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ABSTRACT
In chip design, pipeline depth and cycle time are fixed early
in the design process but their impact on physical design can
only be assessed when the implementation is mostly done,
making it impractical to change such parameters. Elastic
Systems are insensitive to latency, and thus enable changes
in the pipeline depth late in the design time with low ef-
fort. Nevertheless, current Elastic System implementations
have significant throughput penalty when stages are added in
the presence of pipeline loops. We propose Fluid Pipelines,
an evolution that allows pipeline transformations within an
Elastic System without throughput penalty. Formally, we
introduce “or-causality” in addition to the already existing
“and-causality” in Elastic Systems. This gives more flex-
ibility than previously possible but requires the designer to
annotate the intended behavior of the circuit. Fluid Pipelines
are able to improve the optimal energy-delay (ED) point by
shifting both performance (by 176%) and energy (by 5%).
Fluid Pipelines also allow for exploration of the Pareto fron-
tier enabling points like delivering 33% better top perfor-
mance using 83% less energy. Fluid Pipelines open many
research opportunities in both EDA and architecture and en-
able interesting design space exploration. We envision a
scenario where automated tools would be able to generate,
from the same RTL different pipeline configurations for, e.g.,
low power, high performance, so forth. In that sense, Fluid
Pipelines are able to greatly reduce design effort.

1. INTRODUCTION
In current digital design practices, cycle time and pipeline

depth are set early in the design process due to their impact
on the other design parameters. Meeting a certain cycle time
usually requires multiple time-consuming iterations between
design and implementation [11]. Elastic (or latency insensi-
tive) Systems [5, 7, 8, 18] are an alternative to the traditional
fixed cycle pipeline paradigm. Elastic systems are based on
the assumption that the correctness of the system does not
depend on the latency (number of clock cycles) between two

subsequent events, but on their order [5,18]. This allows for
the insertion of new stages later in the design time without
breaking the circuit correctness [5].

Changing the number of pipeline cycles, also known as
Recycling [2, 16], is possible in Elastic Systems but con-
strained by the presence of sequential loops1. This reduces
the applicability of recycling, because most complex cir-
cuits, such as processors, include sequential loops. Tradi-
tional Elastic Systems rely on an automated flow that trans-
form regular synchronous circuitry into elastic. Since the
flow does not have knowledge on the intended behavior of
the circuit, it has to maintain the completion order of events.
This has the side effect of reducing the overall throughput
of the circuit [5, 15]. Throughput losses can be mitigated by
the use of Early Evaluation [2] but the whole system remains
limited by the worst sequential loop, even if such loop is not
actually used.

In contrast, Out-of-Order (OoO) execution is omnipresent
in modern digital design and is known to improve system
throughput. In this paper, we propose Fluid Pipelines, an
evolution of current Elastic circuitry, that enable unordered
completion order. Since the flow cannot change the behav-
ior of a circuit,Fluid Pipelines rely on designer annotations
to the code where ordering can be changed. Fluid Pipelines
are a generalization of Elastic Systems, since without user
annotations, they behave like Elastic Systems. User defined
elasticity has been proposed [3], and is thought to improve
design methodologies [18]. We go one step further and eval-
uate new design paradigms within Elastic Systems, one that
allow for OoO behavior. By exposing the Merge and Branch
to the designer, the flow becomes aware of the intended be-
havior, and when the relative completion between operations
does not affect design correctness.

Fluid Pipelines are able to re-claim the throughput losses
from the automated conversion. The automated flow of Elas-

1By sequential loops, we mean cycles in the graph representing
the connections between registers, it should not be confused with
program loops.
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tic Systems transforms a sequential circuit to an elastic one
by inserting Fork and Join operators. In short, Fork is used
when the output of one stage forks to the inputs of multi-
ple different stages, whereas Join is used when parallel data
paths re-unite, and thus the inputs of a single stage come
from multiple separate stages. The Join operator requires all
the inputs to be valid to proceed. Typical examples are the
inputs of an adder unit that need to be present at the same
time for the operation to take place. When there is no de-
pendency between the inputs of a block, a Merge operation
is said to take place. Merge differs from Join since it is trig-
gered when at least one of the inputs has valid data (and thus
has “or-causality”), also, only data from one of the inputs
is consumed at each cycle. Its dual, Branch, is an operator
that propagates data to only one of multiple output paths, as
opposed to sending data to all the output paths as Fork.

This behavior is found in many places in digital system
designs. For example, a Floating Point Unit (FPU) has par-
allel paths for additions, multiplications, divisions, etc. Each
path is triggered independently of the others. Another exam-
ple is a network router, where independent packages come
from different inputs, and propagates to a single output (based
on the destination and routing policy).

To evaluate the performance of Fluid Pipelines, we pro-
pose a new methodology that can evaluate Fluid Pipelines
and traditional Elastic Systems. We model Fluid Pipelines
and Elastic systems using Coloured Petri Nets (CPN) [14]
to determine the overall performance, which considers both
throughput and frequency. This is then used to find the opti-
mal pipeline configuration for a given design. This performs
faster than RTL simulation for all possible pipeline configu-
rations.

We observed that the presence of loops in the test cases for
the traditional elastic approach dramatically deprecated the
throughput, and consequently the system performance. Con-
trarily in Fluid Pipelines, the increase of circuit frequency re-
sulted in a performance increase up to twice the frequency.
The Fluid Pipelines area overhead is virtually zero compared
to the traditional elastic approach. Our results show im-
provements of up to 176% in performance, and 5% lower
power. With the use of CPN models, it is possible to explore
the Pareto frontier and select other interesting design points,
depending on the specific application, but also to have a
more fair comparison between Elastic Systems.

The contributions of this paper are:

• Fluid Pipelines (Section 4), an Elastic System evolu-
tion that improves the Pareto frontier by avoiding typ-
ical throughput loss typical in traditional Elastic Sys-
tems.

• A new evaluation methodology (Section 5) using Col-
oured Petri Nets for Elastic Systems and Fluid Pipelines.

• An evaluation (Section 7) of a FPU to quantify the im-
pact of traditional Elastic Systems and Fluid Pipelines.

2. RELATED WORK
Out-of-Order and Speculation have been evaluated in soft-

ware Dataflow Networks [1]. Dataflow network concepts are
used for task scheduling in parallel execution. The proposal

relies on speculating what dependencies are real or false de-
pendencies, thus need to trigger re-execution when a mis-
speculation happens. In our approach, we rely on the de-
signer knowledge of the logic to avoid such scenario.

High Level Synthesis (HLS) [17] is a technique to synthe-
size the code written in programming languages, as opposed
to Hardware Description Languages (HDLs). Using HLS,
designers can put effort into functional design, while tools
take care of pipelining in a process called scheduling. For in-
stance, Chao et al. [6] propose a scheduling algorithm capa-
ble of retiming and reducing the pipeline depth in loops, thus
it partially performs recycling. To some extent, HLS attacks
the same problems as Fluid Pipelines, but Fluid Pipelines
propose a lower level approach, giving the designer a more
fine-grained control over the final design. HLS could lever-
age Fluid Pipelines under the hood to enable recycling in
such loops, and in that regard, Fluid Pipelines and HLS can
be viewed as orthogonal techniques. In fact, that could im-
prove design time in HLS, because it could enable changes
in the pipeline configuration without the need to regenerate
RTL.

A formal approach to asynchronous logic has been pro-
posed [10]. This approach expresses logic operators as a
function of control signals (equivalent to those used in Elas-
tic circuits). The paper provides good insights on logic opti-
mizations considering 4 logic values (0, 1, NULL, busy), but
there is considerable overhead since each logic gate depends
on control signals. The formal approach proposed could be
adapted to a coarser grain, and thus, could be used in the
context of Elastic Systems.

In the context of Elastic Systems, different approaches
have been proposed to mitigate the throughput loss due to
the presence of sequential cycles. The use of an Eager Fork
operator [8] lets one of the paths to start executing even if
the parallel path still has its stop signal active. Neverthe-
less, semantics are not changed, and thus Eager Fork has
to wait until the second path resets the stop bit. This be-
comes problematic when only one of the paths is used, and
the other path takes a few cycles to reset the stop signal. In
such cases, the backpressure will propagate to the stages that
precede the Fork. Fluid Pipelines are designed to avoid such
scenarios by not waiting for parallel paths when there are no
dependencies between them.

Early Evaluation [2] has been proposed in the SELF frame-
work [8]. It is a more sophisticated mechanism that deter-
mines which inputs in merging paths are actually needed (for
instance, in a mux), and only waits for the inputs that are ac-
tually needed. The next token in the remaining inputs will be
ignored to maintain correctness. This can be implemented as
a counter that keeps the track of how many tokens need to be
dropped, or as a back propagation of anti-tokens that annihi-
late the first token they encounter. Early Evaluation has been
shown to improve the throughput in Elastic Systems in the
average case. The main issue is that even if a sequential loop
is not currently being used, it still limits the overall system
throughput.

LI-BDNs [18] are a generalized form of Elastic Systems.
They use First In First Out (FIFO) queues as the communica-
tion channel between modules. The main advantage is that,
the use of FIFOs creates natural clock region boundaries. In
LI-BDN systems, a stage-global enable signal is used for all



Clock Cycle 1 2 3 4 5 6 7 8

A 0 4 3
B 1 2 3

A+B 1 6 6

Figure 1: Elastic Systems functionality does not depend on the exact cycle
events happen, but rather on their order.
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Figure 2: Elastic buffers are the basic construct blocks of Elastic Systems
and can be viewed as queues with a limited size.

the state elements (registers). Therefore, a synchronous cir-
cuit can be transformed into Patient Circuits by “and”-ing
enable signals in all the registers of each module with the
global module enable. The global module enable signal in-
dicates a stall event. The increased buffering capacity due to
the presence of FIFOs improves the overall performance, at
the cost of more area overhead. Fluid Pipelines performance
is better than LI-BDNs and uses less area.

3. BACKGROUND
Elastic System is a system whose functionality only de-

pends on the order of its inputs and not their exact arrival
time [4]. An elastic execution example is shown in Figure 1,
the arrival of a valid token is represented by a number in a
given cell. When a result is produced, the token is consumed
and cannot be used anymore. Empty cells in the table denote
that no new data arrived in that cycle. Note that the latency
between events is arbitrary.

Events or tokens are meaningful data flowing through a
channel. A channel is a set of wires (i.e. bus) and its asso-
ciated control signals: Valid (V) and Stop (S)2, which deter-
mine three states: transfer (V = 1, S = 0), idle (V = 0) and
retry (V = 1, S = 1) [8].

Elastic Buffers (EBs) are storage units that replace regis-
ters, they include handshake signals both in the input and
output interface. Figure 2 shows the interface of an EB with
input and output control signals.

3.1 ReCycling and Retiming in Elastic Systems
To improve the frequency or decrease the area of Elas-

tic Systems, it is possible to move EBs across circuit blocks
(Retiming) [2] (Figure 3a), or to insert additional stages in
long wires [5] or in between combinational logic (ReCy-
cling) [2] (Figure 3b). Retiming preserves the sequential be-
havior of the circuit [2] and thus it can be applied to any type
of circuit mostly without penalties.

In the case of recycling, Júlvez et al. [15] observe that the
throughput of a system is limited to the sequential loop with

2Other equivalent naming conventions have been used, for in-
stance, Elasticity has been expressed in terms of FIFO opera-
tion [18].

F1 F2 F1 F2

(a) Retiming

F1 F2 F1 F2

(b) Recycling

Figure 3: Retiming and Recycling are used to improve the circuit fre-
quency, but recycling decrease the throughput of Elastic Systems when ap-
plied to sequential loops.
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Figure 4: Fluid Pipelines uses different operators to indicate the intended
functionality of a circuit and enable better design space exploration. Branch
and Merge are used when the relative order of operations can be broken,
while Forks and Joins enforce ordering. Note the difference in the handling
of “valid” and “stop” signals.

lowest throughput, and that the throughput of a sequential
loop can be calculated as the number of tokens in the loop
divided by the number of EBs in the loop. The throughput
of a cycle can increase with Early Evaluation depending on
how often each event occurs [15], but due to back-pressure,
there is still a limit on such mitigation. ReCycling is able to
reduce cycle time, but may reduce throughput in the case of
stage insertion in sequential loops [2, 5, 15].

4. Fluid Pipelines
Fluid Pipelines evolves the traditional Elastic Systems to

allow breaking the relative completion order. To implement
this behavior, Fluid Pipelines uses four types of operators:
Branch, Merge, Fork and Join operators (Figure 4) [9]. In
Figure 4a, Selection (sel) is a data-dependent selection sig-
nal that indicates to which output the data will propagate to.
The operators can be easily extended to more than 2 input-
s/outputs.

Branch is used when the datapath forks into multiple paths,
but data should propagate to only one of them, this choice is
data dependent and controlled by the selection signal. For
instance, an operation in an FPU only needs to propagate
to the appropriate functional unit, and the selection signal
is encoded by the operation bits. The Merge operates as
an arbiter: multiple senders compete for a single output.
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Figure 5: Toy case to illustrate the Elastic vs. Fluid approaches. Combi-
national logic is omitted, and Early Evaluation is assumed for elastic. Dots
represent registers with a token.

The sender that wins the arbitration propagates data. In our
FPU example, a Merge would be used at the output of the
functional units when results from each unit are collected.
Another way to think of the Merge is to notice that it fires
when at least one of its inputs contains valid data. This is
known as disjoint or-causality and introduces the or-firing
rule to the context of Fluid Pipelines. Disjoint or-causality
permits low latency arbitration [19]. For simplicity and with-
out loss of generality, the proposed implementation in Fig-
ure 4b has fixed priority and could cause starvation, but it
can be replaced with any of the existing elaborated arbitra-
tion schemes, such as Round-Robin.

Merge and Branch cannot be automatically inserted like
Fork and Join, because they alter the relative order between
events. As a result, the programmer is responsible for insert-
ing them when needed. For example, in a complex Floating
Point Unit, just one Merge and Branch pair is needed af-
ter the normalization and denormalization stages to indicate
that the floating operations can complete out of order. On the
other hand, the Fork and Join operators can be automatically
inserted in a similar way as the insertions performed in tradi-
tional Elastic Systems. Merge and Branch can be performed
with direct Verilog/VHDL instantiation or just code annota-
tions. In this paper, we used direct Verilog annotations, and
a more automatic solution is left for our future work.

As conceptual example of the power of Fluid Pipelines,
let us analyze the sample execution in the example in Fig-
ure 5, where circles represent combinational logic, boxes
represent EBs, and the dots inside boxes represent the pres-
ence of valid data (tokens). The paths are mutually exclusive
(each operation either takes the top or the bottom path), and
the mux near the output EB chooses the appropriate path.
The instructions can take either the bottom path or the top
path in Figure 5b. The execution traces for traditional Elas-
tic Systems and Fluid Pipelines are shown in Table 1.

The execution order of Fluid Pipelines is altered (Table 1),
note how in cycle 3, it is possible to move I3 to the bottom
path, while the top path is still executing. This re-ordering is
a result of the “or-firing” rule. This is fine, because that be-
havior was specified by the user, and not arbitrarily changed
by the tool. In a processor core, the reordering buffer is al-
ready doing such function, while in network-on-chips, the
re-ordering is usually not performed. Since this requirement
is application specific, it is left out of this manuscript. We
assume that, if needed, the re-ordering is performed in the
design. In the case where order should be maintained, regu-

Table 1: Sample trace for the toy case, Fluid Pipelines deliver higher
throughput then Traditional Elastic.

Elastic Fluid
Cycle in T1 T2 T3 B out in T1 T2 T3 B out

0 I1 I1
1 I2 I1 I2 I1
2 I3 I2 I1 I3 I2 I1
3 I3 I2 I4 I2 I3
4 I3 I2 I5 I2 I4 I3
5 I4 I3 I2 I6 I5 I2
6 I5 I4 I3 I6 I5 I6 I4
7 I6 I5 I4 I7 I5 I7 I6
8 I6 I5 I5
9 I6 I5 I7

10 I7 I6 I5
11 I7 I6
12 I7

lar Fork and Join operators (defining “and-firing” rules) must
be used, which cause the design to behave similar to a regu-
lar Elastic System.

4.1 Fluid Pipelines Deadlock Avoidance
In loop structures, deadlocks are a concern. Vijayaragha-

van and Arvind [18] show that, in Elastic Systems, dead-
locks come from extraneous dependencies, i.e., one output
of a module waits for an input that it does not depend upon to
fire. Another issue is the creation of a token in the output be-
fore the consumption of one in the input. This is specially a
problem in Fluid Pipelines since the designer has more free-
dom than in previous approaches. This is easily avoided by
adhering to the following design practices:

• No extraneous dependencies: If an output o of a mod-
ule does not depend on an input i of that module, then,
o should be produced regardless of the existence of i.
Also, the dependency list of o should be a subset of the
inputs of the module.

• Self cleaning: A circuit is self cleaning if whenever it
produced n tokens in its outputs, it has also consumed
n tokens from its inputs.

These directives do not restrict which designs are possi-
ble, but rather how to implement each design. To make it
clearer, let us consider the example in Figure 6. The syn-
chronous module described in the figure has a pair of inputs
(a and b) and outputs (c and d), the value of c depends on
the values of a and b, while the value of d depends only on
the value of b. Now, assume a designer wants to implement
that module as a Fluid Pipelines circuit. There are multiple
options for that.

The most straightforward implementation of the block fol-
lows the behavior described in Figure 7, which waits until all
the inputs have valid data, and until all the outputs can ac-
cept new data to perform the operation. This can cause dead-
locks depending on the context in which the block is used.
For instance, in cases where the output d is connected as a
feedback path to a, d will only produce output when both a
and b are available. This is a violation to the no extraneous
dependencies directive.

A simple solution to this case is the use of a Fork operator.
The Fork operator isolates the handshake handling, and thus
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Figure 6: Fluid Pipelines design uses a few design practices to avoid dead-
locks. Those are restriction on how to implement a given design and not on
which designs can be implemented.

always @ ( posedge c l k )
i f ( a . v a l i d && b . v a l i d )

i f ( ! c . s t o p && ! d . s t o p )
c <= f ( a , b ) ;
d <= g ( b ) ;
c . v a l i d <= t r u e ;
d . v a l i d <= t r u e ;
a . s t o p <= f a l s e ;
b . s t o p <= f a l s e ;

Figure 7: A straightforward implementation of a circuit may be deadlock
prone.

avoids the deadlock situation by avoiding the unnecessary
wait on a valid signal in a to propagate d. An implementa-
tion using Fork is shown in Figure 8.

The Self-Cleaning property is needed to avoid buffer over-
flow. Consider a circuit that produces n inputs per token con-
sumed. Now, let the output of this circuit be connected back
to its input. For a buffer with size m it is clear that after m/n
cycles, the buffer will be full, and a deadlock situation will
arise.

5. NEW EVALUATION METHODOLOGY
In order to find the optimal pipeline depth, a designer or

an automated tool must estimate the throughput of a given
pipeline configuration (i.e., number and position of pipeline
stages). To estimate the throughput of Fluid Pipelines de-
signs, we propose the use of Coloured Petri Nets (CPN) [14].
CPNs are used for design specification and evaluation based
on events/transitions and data/tokens which is what we need
to perform Branch-like operations.

Petri Nets can be defined as a bipartite graph of places and
transitions, connected by arcs. Places can contain tokens
and tokens have data value attached to them. The attached
value is the token colour. The state of the net (the marking)
is defined by the number of tokens in each place. The ini-
tial marking is changed when transitions fire. When a tran-
sition fires, tokens are subtracted from its input places and
are added to its output places according to arc expressions.
There is a capacity associated with each place that repre-
sents the maximum number of tokens in that place, and pre-
vents input transitions from firing (note that this is not part
of the original formulation of PNs, but has been proposed as
an extension). In CPNs, the tokens are typed (colour), and
transitions are type-dependent.

DEFINITION 1. A Coloured-Petri Net is a tuple CPN =
⟨P,T,A,Σ,C,G,E, I,Cap⟩:

• P is a finite set of places.

module fork ( in , out1 , ou t2 )
i f ( i n . v a l i d && ! ou t1 . s t o p && ! ou t2 . s t o p )

ou t1 <= i n
ou t2 <= i n
i n . s t o p <= f a l s e
ou t1 . v a l i d <= t r u e
ou t2 . v a l i d <= t r u e

endmodule

module f_and_g ( a , b , c , d )
fork ( b , b1 , b2 ) ;

always @ ( posedge c l k )
i f ( a . v a l i d && b1 . v a l i d && ! c . s t o p )

c <= b1 ;
c . v a l i d <= t r u e ;
b1 . s t o p <= f a l s e ;

i f ( b2 . v a l i d && ! d . s t o p )
d <= b2 ;
d . v a l i d <= t r u e ;
b2 . s t o p <= f a l s e ;

endmodule

Figure 8: Extraneous dependencies can be avoided by using fork to broad-
cast signals and isolating the false dependencies between stages.

• T is a finite set of transitions, such that P∩T =∅.

• A ⊆ (T ×P)∪ (P×T ) is a set of directed arcs. Let a.p
and a.t denote the place and transition connected by a
respectively.

• Σ is a finite set of non-empty colour sets.

• C : P → Σ is a colour set function which assigns a
colour set to each function.

• G is a guard function that assigns to each transition t ∈
T a guard function G(t) : (∅∪Σ)|•t| → {0,1}, where
•t = {p|(p, t) ∈ A}.

• E is an arc expression function that assigns to each arc
a ∈ A an expression E(a), such that the type of E(a)
should match C(a.p).

• I is an initialization function that assigns to each place
p ∈ P an initialization expression I(p), I(p) must eval-
uate to C(p).

• Cap : P → I is a capacity function that attributes to
each place a maximum capacity.

Firing Semantics: Let M, a marking function, map each
place p ∈ P into a set of tokens M(p) ∈C(p). Let G(t)(M)
(resp. E(a)(M)) denote the evaluation of G(t) (resp. E(a))
with the marking M. A transition t is enabled, and said to fire
when G(t)(M) = true (i.e., the guard functions are satisfied),
and ∀a ∈ {b|b = (p, t), p ∈ P,b ∈ A},E(a)(M) <= M(a.p)
(i.e., each input place contains the appropriated tokens), and
∀p ∈ t•,M(p)<Cap(p), where t•= {p|(t, p)∈ A} (no out-
put place is “full”). The firing updates the marking function
to M′(p) = (M(p) E(p, t)∪E(t, p)∀p ∈ P.

Timing: In order to evaluate digital circuits, we need to
account for timing, which is not included in CPN models.
In regular CPNs, only one transaction fires at a given cy-
cle. Without changing the underlying semantics of CPNs,
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Figure 9: CPN models can be used to estimate the overall throughput of
Fluid Pipelines and Elastic Systems.

we modify the model so that every transition that is enabled
at the beginning of the cycle fires. This is a more accurate de-
scription of digital circuits and will help determine the num-
ber of clock cycles it takes to execute.

We add one restriction to this formulation. The cardinality
of each expression must be 1; this means that for each arc,
only one token can be consumed/generated. Also, note that
guard functions can only depend on the incoming arcs to a
transition. This complies with the constraints defined pre-
viously, and thus, avoids deadlocks. The restriction on the
cardinality of expressions changes the formalism of CPNs,
and a formal analysis of the impact of it is out of the scope
of this paper and needs to be further explored in future work.

Figure 9 depicts how the Fluid Pipelines’ operators are
modeled as CPN transitions. Circles represent places, bars
represent transitions, and dots represent tokens in transitions
that are not colour dependent while letters represent col-
oured tokens. In case of Merge operators, the semantic does
not define which transition has priority, and thus, conceptu-
ally they can occur at the same time, which is compatible
with the theoretical formulation of Fluid Pipelines. While
places correspond to elastic buffers, transitions do not have
a direct translation from the circuit model. However, a map-
ping can be defined between the guard functions and the
handshaking logic.

6. EVALUATION SETUP
To evaluate Fluid Pipelines, we consider a fully compliant

IEEE-754 in-house FP Unit, designed both as synchronous
(for previous approaches), and annotated with Fluid Pipelines
operators. It has a simple structure, but is sufficient to demon-
strate how Fluid Pipelines can yield better performance com-
pared with previous Elastic Systems.

A functional block diagram of the FPU unit is presented
in Figure 10a. This is a simple structure with multiple par-
allel paths and simple loops. The CPN model used for the
performance evaluation is shown in Figure 10b, considering
Fluid Pipelines. In this case, the Merge and Branch opera-
tors are used. Note how the division and square root modules
use the Branch to choose between the loop when the oper-
ation is computing or sending the result to the queue when
done. Both division and square root take 64 cycles to com-
plete. For regular elastic, the Fork and Join operators are
used instead.

Fluid Pipelines are compared against SELF [2] and LI-
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Figure 10: CPN modeling can be used to evaluate system performance.

BDNs [18]. To implement Elastic Systems, we use an EB
implementation with storage capacity of 2. For LI-BDNs,
we use queues of size 8. In the SELF implementation adding
pipeline stages to all the paths that are parallel to the critical
path will yield best performance and that is the performance
we have considered in our evaluation.

6.1 ReCycling
Our evaluation considers the addition of extra pipeline

stages to each design. Pipeline stages are always added to
the blocks with the worst delay. We assumed perfect recy-
cling/retiming (perfect balancing of delays). Although this
is usually not possible, this approximation is good enough3.
It is only necessary to ensure that, after the insertion of a
pipeline stage, the two resulting stages have a delay smaller
than the second most critical path before insertion. We add
2FO4 delay per added stage to account for the register over-
head.

The performance metric used is throughput × f requency
(equivalent to IPS), since ReCycling changes both IPC and
timing, thus those are combined. Also, it has been shown
that unless power is considered, the ideal pipeline for a de-
sign is extremely deep [12, 13]. Thus, we consider energy-
delay (ED). We observe that the logic energy consumption
(both dynamic and leakage) remains roughly constant. How-
ever, the dynamic clock energy consumption increases lin-
early with both frequency and number of registers, and the
leakage clock energy increases linearly with the number of
registers.

3The requirement is that the delay on each one of stages after the
split will be smaller than the delay of the second most critical path.
For instance, say the critical path in stage 1 has a delay of 1ns,
whereas the critical path in stage 2 has a delay of 0.7ns. We want
to add a new register to stage 1 such that the delays of the newly
generated stages are less than 0.7ns, but perfect balance between
the stages is unnecessary.
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Figure 11: Fluid Pipelines are able to push the Pareto frontier for the FPU
by improving both performance and energy.

7. EVALUATION
We start our evaluation by showing the design space ex-

ploration of the different approaches. In particular, we show
that Fluid Pipelines are able to push the pareto frontier to-
wards better performance and energy efficiency. Then, we
proceed to explain the detailed results, such as the maxi-
mum frequency, throughput and energy-delay for different
pipeline configurations for the FPU.

Fluid Pipelines push the design space towards more en-
ergy efficiency and better performance. This is mostly ac-
complished by avoiding false dependencies between concur-
rent paths. For most of the design points, Fluid Pipelines
were able to deliver both better performance and energy.
When comparing SELF with LI-BDNs, the former was able
to obtain better performance, but at the cost of energy (and
area, which was not evaluated here).

The Pareto frontier (E vs D) is shown in Figure 11). LI-
BDNs result in increased energy consumption due to the in-
creased storage, but are able to improve the performance,
when compared to SELF. Fluid Pipelines present the best
performance and energy out of the three schemes, since it
does not requires extra storage. When compared to SELF,
Fluid Pipelines were able to improve the best performance
by 120%, with 21% less energy, or improve the best energy
by 12% with 230% improvement in performance. When
compared to LI-BDNs, Fluid Pipelines improved the best
performance by 33%, using 83% less energy, or improve the
best energy by 38% with 118% better performance.

The results show that Fluid Pipelines designs are both
more energy efficient and higher performance than designs
possible with current Elastic Systems.

7.1 Detailed Results
The maximum throughput for each of the models is sum-

marized in Table 2. This is calculated by the use of a syn-
thetic workload that only considers the best path (addition,
subtraction and multiplier in this case). The initial pipeline
depth in the design is 6, thus, there is no data for any con-
figuration with less stages than 6. Fluid Pipelines are able
to deliver constant throughput regardless of the number of
pipelines. The throughput of SELF decreases when there

Table 2: Maximum FPU throughput for the different evaluated models.
Fluid Pipelines deliver constant maximum throughput, regardless of the
number of pipeline stages.

Pipeline stages Fluid Pipelines SELF LI-BDN
6 1 1 1
7 1 1 1
8 1 1 1
9 1 0.67 1
10 1 0.50 1
11 1 0.40 0.83
12 1 0 37 0.74
13 1 0.33 0.67
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Figure 12: In Fluid Pipelines, circuits can be recycled with higher through-
put then possible with Elastic Systems, and thus for better system perfor-
mance.

is additional pipeline stages in the sequential loops. In the
case of LI-BDNs, the extra buffering helps maintaining the
throughput even after the insertion of a few stages in the
loops, but after a certain number of insertions, there is back-
pressure due to the dependencies.

Maximum throughput is not a realistic metric. Thus, we
calculate the average throughput over a million random in-
structions, we then report the effective frequency, shown in
Figure 12. Note that effective frequency does not necessar-
ily increase with the number of pipeline stages. This is due
the fact that despite the frequency gain with the new pipeline
stage, the reduced throughput reverts the gains and reduces
the overall performance. Since in the average case the loop
path is used, there is a reduction in the gap between Fluid
Pipelines and the other models. The same fact also causes
reduction in the throughput of both SELF and LI-BDN. De-
spite the reduction in the gap, Fluid Pipelines are still able
to deliver a considerably improved performance compared
to SELF (120%), and slightly improved performance com-
pared to LI-BDN (40%), but using less resources.

To take into account the extra stages added in the case
of SELF, we use energy-delay product (ED), that considers
both performance and energy. These numbers are reported
in Figure 13. The energy overhead caused by the extra stor-
age in LI-BDNs reverses the advantages when compared to
SELF. When comparing Fluid Pipelines with SELF, Fluid
Pipelines are able to improve the best ED point by improving
performance by 176%, with 5% better energy. Alternatively,
Fluid Pipelines are able to deliver 120% better top perfor-
mance (with 21% less energy). When we compare Fluid
Pipelines with LI-BDNs, Fluid Pipelines improve the best
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Figure 13: Fluid Pipelines are able to improve the best ED point of the
FPU, pushing the depth of the pipeline.

ED point by improving both performance (by 163%) and en-
ergy (by 25%). Fluid Pipelines are also able to deliver 33%
better top performance (with 83% less energy).

8. CONCLUSION
A new abstraction for Elastic System, Fluid Pipelines, was

proposed. By using Fluid Pipelines, the designer has the op-
portunity to extract out-of-order execution from the circuit,
whenever possible, and thus boost the design performance.
Fluid Pipelines push the Pareto frontier of designs, by im-
proving both performance and energy. In our experiments,
over SELF, Fluid Pipelines improve the optimal energy-delay
configuration of a FPU design by improving energy by 5%
and performance by 176%. Alternatively, Fluid Pipelines
were able to reduce the lowest energy point by 12%, with
120% better performance, or improve the top performance
by 33% (but with 83% less energy).

We present a modeling framework for the proposed ab-
straction, using Petri Nets, which allows us to evaluate the
system run-time behavior, and is a powerful tool for early de-
sign space exploration of Fluid Pipelines. This framework is
used to evaluate Fluid Pipelines against other Elastic System
approaches, showing an improvement in the overall through-
put of the systems. We argue for the use of this simple tool
when evaluating simple event-driven systems.

Fluid Pipelines open many research opportunities in EDA
and architecture like automatic repipelining with larger codes
than the evaluated FPU. Fluid Pipelines can also benefit from
new DSLs for hardware description, and further work to in-
clude RTL and gate level evaluation of the proposed model
and transformations which in turn leads to a better under-
standing of the overheads of the new technique, as well as
better understanding of the design trade-offs in terms of area
and power.
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