribution lines on while
extra decoding logic and transmission gates tends to iserea SIowing down the application, this technique ends up irerea
the cache access time. Consequently, cache hits constsne |69 the energy consumed. However, it reduces the average
energy but are slower. The energy consumption and speed 8PWer consumed in the system.
cache misses are unaffected.

Filter Instruction Cache 3 EVALUATION ENVIRONMENT

The on-chip I-memories that supply instructions to the proyye eyajyate an implementation of our adaptive framework

cessors in an embedded chip are often designed with highs, top of an advanced chip with multiple superscalar cores

performance SRAM to ensure that their latency is minimal.and DRAM banks. We use detailed software simulations at
They are also large, to hold the whole program. As a resulty,g "4 chitectural level. The simulations are performedgsi
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Figure 3:Chip architecture modeled: overview of the chip (a), paepssor memory hierarchy (b), and per-processor
DRAM bank organization (c). In the char®B, DB, andRow Decstand for row buffer, data buffer, and row decoder,
respectively.

[[ Processor [ D-Cache [ I-Cache [ -Memory | Data Buffer | Row Buffer [ DRAM Sub-Bank ]|
2-issue in-order at 800 MHZ Size: 8 KB Size: 128 inst.| Size: 8 KB Number: 1 Number: 5 Number: 4
BR Penalty: 2 cycles Assoc: 2 Assoc: 1 Line: 4 inst. Size: 256 b Size: 1 KB Num Cols: 4096
Int,Ld/St,FP Units: 2,1,0 Line: 32 B Line: 4 inst. RTrip: 1.25ns | Bus: 256 b Bus: 256 b Num Rows: 512
Pending Ld,St: 2,2 RTrip: 1.25ns | RTrip: 1.25 ns RTrip: 3.75 ns| RTrip: 7.5 ns | RTrip: 15 ns

Table 1: Parameters for a single memory bank and processor pair.eltatiie,BR and RTrip stand for branch and
contention-free round-trip latency from the processmpeetively.

[[ Technique [ Label [ Parameter Value [l
Sub-banked SubBank| Cache hit if no sub-banking: RTrip = 1.25 ns, E =222.8 pJ
data cache Cache hit if sub-banking: RTrip = 2.50 ns, E = 69.1 pJ
Filter IFilter I-mem access: RTrip = 1.25 ns, E/inst = 51.6 pJ
instruction I-cache hit: RTrip = 1.25 ns, E/inst = 15.4 pJ
cache I-cache miss + I-mem access: RTrip = 2.5 ns, E/inst = 67.0 pJ
\oltage-freq. scaling || VoltFreq | Vyg.iow = 1.44V, f1o,, = 640 MHz, overhead of any scaling = 18
Reduced memory Mem\Volt | V44 =1.8V: RB access (RTrip = 7.5 ns, E =500.1 pJ), DRAM accessifRI15 ns, E = 3702.2 pJ)
voltage Vaqa = 1.2 V: RB access (RTrip = 7.5 ns, E = 500.1 pJ), DRAM accessifRT21.25 ns, E = 2634.6 pJ
Slowing D-cache hits|| SloHit —
Light sleep mode Sleep —

Table 2:Values of the parameters used in our energy-managememiige€ls. In the tableE, RB, andRTrip stand for
energy, row buffer, and contention-free round-trip laiefiom the processor, respectively.

a MINT-based [32] execution-driven simulation system [21] Figure 3 shows the architecture of the chip. In the fig-
that models all the components of the chip, including theure, Chart (a) gives an overview of the chip, while Chart (b)
superscalar processors. The simulator includes energy coshows the memory hierarchy of each processor in the chip
sumption models. In the following, we describe the archi-and Chart (c) shows the organization of each DRAM bank
tecture modeled, how we estimate the energy consumed, thieto sub-banks. Table 1 shows the most important architec-
applications executed, and the metrics used. tural parameters for a single memory bank and processor pair

Table 2 shows rt]he values flordthde paran}eters of tEe er?ergy-
: management techniques included in our framework. The en-
3.1 Architecture Modeled ergy values used will be justified in the next section. The
As an example of an advanced chip, we model a processor-iyalues of some other framework parameters are as follows.
memory chip with 64 simple processors cycling at 800 MHzChanging the memory voltage wittiem\Voltis assumed to
and 64 Mbytes of DRAM. The target technology is IBM’s have negligible overheard. Both the thermal and the slack
0.18um Blue Logic SA-27E ASIC [12] with some expected macrocycles are set to 1 ms, while the microcycle is set to 1
improvements in DRAM density [36]. The default voltage is ¢S. To avoid instability in the Thermal algorithm, we set a dif
1.8V. fererlwltMlnTempfor e?th technique, ashshovr\]/n in Slecltlon ﬁ.4.
o . Finally, every time that we execute the Thermal algorithm,
The chip is modeled afterflexRAMchip [19]. Processors e charge 200 cycles to account for the overhead of the exe-
are 2-issue wide and statically scheduled. Each processor i tion in the OS
associated with a 1-Mbyte DRAM bank. A processor can di- '
rectly access its own DRAM bank as well as the DRAM of
its left and right neighbors. Such support allows communi-3 2 Estimating the Energy Consumed
cation between the processors, effectively connecting ihe
a ring. In addition, as ifrFlexRAM the chip contains an on- To estimate the energy consumed in the chip, we have applied
chip controller that executes the serial sections of théiegp scaling-down theory to data on existing devices reported in
tion, including initialization, broadcast, and reductimpera-  the literature, as well as used several techniques and formu
tions [19]. The controller's contribution to the executioh  las reported in the literature [3, 30, 18, 24, 34, 35]. A dethi
our applications constitutes on average only 8% of the timedliscussion of the methods that we have followed can be found
and is mostly limited to the initialization and ending paosts in [36]. In this section, we give an overview of how we es-
the application. For these reasons and because most chip ténate the energy consumed in the processor cores, memory
sources are very underutilized when the controller runs, wéierarchies, and clocks. We also discuss how we validated th
do not include the controller’s contribution in our evaloat ~ models.



Processor Cores tween the two architectures, getting a similar breakdown is
Each core is a 32-bit 2-issue processor with a DLX_“kereassuring. The comparison shows that the contribution of

pipeline. It supports a simplified version of the MIPS ISA each of the components does not differ by more than an ab-

with only 28 16-bit instructions [19]. We take the data SOUte 6% between the two systems [36].

fr%m [35] anhd, tl)y applyir&g general scalinghtheory and con-

sidering technology trends, we estimate the average ener ; ;

consumed in the register file, branch unit, ALU, and the othe?:;/'3 Applications Executed

modules of the processor. Then, we can estimate the energior the experiments, we use 6 applications that are suitable
consumed by each type of instruction by adding up the energshe integer-based processor-in-memory chip considenes: t

of all the modules used by that particular instruction t\Me.  access a large memory size, are very parallel, and are mtege
assume perfect clock gating inside the processor code. Withased. They come from several industrial sources. We have
this approach, for example, we estimate that an add, a brancparallelized each application into 64 threads by hand.

and a multiply instruction consume an average of 56.1, 34.6, Table 4 lists the applications and their characteristiteyT
and 251.2 pJ, respectively. . . R :

! ! include the domains of data mining, neural networks, prnotei
Memory Hierarchies matching, multimedia, and image compression. Each appli-

To compute the energy consumed in the memory hierarchygation runs for several billions of instructions. Appendix
we use popular models [30, 18]. We classify memory hierardives more information on each application.
chy accesses based on what level of the hierarchy they reach,
and depending on whether they are reads, writes, or digy lin .
displacements. Then. we compute the average energy con-4 Metrics Used

sumed by one access of each class. This is done by dividingje characterize an application run with four metrics: perfo
the access into simple operations. For example, a read tha{ance (measured with total execution time, also cafled
hits in the row buffer is divided into a cache tag check, a readyy), average power consumption, total energy consumption,
hit in the row buffer, and a line fill into the cache. Finally, gnq product of energy times execution time (energy-delay
to compute the overall energy in the memory hierarchy, wa,;duct [10]). We will strive for a low energy-delay prod-

c

multiply the number of accesses of each class times the-corrg,ct since it implies a good balance between high speed and
sponding energy per access in the class, and then accumulatg,

J T energy consumption.
the contribution of all classes. As an example, Table 3 shows 9y P

the average energy consumed by a read and a write access tdn Some experiments, we need to estimate chip tempera-
different levels of the hierarchy. ture. However, our models only use energy and power met-

rics. We currently do not have a thermal model that, taking
into account the chip package and cooling support, tragslat
sustained power dissipation into chip temperature.

[[ Level of the Hierarchy[[ Rd Energy (pJ)[ Wr Energy (pJ) [|

D-cache 222.8 246.3
I-mem (per instr) 51.6 56.8 It is known, however, that heat transfers occur at the ms
Row buffer 500.1 2740.6 level [31]. As a result, it has been suggested to use the
DRAM bank 3702.2 3286.2 average power dissipated over many cycles as a proxy for
temperature [5]. We follow this approach and use a metric
Table 3:Average energy consumption per access. called Power® as a proxy for chip temperature. At a given

time, Power* is 0.75 times the average power consumed by
the chip in the last millisecond plus 0.25 times the value of
Clocks & Other Power* a millisecond ago. While clearly not perfect, this re-
. . . . cursive definition tries to approximate the behavior of temp
The clocking system includes 1 main PLL and 16 dis-atyre. Using this metric, the proxy ftinTempfor VoltFreg,

tributed local DLLs [29]. The clock network is laid out in the SybBankand|Filter is set to 45%, 75%, and 78%, respec-
chip using an H-tree structure to minimize skew. To estimat%ivew of the proxy forMaxTemp

the overall energy of the clocking system, we estimate an

add the contributions of several components, namely PLL,

DLLs, buffers, and distribution lines. Such contributicare 4 EVALUATING THE FRAMEWORK

estimated based on [3] and on capacitance models. Overall, ]

the estimated average energy per cycle is 957.5 pJ. Thigfigufo assess our DEETM framework, we evaluate three issues:
does not include the energy for the clock inside the processdhe management of multiple energy-management techniques
cores. The latter is included in the computation for the sore (Section 4.1), the Thermal algorithm (Section 4.2), and the
Further details can be found in [36]. Slack algorithm (Section 4.3).

Validation

We validate our energy estimates with several experiment#.1  Technique Analysis & Comparison
We report on two of them here. In the first validation, we ex- iven a DEETM framework with multiple techniques, the
%mtlﬁgsguéecﬁgrg?e?%ﬁ!' t%/(\elecci&)cr:n_ﬁa\g (r)nuord%ﬁlse r[%ﬁ]_eStS'ri?]ig_wst question to ask is what combination of techniques_éhoul
CACTI uses arelatively old sense amplifier model, we changd apfply and |nkwhat order. We now answer this question for
it to a more aggressive one. The comparison shows thdt!l ramework.
our estimates of energy consumption in the data cache ardomparing Individual Techniques

CACTI's are only 9% different [36]. We start by comparing the individual techniques with the

In a second validation, we focus on the relative energy confollowing experiment for each application. We execute the
sumption of the I-cache, D-cache, clock, and processor. corapplication without activating any technique and recom th
Such arelative breakdown of energy for the Strong ARM pro-average power dissipateR,,;, (last column of Table 4).
cessor is available from [24]. We compute the correspondindhen, for each technique, we perform four runs dynamically
estimates for one of our processors plus its associate@sachactivating the technique with different intensities. Theen-
and share of the clock. While there are some differences be-
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H Appl. H What It Does Problem Size E'fsg?;‘ PA(;\\/,S;?(‘C\],?,) H
GTree Data mining: tree generation| 5 MB database, 77.9 K records, 29 attributes/record 0.507 10.2
DTree Data mining: tree deployment 1.5 MB database, 17.4 K records, 29 attributes/record 0.986 10.8
BSOM BSOM neural network 2 K entries, 104 dimensions, 2 iterations, 16-node netw&8k, KB database] 0.947 15.5
BLAST || BLAST protein matching 12.3 K sequences, 4.1 MB total, 1 query of 317 bytes 0.969 8.7
Mpeg MPEG-2 motion estimation | 1 1024x256-pixel frame plus a reference frame. Total 512 KB 0.999 11.3
FIC Fractal image compressor 1 512x512-pixel image, 4 512x512-pixel internal data dtrree Total 2 MB 0.978 6.1
Table 4:Applications executed.
sity is regulated with a power threshold: if the power in the
11 T T T T last microcycle was over the threshold, the technique gets a
S ) tivated; the technique is deactivated when the power in the
- 10} - o last microcycle was such that the technique could be deac-
= tivated without going over the threshold again. We set the
2 3 thresholds tol.2 x P,.;4, 1.0 X P,4, 0.8 X P,.;4, and
w09 r e 0.6 X P,.;4. Finally, we perform an experiment activating
@ ,q;n;ﬁ" the technique for the whole run.
g 08r e IFilter 5 | Figure 4 shows the results. The results of each run have
5 VoltFreq --o - been normalized to the run with no active technique for the
Z 07F o SubBank -------- 4 same application, and then averaged out across all applica-
@ MemVolt ---x--- tions. The figure shows the resulting average power con-
0.6 , , Sleep - sumed in the run (X axes) against the total energy consumed
05 0.6 0.7 0.8 0.9 10 (Chart (a)), execution time (Chart (b), where executioretim
_ is labeledDelay), and energy-delay product (Chart (c)). Since
Normalized Average Power SloHit has a behavior very similar 8leep we do not show
@ SloHitto simplify the charts.
1.40 P ' ' The figure shows that the behavior 8feepis different
135 - VoltFreq - -o - - from the others as the average power decreaSkepdoes
SubBank ----o---- not reduce the energy (Chart (a)), substantially slows down
& 130 Memvolt —--x-- ] the applications (Chart (b)) and, as a result, increases the
8 125 L Sleep -2~ i energy-delay product significantly (Chart (c)). Consediyen
3 . due to its inefficiency, we only use it as the last resort in a
L 1.20 - - \ i thermal crisis.
g 115r - 7 The other four techniquesHiiter, SubBankVoltFreg, and
S 110l o i MemVol) decrease the energy consumed by the chip (Chart
@, T N (a)) and, while they still slow down the application (Chart
1.05 | Py y& 7 (b)), they manage to reduce the energy-delay product or keep
1.00 L L R e o | it roughly constant (Chart (c)). They differ significanthgw-
0.50 0.60 0.70 0.80 0.90 1.00 evgr, in thehslophe of their(‘jc?rves aﬂd in the maximgm power
- reduction that they can deliver. The maximum reduction is
Norma“ffd Average Power delivered when they are applied statically. This situation
responds to the leftmost point of each curve.
16 o " ' ' To compare these four techniques to each other, we exam-
z 15  IFilter @ Ty 7 ine Chart (c). Recall that we want to minimize the energy-
2 14 _S\/O“Freq s , delay products. Under this requirement, the chart tells us
ubBank ----¢ . : P
5 13 L Memvolt i what is the best technique to apply individually, and how to
= Sleep ---a- rank the techniques in case we want to apply them in a com-
£ 1.2 “a. 7 bined manner.
g Llr 7 If we want to apply a single technique, we should choose
% 1.0 + i the one that, for the desired average power reduction,-deliv
€ o9l B i ers the lowest energy-delay product. For example, for power
s P @ g reductions that are less than 20flter is the bestSubBank
< 08 @ 1 is the best if we want reductions between 20 and 25%, while
0.7 ! ! ! ! \oltFreqis the best for reductions larger than 25%. From this
0.5 0.6 0.7 0.8 0.9 1.0 data, we can see thifilter and SubBankare good but lim-
Normalized Average Power ited. Since their scope is only memory system accesses, they
(c) deliver modest power reductions.

Figure 4: Impact of dynamically applying each individ-
ual energy-management technique: total energy consumed
by the applications (a), their execution time (b), and their
energy-delay product (c). The data is normalized to a run
with no active technique and then averaged out across all ap-

plications.

If, instead, we want to rank the techniques for a possible
combined application of them, what matters is not the abso-
lute power reduction but the slope of the curves. Specificall
we approximate each curve with a straight line and record the
slope of the line. The techniques with the highest positive
slopes should be given the highest priority. Consequeintly,
our framework, the order of application of the techniques, i
respective of the power reduction desired, shouldHieer,



thenSubBankthenVoltFreq and so on.

Note that, for our techniques, the shape of the curves makdsd0€s not change the ranking of techniques listed above.

it possible to reasonably approximate each curve with desing  Finally, we note thaMem\Voltreduces neither the average
straight line. This may not be true, however, in other scenarpower much nor the energy-delay product. It is, therefore,
ios, where we would need different straight lines in différe unattractive. Its scope for impact is limited to applicaso
segments of a given curve. In this case, the ranking of techwith many cache misses. Unfortunately, even in this case,
nigues would not be as straightforward: it would depend onwe find that it works poorly because the slower DRAM be-
the power reduction desired.
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Figure 5: Impact of dynamically applying a combination

Normalized Average Power
(©

1.0

of energy-management techniques: total energy consumed

by the applications (a), their execution time (b), and their
energy-delay product (c). The data is organized as in Fig-

ure 4.

nigues. While we have observed this effect in our framework,

comes a contention bottleneck that slows down the applica-
tion (Chart (b)).

Applying Combined Schemes

To see the potential of our framework, we combine the
three most effective techniques, namiglijter, SubBankand
VoltFreq, into a single scheme. We consider two different
schemesCombactivates and deactivates the three techniques
simultaneously, whileGrad activates and deactivates them
gradually.Grad uses the ranking selected before: it activates
IFilter first; if more power or energy reduction is needed, it
activatesSubBank if more is needed, it activatégltFreq
When the techniques must be deactivated, it follows the re-
verse order.

Figure 5 shows the results of repeating the experiments of
Figure 4 forComband Grad. For reference purposes, the
figure also includes the curves fgbltFreqandIFilter from
Figure 4. Note, however, that the axes have been expanded
relative to Figure 4.

We can see from Figure 5 that, for modest power reduc-
tions, the effectiveness @ombis between that o¥/oltFreq
and IFilter. Specifically, Chart (c) shows that, for a given
power reduction, the energy-delay product@mbis be-
tween that ofVoltFreq and IFilter. ConsequentlyComb
works well. In additionCombcan deliver much higher power
reductions than the individual techniques:Gbmbis stati-
cally applied, it can reduce the average power by up to 70%.
As a result, the final energy-delay product obtained in Chart
(c) is also much lower than for the individual techniques.

As can be seen in the figure, howew@radis better. Chart
(c) shows that, for modest power reductions, this scheme de-
livers energy-delay products that are nearly as lowFdter,
the best of the three techniques. This is because, for thjera
of reductionsGradis largelylFilter. When larger reductions
are desiredGrad starts using the less optimal techniques. Fi-
nally, as we approach large reductions, it gets clos€oimb
In all cases except static application, howev@rad has a
lower energy-delay product th&@omb(Chart (c)).

These results form the rationale behind our choice of Ther-
mal and Slack algorithms in Section 2.2: a gradual, prierity
ordered application of techniques that reduce the energy-
delay product. Consequently, we implement the Slack and
Thermal algorithms withGrad. In addition, as part of the
Thermal algorithm, we keep one additional technique ready
for activation in case of a thermal crisis. Such a technique,
which must be able to reduce the average power consumed as
much as needed, is chosen toSieep

Variation Across Applications

Finally, we note that, although different applications be-
have differently, the schemes chosen for our adaptive frame
work work well across all applications. For lack of space, we
only briefly discuss the two individual applications that di
verge the most from the averagéTreeandDTree GTreehas
a high data cache miss rate (Table 4), which ca@sgsBank
to have relatively less impacDTreg on the other hand, has
relatively more I-cache misses, which caulééiéer to be less
effective. Overall, however, it can be shown tRatdis very
effective: it reduces the energy-delay product signifilyant

Another complication occurs if the slope of a curve While enabling large reductions in average power.
changes when the technique is combined with other tech-
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4.2 Evaluating the Thermal Algorithm

The goal of the Thermal algorithm is to keep the tempera
ture of the chip lower thaMaxTemp while minimizing any
resulting application slowdown. In addition, under no dend
tion should the temperature surp&ssisTemp As indicated
before, we usé&rad and, if CrisisTempis reached, we acti-
vateSleep We call the resulting schent@rad+Sleep

To show thatGrad+Sleeps effective, we demonstrate that
given differentMaxTemptemperature limits, it effectively
keeps the chip temperature belbtaxTempractically all the
time, while slowing down the execution only modestly. Re-
call that, as stated in Section 3.4, we U@wer* as a proxy

for temperature.

In Figure 6, we show the results of applyi@yad+Sleep
under differentPower* limits. These limits are proxies for
MaxTemp For each application, the limits considered are
1.2 X Pyrig, 1.0 X Pyrig, 0.8 X Porig, and0.6 x P,,;4, Where
P,.;4 is the original average power of the application (last
column of Table 4). To get an idea of the absolute values o
these limits, if we average them out across all the applicay
tions, we get 12.5, 10.4, 8.3, and 6.3 W, respectively. Theg,
crisis Power* is set sufficiently high such that it is never
reached. As usual, the data is normalized to the original co
ditions of the application and then averaged out acrosgall @ [mit becaus

plications.

Macrocycles Over Limit (%)
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framework keepPower* below it for practically all the time.
This is true even after setting the limit to 0.6 times the aver
‘age power in the chip before activating the framework, which
is the leftmost point of the chart. Such a limit places 85% of
the Original macrocycles over the limit.

'Figure 6-(b) shows the resulting execution time of the ap-
plications after activating the framework. If we focus oe th
Grad+Sleepcurve, we see that, for modest limits, the scheme

* induces minimal slowdowns. For example, after setting the

limit to 1.2 times the original average power, our framework
only slows down the applications, on average, by 8%.

Overall, from the previous two discussions, we see that the
goal of the Thermal algorithm is realized. For comparison
purposes, however, Figure 6-(b) also shows the impact of us-
ing less efficient schemesComb+SleepisesCombinstead
of Grad. SleepOnlysimply uses theSleeptechnique when
Power* surpasses the limit. More specifically, when a ther-
mal macrocycle records Bower* higher than the limit, the
raction of non-sleeping cycles in the next macrocycle is de
reased proportionally to how mudPower* was over the
mit. This scheme is, therefore, self-regulating. From fily-
re, we see that such schemes induce higher slowdowns than
Grad+Sleep SleepOnlys especially inefficient for relatively

Now Power* limits. However, it works well for the highest

e it is being applied in a fine-grained manner.

4.3 Evaluating the Slack Algorithm

The goal of the Slack algorithm is to save as much energy
as possible without extending the execution of the applica-
tion beyond a given tolerable slack. As indicated before,
we implement the algorithm witksrad. To show that our
framework is effective, we demonstrate that, given différe
slack sizesGrad delivers large energy savings without slow-
ing down the job noticeably more than tolerable.

In Figure 7, the framework is tested with different slack
sizes, specified as a percentage of the original executio ti
of the application. As usual, the data is normalized to the
original conditions of the application and then averaged ou
across all applications.

Figure 7-(a) shows the resulting energy consumed by the
applications for different slack sizes. The chart shows tha

o i'g T éleepo'nly ] Grad delivers large energy savings by exploiting even small
= Comb+Sleep ---x--- slacks. For example, if the applications are allowed to@kpl

c 181 Grad+Sleep - | a 10% slack, they consume only 60% of the original energy;
5 L7F if they are given a 30% slack, they consume only 40%.

§ 12 | To put the effectiveness @rad in perspective, the chart
“_j 1'4 B also shows the curves f@f x D = constant andE x D_2 =
Y constant. As areference, the voltage-frequency scaling tech-
s 1, T nique [11, 13] often falls in between tié x D andF x D?

E - curves. Indeed, if the scaling of voltage and frequencynis li

2 13 i . . . . . ear, since energy is proportional to the square of the veltag

and delay is inversely proportional to the frequengyx D?
remains constant. In practice, the scaling deviates froeali
behavior and we move toward tfiex D curve. Overall, from
the distance between these curves @mndd, we can see that

our framework is very effective, especially with small #ac

Figure 7-(b) shows the fraction of the tolerable slack that
is used up by our framework. We see that, for modest-sized
slacks,Grad tends to deviate little from using the maximum
tolerable slack. Any under- or over-utilization is limitéal
about 2% of the slack. As the slack increases over 35% of the
_ _ execution time, the applications cannot use it all, evennwhe

Figure 6-(a) shows the fraction of thermal macrocyclesall the techniques iGrad are in full operation. As a result,
where Power* is above the limit before we activate our part of the slack is wasted. Overall, we see that the goal of

framework Qriginal) and after Grad+Sleep. The chart the Slack algorithm is realizedSrad delivers large energy
shows that, irrespective of how low we set the limit to, our

Figure 6: Impact of enforcing differenPower* limits in
the chip: fraction of thermal macrocycles over tRewer*
limit (a) and resulting execution time of the applicatiob (
These limits are proxies favlaxTemp

10



reductions by exploiting even small slacks. is different in two ways: we target both energy efficiency and
To gain insight into any possible improvements o@ead, temperature control, and we combine many techniques in a

Figures 7-(a) and 7-(b) also show the behavior of an ideaynified dynamic framework.

scheme that we calDracle At any given microcycle in Recently, dynamic application of voltage and frequency
the execution,Oracle applies the combination offilter, scaling or various sleep modes have become popular among
SubBankandVoltFreqthat best furthers the goal of the Slack microprocessors [11, 13].

algorithm. Sincéracleis based on perfect knowledge of the 5 | o5ted approach is that of ACPI (Advanced Configu-
future, it éﬂoutld hav:a, for a given SI%Ck* t{}g I%weat €nerg%ation and Power Interface), an open industry specification
curve in Chart (a). In some cases, howewgrad reduces it defines an interface for the OS to activate low-power
the energy slightly more tha@racle This is because, due 74 oc [14]. Our work differs from ACPI in two ways.
to imperfect prediction of the futur&zrad sometimes goes g “jn 'ACPI, any decision and control of power modes is
slightly over the tolerable slack in Chart (b). Overall, Row o6 1y'the OS. In our framework, the decision and control
texggnt?r? e(c):tr]:éfgasnh do(\évrat\td]?:tutrt\]/(eerse \/I\?hir::%tswucgs?slﬁt?rﬁetg%e b&g best done with a combination of software and hardware,
; it ' 99 which enables finer-grained energy management. Second,
IS very competitive. current ACPI releases are only concerned with various sleep
ing modes, while we combine techniques that trade energy

10— 77— for performance.

0o b Erpeooonst i ACPI and other OS-driven approaches have been used at
> Grad ---&-- the system level to save energy dynamically. For example, it
S 08 Oracle - 4 is feasible to save energy by dynamically shutting down un-
i o7 | o i used modules of the system like hard disks or the LAN [4].
- LI Alternatively, the savings can come from dynamically reduc
= 06 ... - ing the quality of service to the application [7].

E Sl \\\\
g 05 | EL - . .
04 L [ 6 CONCLUSIONS AND FUTURE WORK
03 Co To address the problem of high energy consumption in cur-
"0 5 10 15 20 25 30 35 40 45 50 rent and upcoming chips, several schemes for dynamic en-
Slack (% Original Execution Time) ergy management have recently been proposed. However,
@) such schemes are still relatively limited and, in addittemd
to tackle only one of the two aspects of energy management:

e e L either energy efficiency or temperature control. To address

110k Oracle —=— | these limitations, this paper has proposed a framework for

Dynamic Energy Efficiency and Temperature Management
(DEETM). The framework addresses the two aspects of en-
ergy managementin a unified form. In addition, it combines a
suite of energy-management techniques that can be adivate
individually or in groups according to a given policy.

The evaluation has shown that our framework is very ef-
fective, especially when the tolerable slowdowns and tempe
ature limits are modest. In these scenarios, dynamic applic
0.85 L tion of the most fitting techniques in the suite is most cost-

0 5 10 15 20 25 30 35 40 45 50 effective: temperature limits are enforced with small slow
downs and large energy savings are delivered by exploiting
small slacks. For example, the framework delivers a 40% en-
ergy reduction with only a 10% application slowdown. Over-
Figure 7:Effect of exploiting different execution slacks: re- all, we feel that it makes sense for future advanced chips to
sulting energy consumed by the applications (a) and fractio  include a DEETM framework like ours that combines multi-
of the slack that is used up (b). ple techniques.

As part of our ongoing work, we are trying to improve our
DEETM framework by adding more techniques to it. We can
then quantify the complementarity of and the overlap betwee
different techniques.

5 RELATED WORK Another approach that we are exploring is the potential of

Of all the techniques and systems listed in Section 1, th&worProfiling. We can profile an application and, depending on
most related to ours is the one on dynamic systems for chip/hat are its main energy and performance bottlenecksy tailo
level energy management. These systems can be classifi}f activation of the techniques. Experience with@racle

into three groups. The first one targets temperature contropcheme in Section 4.3, however, suggests that little mare ca
for example through context switching to jobs that consume?® done for the techniques and applications considered- How
less power [27] or through speculation control [5]. The seceVer, other techniques and applications may behave differ-
ond group targets energy efficiency without compromisingfemly: Finally, we are examining how to tailor the framework
performance, for instance through speculation contrgl§e3 or different classes of chips, namely high-end micropsece
through reconfigurability [1]. A final group targets energy SOrS, chip multiprocessors, and different types of systems
efficiency by exploiting slack and, therefore, siowing down @ chip-

the system. This is done, for example, through voltage and

frequency scaling [25] or through switching to less aggres-

sive instruction issue and speculation support [8]. Ourkwor

1.05 n
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o
o
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APPENDIX A: APPLICATIONS USED

This appendix describes the applications used. In thevidlig, we
use P.Mem to refer to the on-chip controller in the FlexRANipch
that executes the serial sections of the applications. Nidoema-
tion on the applications can be found in [19].

GTreeis a data mining application that generates a decision tree
given a collection of records that we want to classify [26]heT
records are distributed across the processors. The P.Meitege
what attributes to use to split the tree and tells the pragesshat
branch they should examine. The processors process thendse

DTreeuses the tree generated@Treeto classify a database of
records [26]. Each processor has a copy of the decision @ a
portion of the database. Each processor processes itsrémzals
sequentially. Atthe end of the execution, the results acamalated
by P.Mem.

BSOMis a neural network that classifies data [22]. Each proces-
sor processes a portion of the input. Then, all processorshsy-
nize, a summary of the partial results is combined and reioliged,
and the process begins again. While the original applinatiged
floating point, we have converted the application into fixethpto
run on our simulated chip.

BLASTIs a protein matching application [2]. The goal is to match
an amino acid sequence sample against a large databaseeihgro
Each processor keeps a portion of the database and triesdb tha
sample against it. Finally, P.Mem gathers the results.

Mpegperforms MPEG-2 motion estimation. The reference image
and the working image are distributed across the proces&ash
8x8 block in the working image is compared against the refeze
image.

FIC is a fractal image compression application that encodes an
image using a scheme with a quad tree partition [6]. Eachgssmr
has a portion of the image and some calculated charactsrisind
performs a local transformation to its portion of the imagehe
application may have significant load imbalance.



