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ABSTRACT
The traditional model for developing synthesizable digital architec-
tures is a clock-synchronous pipeline. Latency-insensitive systems
are an alternative, where communication between blocks is viewed
as message passing. In hardware this is generally managed by con-
trol bits such as valid/stop signals or token credit mechanisms.
Although prior work has shown that there are numerous benefits
to building latency-insensitive digital hardware, a major factor dis-
couraging its use is the difficulty of managing the additional logic
and infrastructure required to implement it.

We propose a new programming paradigm for Hardware Descrip-
tion Languages, built on the Actor Model, to implicitly implement
latency-insensitive hardware designs. We call this model Liam, for
Latency-Insensitive Actor-based programming Model. Liam’s par-
adigm allows the programmer to manage the logic of receiving,
processing, and sending messages between pipeline stages implic-
itly, and independently from the underlying infrastructure. We
show Liam programming model with a simple, Python-like HDL
called Pyrope which has a few, non-intrusive constructs added to
manage elastic behavior. To demonstrate the results, we discuss
the simulation and synthesis results for a variety of digital hard-
ware systems, including several variations of 32 and 64 bit RISC-V
processors.
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1 INTRODUCTION
The dominant model for developing synthesizable digital hardware
is a clock-synchronous pipeline. The system is modeled as the
interaction between one or more stages, which update their internal
and external state in sync with one or more global clock signals.

This model presents some fundamental challenges to the devel-
oper and synthesis tools. The developer is constrained by the fact
that the longest combinational logic path, or critical path, in each
stage should be similar, to achieve good efficiency. The synthesis
tools are also constrained because they can not change the number
of pipeline stages. Taken together, these result in the desired clock
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frequency being locked down early in the development process,
and adds a high cost in effort and man-hours, to make high-level
changes to the system. Although these challenges can be managed,
they represent fundamental obstacles to developing large-scale
systems.

An alternative is a latency-insensitive design, where the system
is abstractly seen as being comprised of nodes, which communicate
via messages. Synchronous hardware systems can be automatically
transformed to latency-insensitive designs, which we refer to as
elastic systems [1–3]. Alternately, the designer can manually con-
trol the latency-insensitive backend [4, 5], we call such systems
Fluid Pipelines. The advantage of exposing the elasticity to the
designer is an increase in performance and flexibility in transforma-
tions [4, 6], the disadvantage is that the developer is responsible for
handling logic driving the handshake signals, needed to manage
message passing and back pressure between stages.

Some previous infrastructures implementing event driven sim-
ulations [7–10] use a handshake between pipeline stages similar
to the handshake used by Fluid Pipelines. There are also designs
like OpenCores [11], which implement blocks that use some valid
and stop/ack handshakes between stages. In both cases, implement-
ing the handshake was not done to leverage the advantages of
Fluid Pipeline transformations but for other reasons like clarity or
time multiplexing. Nevertheless, in all the cases the designer has to
manage the handshake manually.

In this paper, we propose a new latency-insensitive program-
ming model that can be applied to hardware description languages,
called Liam. Liam is a programming model for HDLs based around
a simplified Actor Model, designed to implement elastic behavior
implicitly. Liam stands for Latency-Insensitive Actor-based pro-
gramming Model for HDLs. It allows the programmer to focus on
the high-level logic of the architecture, independently from the un-
derlying infrastructure. To demonstrate Liam, we use a Python-like
HDL called Pyrope, which can be compiled using a custom, DSL
compiler, into a C++ or Verilog implementation of the system. In
this paper we show that building digital architecture under a para-
digm like this gives the designer more control over the development,
simulation, and synthesis process.

In Section 3, we give some background on elastic pipelines and
the Actor Model. In Section 4 we describe the Liam programming
model, how it is integrated into the Pyrope HDL, and how it is
compiled. Section 5 describes optimizations for simulation and syn-
thesis which are enabled by Liam. In Section 7 we evaluate several
hardware architectures in Liam, and compare their simulation and
synthesis results against similar Verilog implemetations. Section 8
adds some final thoughts.

2 RELATEDWORK
Liam is a hardware description language (HDL) for elastic pipelines
built on the Actor Model. As such, this section first discusses related
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work with regard to the Actor Model, then discusses related work
with regard to elastic pipelines and other HDLs.

The Actor Model was first proposed in 1973 [12] as an artificial
intelligence computational model. It proposed viewing the sys-
tem as an interaction between actors, which are atomic units that
communicate via message passing. It has since been applied in man-
aging concurrency [13–15] between heterogeneous components,
and as a general paradigm for parallel and distributed system pro-
gramming [16]. Labview uses an Actor Model-based backend to
manage message passing between multi-threaded applications [17].
UC Berkeley’s Ptolemy Project [18, 19] uses an Actor Model-based
simulator to model heterogeneous embedded systems and embed-
ded system networks. Pulsar [14] and Akka [15] provide Actor
Model-based libraries for managing concurrency for Python and
Java respectively. When studying the problem of developing elastic
systems in hardware, we saw potential in the idea of viewing them
as a type of concurrency problem. We ultimately decided on using
the Actor Model as the basis behind Liam’s paradigm, because of its
previous applications in managing concurrency, and the analogies
between the behavior of an actor, and a stage in an elastic pipeline.
This is further discussed in Section 3.4.

There are a variety of projects which have created libraries and
frameworks for implementing the actor model in traditional pro-
gramming languages, such as CAF (C++ Actor Framework) [20],
Pykka [21] (Python), Aojet [22] (Swift), Orbit [16] (Java).

We are not aware of any Actor-oriented framework available
for a sythesizable HDLs. For this project we decided instead to
create a custom DSL rather than try and implement a framework
in an existing HDL for two reasons: First, the traditional HDLs,
(System) Verilog [23] and VHDL [24], have limited abstraction and
meta-programming capabilities, and there are a variety of ways
to implement elastic pipelines: queues, handshakes, or often some
combination. We wanted a framework that could produce re-usable
elastic pipeline code which could be shared between different types
of backends. Second, a major challenge in working with elastic
pipelines comes from making mistakes with regard to the under-
lying protocol, for example not shifting data from the queue or
completing the handshake at the wrong time can cause deadlocks
or dropped data. We wanted our framework to handle the low-
level implementation and provide high-level constructs which the
programmer could use to manipulate the pipeline’s behavior, but
restrict them to working within the bounds of the underlying elastic
protocol. This combination of needing more freedom of abstraction
in one regard and wanting to restrict potential behavior in another
encouraged us to develop our our DSL and compiler for this project.

Elastic pipelines were first proposed to solve the problem of la-
tency in long wires across a chip [25], but have been later studied in
the context of pipeline transformations [1, 2]. In particular, Latency-
Insensitive systems allows for changing the number of pipeline
stages without breaking the system functionality. One early issue
with these transformations is the addition of bubbles to the pipeline
when new stages are added, which have been shown to reduce
throughput [3, 26]. Fluid Pipelines [4] were recently proposed to
reduce the penalties associated with pipeline transformations and
improve area and energy utilization of such systems. Notably, Fluid
Pipelines do not have any throughput penalty [4].

Elastic pipelines have also been used on the backends of hard-
ware modeling tools. The Liberty Simulation environment [27] is
an HDL and simulation infrastructure designed for modeling digital
systems. On the backend the compiler inserts a simple handshake,
driven by enable and ack signals, which is analogous to the valid
and stop signals that Liam’s compiler inserts between blocks to
generate a fluid pipeline. Liberty is for modeling, not synthesis,
however, and models only synchronous systems. Liberty also does
not support multiple clock domains.

Li-BDN [10] describes a method for compiling an asynchronous
(elastic) pipeline into a network of FPGAs for faster simulation. In
doing so, the Li-BDN method sacrifices cycle-accuracy, and it is not
possible to compile the non-cycle-accurate Li-BDN network into a
synthesizable version of the original system.

Newer hardware description languages like Chisel [28] include
syntax features designed for implementing asynchronous/elastic
interfaces. This can simplify the process of managing the behavior
of the required control bits, but it still requires the control logic to
be manually implemented by the programmer.

Bluespec [29] has the “maybe” modifier for variables, which is
functionally somewhat similar to associating a valid signal to the
variable. It is different from elasticity because it does not provide
support for back pressure.

Liam’s programming model also has some similarities to Syn-
chronous Reactive programming languages like Esterel [30]. Esterel
programs are divided into modules, which communicate via signals.
Signals are either present or absent at any given instant, and Esterel
provides constructs to react to the presence or absence of input sig-
nals and trigger outputs accordingly. Prior work has also proposed
using Esterel for RTL synthesis [31]. Esterel does not contain any
built-in, synthesizable constructs to handle back pressure, so for
elastic backends like Fluid Pipelines, Esterel would still require the
developer to write the logic for managing a synthesized handshake
manually.

Another language with a paradigm that has some similarities to
Liam’s is Lustre [32]. Lustre is a synchronous dataflow programming
language designed for implementing reactive systems. Synchronous
dataflow programming languages are based on a the concept of a
dataflow graph, a graph of nodeswhich represent operations and are
connected to their dependencies. Lustre programs are comprised of
blocks called nodes, which can take one or more inputs and produce
one or more outputs. Unlike imperative programming languages
like C or Java, which are based on sequential operations, Lustre
programs are a network of nodes which react to changes on their
inputs. Lustre has also been called a stream processing language [33],
and has found applications in verifying real-time systems.

Lustre has not been used for RTL synthesis, but other stream
processing languages have. Lime [34] is a Java-based HDL which
divides the system into nodes, and uses a task-based model to
process inputs and update outputs. Both Lustre and Lime’s models
have clear analogies to elastic systems, and we believe that these
languages could be compiled into a fluid pipeline as we do with
Liam. For this project, however, we chose to base our paradigm
on an imperative model, rather than a dataflow one, and use the
concept of aborting execution to allow the programmer to manage
elastic behavior. This is further discussed in Section 4.
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Figure 1: A fluid register. D and Q are data input and output
ports, and Dv and Qv and their corresponding valid bits. Ds
and Qs are the stop bits for this register, which travel in the
opposite direction of data to handle back pressure.

3 BACKGROUND
3.1 Latency Insensitive Behavior

Table 1: The behavior of a multiplexer latched with a syn-
chronous register.

Clock Cycle 1 2 3 4 5 6

In0 0 1 5 2 4 3
In1 1 4 2 3 3 1
S 1 1 0 1 0 0

Out 1 4 5 2 4 3

Table 2: An “elastic multiplexer”. Blank spaces represent in-
valid data. The multiplexer waits to receive sufficient valid
inputs before producing valid output.

Clock Cycle 1 2 3 4 5 6

In0 0 0 2 2
In1 1 3
S 1 0 0 0

Out 1 2

Tables 1 and 2 shows a comparison of synchronous and elastic
behavior with regards to a multiplexer. The first chart shows tradi-
tional mux, while the second chart shows the behavior of an “elastic
mux”, which waits for valid data before producing an output.

The first thing to notice, is that there’s a subtlety to the behavior
of the elastic mux. It will only produce output if it has valid data in
all three ports. For some applications, it may instead be desirable for
the system to produce data as soon as possible, and drop a packet
on the non-selected port when it arrived. It may also be desirable
to never drop packets, but hold it until it is selected, making this
more of a switch.

The existence of valid/invalid data and the decision of when
to read input and produce output adds another vector of control
to the system, which must be accessible to the programmer. This
demonstrates why it is difficult to abstract away this extra logic, or
turn a synchronous system into an optimized elastic one with an
automated tool.

3.2 Fluid Pipelines
A fluid pipeline are a type of latency-insensitive system. It is struc-
turally similar to a synchronous pipeline, but instead of clock-
synchronous registers being inserted between stages, fluid registers,
shown in Figure 1, are used instead. Along with the data input and
output ports present in synchronous registers, fluid registers add
input and output ports for two control bits: valid and stop. Valid
travels in the same direction as data, and stop travels in the oppo-
site direction to handle back pressure. Internally, the fluid register
buffers the sent packet, and holds it if the receiver asserts stop. The
fluid register also passes the stop signal backwards through the
pipeline, forcing earlier stages to stop as well. This is how fluid
pipelines handle back pressure without a throughput penalty or
the risk of buffer overflow.

3.3 Implementing Fluid Pipelines Manually

Listing 1: A pseudo-code implementation the elasticmux de-
picted in Table 2. Even a rather simple block requires a fair
amount of backend logic to implement.
1 s t a g e e l a s t i c _mux (
2 ou tpu t out ,
3 i npu t a , i npu t b , i npu t s ) :
4
5 out . v a l i d = f a l s e
6 i f s . v a l i d : s . r e t r y = t r u e
7 i f a . v a l i d : a . r e t r y = t r u e
8 i f b . v a l i d : b . r e t r y = t r u e
9
10 i f s . v a l i d and not out . r e t r y :
11 i f s == 0 and a . v a l i d and b . v a l i d :
12 s . r e t r y = f a l s e
13 a . r e t r y = f a l s e
14 b . r e t r y = f a l s e
15 out = a
16 out . v a l i d = t r u e
17 e l i f s == 1 and b . v a l i d and a . v a l i d :
18 s . r e t r y = f a l s e
19 a . r e t r y = f a l s e
20 b . r e t r y = f a l s e
21 out = b
22 out . v a l i d = t r u e
23 e l s e :
24 out . v a l i d = f a l s e
25 e l s e :
26 out . v a l i d = f a l s e

Listing 1 shows a pseudo-code implementation which would
produce output consistent with Table 2. Each input and output port
is attached to a fluid register, shown in Figure 1. As per the fluid
pipeline handshake protocol, described in Section 3.2, each output
valid but must be asserted if it contains valid data, cleared otherwise.
Likewise, the input retry flags must be cleared if the inputs have
been consumed, and set otherwise. As we can see, elasticity adds a
non-trivial amount of additional logic which is needed to decide
when to produce output, and when to hold or consume input. It is
not so easy to abstract this logic into an API, because it’s inherent
to the logic of the stage. Further, these vectors of control must be
available to the programmer.
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Our solution is to propose a new programming paradigm which
adds some axioms and constructs to allow the programmer to man-
age the elastic behavior of the system implicitly, and independent
from the underlying infrastructure. In the upcoming Section 3.4 we
describe the Actor programming model, and how we build on it to
accomplish this.

3.4 The Actor Model
The Actor Model is a programming paradigm first proposed by
Hewitt, Biship, and Steiger [12] in 1973, where the program is
modeled as the interaction between any number of independent
actors. Actors are atomic units which communicate with each other
via messages, they have the following capabilities:

• Update their local state.
• Send a message to another actor.
• Decide to act on a message they received.
• Create more actors.

Elastic pipelines, which are made up of stages that communicate
through latency-insensitive interfaces, can naturally map to this
paradigm. In an elastic pipeline the latency between the time when
a stage receives an input and produces an output is not defined,
just as in the actor model, the actor can decide when to update its
internal state or respond to a message.

There are differences between the traditional Actor Model and
Liam’s paradigm as well.

The pipeline in Liam is divided into stages, which are analogous
to actors. One capability of an actor model actor, is the ability to
create more actors. Considering Liam’s intended application is dig-
ital hardware synthesis, we decided that this would be problematic
to implement. Instead the compiler is fed what we call a topology
file which lists which stages are used in the pipeline. For this reason
one may call Liam’s programming paradigm a reduced actor model,
since the number of actors is fixed at compile time.

The Actor Model also makes no provision for back pressure,
which is required by some fluid and elastic pipeline backends. Liam
implements this by inferring logic which reads the values of status
flags that signal back pressure. The inferred logic prevents the stage
from processing new data, and asserts the back pressure flags on its
own inputs. This can be thought of as adding a new condition onto
all Liam stages, that they will not send new messages until they get
an acknowledge from the recipients of the last message that it was
received. The process of compiling elastic control logic, with and
without back pressure, is discussed in detail in Section 4.2.2.

Another small, but important difference is that in the traditional
actor model, actors are independent, atomic units. We model stages
in Liam this way, but add recursive dimension as well. Since the
overall pipeline behavior is independent of latency, its functionality
is independent of the latency through any given stage. Thus, each
stage can be viewed as a pipeline of its own. This gives Liam a
conceptual basis to manage pipeline transformations laid out in
previous work on elastic pipelines [1, 2, 4].

4 LIAM
4.1 Compiling Pyrope with Liam
Pyrope is designed to simplify large-scale digital architecture de-
sign. The system is organized into stages, which are compiled into
combinational logic. The compiler is also fed what we call a topol-
ogy file, which lists all the stage-to-stage connections, and lists
which stage input and output ports map to input and output ports
of the pipeline. When compiling with Liam, Pyrope instead inserts
fluid registers, as shown in Figure 1, and generates logic to drive
the fluid registers’ control signals based on the axioms described
below.

Listing 2: A Pyrope implementation of amux, which has the
same behavior the elastic mux in Table 2, if it is compiled
with Liam.
1 s t a g e mux ( ou tpu t out ,
2 i npu t a , i npu t b , i npu t s ) :
3 i f s == 0 :
4 out = a
5 consume ( b )
6 e l s e :
7 out = b
8 consume ( a )

Listing 3: A Pyrope implementation of a switch. Similar to
Listing 2, but it will only read and consume the selector and
the selected data input.
1 s t a g e mux ( ou tpu t out ,
2 i npu t a , i npu t b , i npu t s ) :
3 i f s == 0 :
4 out = a
5 e l s e :
6 out = b

Listing 2 shows a Pyrope stage which implements the same
behavior as the “elastic multiplexer”, described in Table 2, when
compiled with Liam. The data-path behavior is laid out in roughly
six lines of code which sets out equal to either a or b based on
the value of s . The status flag behavior, which is responsible for
implementing elasticity, is based on the axioms 1 (Atomicity) 2
(Abortion) 3 (Isolation).

The state of the stage is made up by the state of its outputs and
the state of its internal registers. The state of a stage’s outputs
is made up of the values of the stage’s output data ports and the
state of its status flags. As stated in Axiom 1 (Atomicity), stages
are atomic units that either update or abort every cycle. Axiom 2
(Abortion) describes the conditions which cause a stage to abort,
and Axiom 3 (Isolation) describes what happens when a stage does
abort.

Axiom 1 (Atomicity). A stage executes from the top down. If it
completes without aborting, it updates its state.

Axiom 2 (Abortion). A stage aborts when an invalid input is
read, or an output with back-pressure is written.

Axiom 3 (Isolation). Aborted stages do not consume any input,
generate any valid output, or make any other changes to its state.
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Taking these axioms into account, we can see that the code
in Listing 2 matches the example elastic mux behavior shown in
Table 2. In order for the stage to finish executing, there are only two
paths it can follow, the s = 0 path and the s = 1 path. Both paths
read all three inputs, lines 4 and 7 force a read on the unselected
input, assuring that the stage will abort unless all inputs are valid.
If this stage is compiled with an elastic infrastructure that supports
back pressure, like Fluid Pipelines, Liam will also compile logic
to handle back-pressure, as required by Axiom 3 (Isolation). Both
paths require a write to out , which for Fluid Pipelines will cause an
abort if the stop flag is asserted.

By contrast, if we remove the statements on lines 4 and 7, as we
do in Listing 3, we effectively have a switch. Each path will only
read the selector and the selected input port, so the unselected port
will be ignored. If it is valid it will not be consumed, if it is invalid
it will not be read.

4.2 Internal State
Inputs and outputs constitute a stage’s external state, but a stage has
an internal state as well, which is implemented through registers.
Pyrope borrows syntax from Ruby, using the@ symbol to represent
a register variable, which unlike regular variables remembers its
value from the previous, non-aborted, iteration. In Pyrope, registers
are initialized to 0.

When compiling with Liam, registers are considered part of the
stage’s state, so they are updated at the end of the stage’s execution,
assuming it doesn’t abort. Reading them will never produce an
abort since they are initialized to zero. A register can also be an
output, however, and like any output, it could have back pressure.
Writing to an output register will produce an abort if that output
has back pressure.

4.2.1 Added Constructs. Liam adds some new constructs to
allow the programmer to manage elastic behavior. These are listed
in Table 3. They allow the programmer to control elastic behavior
abstractly, independent from any one specific type of backend.

Table 3: Liam adds some new constructs which helps the pro-
grammer manage elastic behavior abstractly.

Name Code form Description
Valid Check var? Checks if an input or out-

put is valid
Stop Check var ! Checks if an input or out-

put stop flag is asserted.
Keep Statement keep input Prevents an input from be-

ing consumed.
Consume Statement consume input Explicitly consume an in-

put.

Although we have had ideas for other useful operators, this
minimum set is what was needed for our early evaluation of Liam,
where we implemented the designs discussed in the evaluation,
Section 7.

The valid and stop operators allow the programmer to check
whether an input is valid or whether an output has back pressure,
without triggering an abort. If the stage is compiled to a backend

which doesn’t support back pressure, the stop flag is compiled as
a constant false. The “keep” statement will prevent an input from
being consumed. The “consume” statement is not strictly necessary,
since an input is implicitly consumed when it is read. It is employed
strictly for readability.

Using these additional constructs, we can modify the multiplexer
from Listing 2 with more subtlety. We may wish to modify the mux
to have it drop data on the non-selected port if that port has data,
but produce output regardless. This is implemented in Listing 4. By
using the valid operator, we check whether the non-selected data
port is valid before reading, preventing an abort.

Listing 5 is similar to Listing 4 in that it produces an output as
soon as it has a valid data packet which matches a valid selector
packet, but unlike Listing 4, it will always drop a packet from the
non-selected data path. If there is no data available when the output
is ready, the stage uses a register to remember that it will drop the
next incoming packet on that port. This is accomplished by setting
the registers @dropa or @dropb to true. If either of those registers
are true, on the next cycle the stage will attempt to consume the
input and set the corresponding register to false. This will cause an
abort until there is a valid input on that port, meanwhile if other
valid inputs arrive, they are implicitly held until the stages reaches
an execution path that consumes them.

Listing 4: An alternative elastic mux, which will drop the
non-selected input port if it is valid, and produce an output
regardless.
1 s t a g e mux ( out , a , b , s ) :
2 i f s == 0 :
3 out = a
4 i f b ? : consume b # read b
5 e l s e :
6 out = b
7 i f a ? : consume a # read a

Listing 5: Another version, which produces output as soon
as the selector andmatching data input port is valid, but also
drops a packet from the non-selected data input port, when-
ever that packet arrives.
1 s t a g e mux ( out , a , b , s ) :
2 i f @dropa :
3 consume a
4 @dropa = f a l s e
5 e l i f @dropb :
6 consume b
7 @dropb = f a l s e
8 e l s e :
9 i f s == 0 :
10 out = a
11 @dropb = t r u e
12 e l s e :
13 out = b
14 @dropa = t r u e

These constructs, along with our core axioms, allow the pro-
grammer to manage the condition at which inputs and outputs will
be consumed and updated. We do not provide constructs to override
elastic behavior however. For example, the valid operator (denoted
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with a ?) can be used to read a valid flag but not write one. Providing
this would be problematic, because if the stage receiving the data
asserts the stop flag, it is expecting to receive the same data on the
next cycle. In some cases an engineer may be tempted to violate
the elastic protocol because it may solve a problem they have run
into in a given application. Doing so remains risky nonetheless
because in the project employs any of the optimizations described
in this paper, or the pipeline transformations described in other
work [1, 2, 4], doing so could cause bugs if there are bugs in the
underlying elastic behavior. By placing these restrictions on the
programmer, we can guarantee that pipelines compiled in Liam
behave elastically and can be transformed safely. Section 5 shows
how this elastic guarantee can be leveraged by the synthesis and
simulation tools.

4.2.2 Inferring Status Logic. In order to synthesize a synchro-
nous pipeline, the Pyrope compiler compiles the code into combina-
tional logic which implements the data operations. When compiling
with Liam into a fluid pipeline, the compiler also compiles logic
for the status flags, valid and stop, which drive the fluid registers,
based on the Axioms listed in Section 4.1.

sread=true

aread breadowritten

s==1

?? ? ?

out

true

T

true

F

true

F

true

T

false

T

false

F

a

F

b

T

Figure 2: The dataflow graph generated by Listing 3.

The first step to doing this is shown in Listing 6. The compiler
inserts flags indicating when input and output ports have been
read or written. The compiler then generates a dataflow graph [35]
for the stage, shown in Figure 2. In a dataflow graph, the stage’s
operations are represented as nodes on the graph attached to their
dependencies. This is the same method that traditional HDL com-
pilers use to synthesize logic from code. From the final value of
each read and write flag’s dataflow net, logic can be generated to
determine if the stage will abort, shown in Figure 3. The abort flag
can then be used to generate logic for each valid and stop output,
shown in Figure 4 and 5. These generated logic networks do not
add a significant cost in clock frequency, because they can largely
be executed in parallel.

Although these equations are designed for implementing the
Liam system as a fluid pipeline, they can be adapted to other sorts
of elastic system backends as well. Li-BDNs [10] use a queue to
provide elastic behavior, and do not account for back pressure. To
compile control signals for a Li-BDN system, we set all outputstop
input signals to constant 0, which simplifies the abort equation,
Figure 3. We generate the outputvalid output signals as before, and
have no need to generate the inputstop outputs. This fulfills one
of core design goals for Liam, which is that Liam code should be
independent from the elastic backend.

Figure 3: A boolean flag indicating whether or not the stage
will abort can be set with the equation below.

abort =(∃input : ¬inputvalid ∧ inputr ead )∨

(∃output : outputstop ∧ outputwritten )
(1)

Figure 4: A given output is valid if the stage did not abort
and it has been written.

outputvalid = ¬abort ∧ outputwritten (2)

Figure 5: A given input asserts its stop flag if it is valid and
either the stage aborted, or it was not read this cycle.

inputstop = inputvalid ∧ (abort ∨ ¬inputr ead ) (3)

Listing 6: To compile the switch described in Listing 3, with
Liam, the compiler first inserts flags to indicate when IO
ports are read or written.
1 s t a g e mux ( ou tpu t out ,
2 i npu t a , i npu t b , i npu t s ) :
3 s _ r e ad = t r u e
4 i f s == 0 :
5 a_ read = t r u e
6 out = a
7 ou t _w r i t t e n = t r u e
8 e l s e :
9 b_read = t r u e
10 out = b
11 ou t _w r i t t e n = t r u e

4.3 Memory

Listing 7: A Liam implementation of a register file for a
RISCV processor. Note that it is necessary to check for valid
data manually, to avoid triggering an abort, but the logic for
consuming input can still be handled implicitly.
1 s t a g e r e g f i l e (
2 ou tpu t s data1 , da ta2 ,
3 i n pu t s addr1 , addr2 , waddr , wdata ) :
4
5 i n t 3 2 @reg i s t e r s [RISCV_REG_COUNT]
6
7 i f addr1 ? : d a t a 1 = @reg i s t e r s [ addr1 ]
8 i f addr2 ? : d a t a 2 = @reg i s t e r s [ addr2 ]
9
10 i f waddr ? and wdata ? :
11 @r eg i s t e r s [ waddr ] = wdata

Listing 7 shows our Liam implementation of a register file for our
RISCV processor. We use the @ to mark reдister as a register, and



Liam: An Actor Based Programming Model for HDLs MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria

use the ? operator check whether inputs are valid before reading
them, to avoid an abort.

Like other registers, updates to register arrays under Liam hap-
pen after the stage executes, and are canceled by an abort.

4.4 Loops
Loops are generally not used in HDL code intended for synthe-
sis, because of the difficulty of managing them with regards to
the critical path. A loop for a constant number of cycles can be
synthesized, but a loop for a variable number of cycles cannot be
synthesized without adding control bits, which is generally done
manually. We actually think Liam’s latency-independent paradigm
would be helpful in this regard, but have not explored the topic at
this time.

4.5 Functions and Other Higher-Level
Constructs

The processor we implemented for Section 7 was done using six
stages, only basic arithmetic expressions, and if-then-else control
blocks. Higher level structures, like functions could be added, but
they would likely have to be inlined in the calling stage as is done in
Verilog and other HDLs. Since the focus of this paper is the elastic
semantics, we consider further exploration in this area outside its
scope.

4.6 Integrating Liam into other HDLs
This paper uses Pyrope, a Python-like HDL, as a platform for com-
piling Liam into fluid pipelines. In Pyrope, stages are normally
compiled to combinational logic and inserted between clock syn-
chronous registers. When the compiler compiles with Liam enabled,
it uses fluid registers instead. To drive the valid and stop status flags
of those fluid registers, it analyzes the source of each stage, and
generates logic based on when the stage’s inputs and outputs are
read and written.

Implementing Liam in the traditional HDLs, Verilog and VHDL,
would be possible in theory if similar modifications were made to
one of their compilers. The compiler must be modified to generate
fluid registers, or an equivalent, for module-to-module commu-
nication. There would also need to be support for an equivalent
to the constructs we added in Table 3, which could possibly be
accomplished with domain-specific macros or functions.

The University of California, Berkeley, has developed their own
hardware description language, called Chisel [28]. This language is
built on Scala, giving it far greater abstraction capabilities than Ver-
ilog or VHDL. In Chisel, variables and ports are Scala objects; these
types can be inherited from and their operators can be overloaded.
PyMTL [36] is another newer HDL developed at Cornell, based
on Python, which also boosts greater abstraction and metapro-
gramming capabilities than Verilog or VHDL. Integrating Liam into
Chisel or PyMTL should be far easier for these reasons.

Table 4 proposes some possible syntax for integrating Liam into
other HDLs. Verilog would be the most difficult, as it would require
macros or some other type of specialized functions. Chisel and
PyMTL could likely implement Liam by extending their already
existing types.

5 FLUID PIPELINE OPTIMIZATION
This paper makes the case for Liam, an HDL with a programming
paradigm that implements elastic behavior implicitly. The reason
we are making this case, and the reason we developed Liam, is
because we believe that developing large digital architectures un-
der an elastic paradigm can provide a lot of benefits, including
optimizations which leverage latency-insensitivity, and cannot be
safely done on synchronous pipelines.

Recycling and Retiming are pipeline transformations which can
be used to automatically increase or decrease the frequency and area
of an Elastic System, without breaking functionality [37]. Prior work
has shown that this can be done without a throughput penalty [4].

The Liam paradigm, like the Actor Model it’s based on, describes
the system as an interaction between atomic units which commu-
nicate via message passing. This model of a system provides some
inherent benefits toward parallelization, since the system can be
reliably broken into isolated, simulatable blocks or regions, which
are ideally suited to being integrated into a sort of event/update
based queue, commonly used for optimizing on a multi-core system.
This is in contrast to traditional HDLs like Verilog and VHDL which
compile to a global netlist, and must be updated in its entirety on
every state change.

We demonstrate how this can be leveraged in the Evaluation,
Section 7. In each of our benchmarks, we evaluation Liam against
a non-elastic Verilog implementation, compiled with Verilator and
GCC. Compiling Liam into Verilog, and running it in the same
manner results in a slightly slower simulation speed due to the
added logic required to implement latency-insensitivity, as shown
in Table 6. Due to the locality of Liam stages, however, we can also
compile the stages as C++ objects which update in an event loop.

Despite the fact that Verilator generates C++, Liam compiled
into C++ objects outperforms Liam compiled to Verilog modules.
This is because when the system is implemented as C++ objects,
the vast majority of the pipeline’s operations are localized into the
scope of a class method, while in a Verilog implementation the
global netlist must be compiled into the same scope. This type of
compilation is possible due to Liam’s paradigm.

We further leverage the event loop structure that Liam pipelines
have when compiled into C++ in Table 7. The testbench is designed
to utilize only a small number of stages in the overall FPU pipeline,
allowing the event loop based C++ implementation to ignore many
of the FPU stages. This gives it a dramatically faster execution speed
than the traditional Verilog implementation which needs to update
the entire global state every cycle.

Latency independence can also be leveraged to provide other
sorts of optimizations that would be difficult to do in an automated
manner otherwise. For example, consider an architecture which
includes a floating-point unit. Doing an extensive verification on
this system would include running on the order of 1-10 million
operations. If the floating-point unit does not need to be verified
on its own, one idea for an optimization might be to replace the
floating point unit with a simple software operation. Switching
the floating point unit with a module that does the calculation in
software can be safely done automatically in a latency-insensitive
pipeline. In a synchronous pipeline, however, there would be a risk
of introducing a timing bug.
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Table 4: Possible syntax for integrating Liam into other HDLs.

HDL Valid Check Retry Check Keep Statement Consume Statement
Verilog IS_VALID(port) IS_STOPPED(port) KEEP(port) CONSUME(port)
Chisel io.port .is_valid() io.port .is_stopped() io.port .keep() io.port .consume()
PyMTL s .port .is_valid() s .port .is_stopped() s .port .keep() s .port .consume()
Pyrope port? port! keep(port) consume(port)

6 SETUP
Synthesis was donewith the latest Yosys v0.7 using a NanGate 15nm
library. Yosys internally uses ABC for synthesis. Delay reported by
ABC does not include wire delay, just cell delay. The number of
cells reported is the total cell count for the NanGate library. The
design was flatten before optimization to include across module
optimization. The Fluid Flops used for this implementation are not
optimized and use two flops, instead of a master-slave latch which
is recommended in Fluid Pipelines. This only accounts for higher
flop overhead in the Fluid Pipeline designs.

The C++ benchmarks were compiled with GCC 6.3, and the
Verilog were compiled with Verilator 3.9, with the same GCC. They
were run on an Intel(R) Xeon(R) CPU E3-1275 v3 at 3.50GHz, and
16GB RAM.

7 EVALUATION
To evaluate Liam, we implemented 3 different RISCV cores that
are comparable with existing cores, we also implemented a RISCV
core directly in Verilog, using Fluid Pipelines, but not using Liam
or Actor Model. We call our implemented cores Cliff. We compare
against two public Verilog implementations of similar cores.Cliff64
is a Liam automatically generated 64bit RISCV core with small
internal memories. It is an in order core with 4 pipeline stages.
Cliff is a Liam automatically generated 32bit RISCV core with small
internal memories. Cliff is similar to Cliff64, the only difference
is that it is a 32bit core. Cliff No-Mem is a Liam automatically
generate 32bit RISCV core without internal memory. This core is
created to be compared to VScale and PICO32, which also don’t
have internal memories. MCliff is a manually coded 64bit RISCV
core with internal memories. This core is similar to Cliff64 with the
exception of being handcoded, have one additional pipeline stage
and have data hazard detection logic at execute instead of decode.
VScale is a Berkeley 32bit RISCV core without Fluid Pipelines,
it is publicly available and written in Verilog, not Chisel. Unlike
the other cores, this is a 3 pipeline in order core without internal
memories. Pico32 is a 32 bit RISCV core written by Clifford Wolf
publicly available, it has no Fluid Pipelines and it is coded in Verilog
like VScale. It is an in order core with 4 pipeline stages.

Table 5 summarizes the synthesis results showing delay, com-
binational cells and flops. Pico32 is a little bit slower than Cliff
No-Mem, but for synthesis variation reasons could be considered
equal. This means that a Fluid Pipeline automatically generated
with Liam has no timing overhead versus a handcoded optimized
Verilog. Pico32 and VScale have the lowest number of combina-
tional cells and flops. Cliff No-Mem, which is the equivalent core,
has higher combinational cells and flops. It has more flops in part
because the Fluid Flops used have two internal flops instead of a
master-slave latch. If such library was available and used, we would

Table 5: Synthesis results for the CPU benchmarks.

Core Delay (ps) Comb Cells Flops
Cliff64 247 43195 6102
Cliff 112 22610 3190

Cliff No-Mem 124 14163 2153
MCliff 299 46344 7272
VScale 242 12239 1862
Pico32 130 11046 1545

expect a number of flops in Cliff No-Mem to be between Pico32
and VScale. The number of logic cells is around 15% more in Cliff
No-Mem than in VScale. We think that the main reason for that is
because VScale has one less pipeline stage than Cliff No-Memwhich
allows for more logic optimization. When comparing to Pico32, the
main reason is because Pico32 is highly optimized. Another reason
is that there is a small number of cells added to handle the hand-
shake of Fluid Pipelines, but as the timing results show, those are
not in the critical path. Cliff64 andMCliff are very similar cores with
the main difference being that MCliff was handcoded in Verilog not
using actor model. Liam automatically generated code is faster and
smaller. We see this as an indication the automatically generated
Liam code does not add overheads, and equally important using
the Liam Fluid Pipeline actor model is as efficient or more than
non-actor model Fluid Pipeline implementation.

We then evaluate the simulation results of a set of three simple
benchmarks in Table 6: a greatest-common divisor (GCD) bench-
mark, which computes the greatest common divisor of two num-
bers; a simple ring network of four nodes, each of which can be
sent a packet, on which it will do a computation and pass it back to
the sender; and a few RISCV CPUs.

Liam’s Verilog implementation is consistently a little slower than
the non-fluid pipeline Verilog implementation due to the added over-
head required for simulating fluid registers. The C++ implementa-
tion is consistently a little faster, likely due to inherent advantages
native C++ has over Verilator-generated C++.

Due to the nature of Verilog, simulation requires updating the
entire system every clock cycle. Although Verilator compiles to
C++ and compiles with the same version of GCC, the global na-
ture of Verilog requires that the resulting program keep a large
amount of memory in a global scope, which impacts execution
speed. When Liam is used to generate C++, it leverages the fact that
stages are atomic blocks that only communicate through message
passing. This allows C++ to compile objects which do computa-
tions locally, better utilizing CPU resources and providing a boost
in execution speed. This type of compilation can be safely done due
to the structure of the Pyrope/Liam programming model.
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As an additional demonstration of Liam, we present an FPU
benchmark which is designed to take advantage of Liam’s C++
compilation target. Table 7 compares a normal (non-fluid) Verilog
FPU against an FPU created in Pyrope/Liam. We created such a
stark difference in execution speed by only sending floating point
add operations into the benchmark, and compiling Liam into a C++
backend that only updates stageswhen they receive valid data. Since
the different FPU instructions are sent along different paths in the
pipeline, Liam’s C++ FPU only executes stages related to the FPU
add operation, while the Verilog FPU still needs to update its entire
global state. Although these types of optimizations are common
in high-level hardware simulators, the Pyrope/Liam compiler can
implement it with unmodified, synthesizable code.

Table 6: Benchmark results in MHz. Liam is compiled into
both C++ and Verilog, and is compared against a similar Ver-
ilog implementation. The entries with the (*) are non-fluid
implementations

Liam C++ Liam Verilog Verilog
Ring Network 46.12 23.56 38.79*
GCD 73.14 28.94 71.85*
Cliff64 9.42 5.32 N/A
MCliff N/A N/A 12.45
VScale N/A N/A 8.80*

Table 7: Benchmark results in MHz for the FPU testbench.
This testbenchwas designed to take full advantage of Liam’s
C++ compilation target.

Non-fluid Verilog FPU Liam FPU
1.92 10.96

8 CONCLUSION
In this paper we present Liam, a new paradigm for hardware de-
scription languages which implements elastic behavior implicitly.
We propose Liam because we feel that a major factor which dis-
courages the use of latency-insensitive systems in digital hardware
design is the complexity they add, due to the additional logic and
backend infrastructure required to implement them. Liam addresses
this by adding a set of axioms, in Section 4.1, which describes elastic
behavior implicitly. When the HDL source code is compiled, the
behavior described by those axioms is compiled into logic which
drives the control signals for the latency-insensitive backend infras-
tructure. This both frees the developer from having to implement
the backend protocol manually, and allows Liam source code to be
shared between different types of latency-insensitive pipelines. We
demonstrate and evaluate Liam by integrating it into a specialized
HDL called Pyrope, but also describe how it may be added to other
HDL toolchains.

Our evaluation shows that Liam/Pyrope does not add over-
heads in the implemented core either in timing or area when com-
paring against an equivalent Fluid Pipeline core implemented by
hand in Verilog. When comparing Fluid Pipelines versus non-Fluid

Pipelines, we observed a small overhead in area, but with no over-
head in delay.

Futurework on this project should include integrating the pipeline
transformations described in prior work [4] to the Liam toolchain
which could allow for seamless, high-level manipulation of the
pipeline critical path/clock frequency without any cost in through-
put. We also believe that Liam could provide an interface to allow
computer architectures to be better integrated into other types of
concurrency and real time distributed system analysis and simula-
tion tools [13–15] because it represents a high-level description of
latency-insensitive behavior.

As digital architectures continue to grow in size and complex-
ity, we believe that there are a lot of advantages in using latency-
insensitive design paradigms. Developing a platform to describe
latency-insensitive behavior at a high level is a key step in leverag-
ing these advantages.
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