
Processor Verification with hwBugHunt

Sangeetha Sudhakrishnan, Liying Su, and Jose Renau
Dept. of Computer Engineering, University of California Santa Cruz

http://masc.soe.ucsc.edu

ABSTRACT

Functional verification of modern processors and complex
ASIC designs is a challenging task. Verification is frequently
more complex than the design itself. The time required to find
the exact source of an error in complex designs represents a
significant part of the verification process. Most test suites
only report the existence of a bug, but are unable to ultimately
discover the line of HDL code where the bug is located. De-
signing new tools and techniques that reduce these overheads
is very important to keep the verification costs under control.

This paper proposes a novel HDL error-discovery tool (hw-
BugHunt) to pinpoint the line of code where a bug is located.
hwBugHunt works by instrumenting Verilog code and gather-
ing statistics during the execution of various testbenches. The
proposed infrastructure is tested on an Alpha-like 21264 Ver-
ilog implementation. Our evaluation shows that hwBugHunt
pinpoints 62% of the bugs introduced on IVM, and it does so
with a low overhead and high accuracy.

1 Introduction
Current development costs for top-of-the-line processors are
staggering, and are doubling every four years [7]. This cost
is increasingly attributable to the growing difficulty to design
and verify circuit designs – called the Design and Verification
Gap [3]. As a result, according to the ITRS 2002 update [3],
”the increasing level of risk that design cost and design quality
present to the continuation of the semiconductor industry” is
of serious concern. Verification is widely recognized as the
major bottleneck.

The bulk of the time spent on processor front-end design is
verification [11] – over 50% in many cases. This is also true
for top of the line ASIC designs, where the design verifica-
tion requirements can be broken down roughly into 42% for
testbench development and 58% for debugging [10]. Clearly,
techniques that reduce testbench development and debug time
can significantly increase the productivity of the design teams.
This leads to reduce the time to market and overall design
cost.

The work of this paper focusses on front-end verification
which strives to correlate the implemented design with the
original design specifications.

Designs are validated with testbench suites. However, the
testbench-based method suffers from the limitation that while
a bug is detected, the offending line of HDL is not. Thus,
it may still take a designer substantial effort to localize the

specific line of code that caused the problem (58% of the
time [10]). This can result in a tedious debug process where
a designer may have to search through thousands of Ver-
ilog/VHDL lines of code.

To ameliorate the verification process, hwBugHunt is pro-
posed – an infrastructure to automatically pinpoint lines of
code where HDL functional bugs are located.

To accomplish this, hwBugHunt builds on top of the cov-
erage principle. The program instruments the original HDL
(Verilog) code to gather coverage metrics, and creates multi-
ple coverage checkpoints as the testbench tests different in-
puts. By analyzing the differences between coverage check-
points, hwBugHunt is able to pinpoint the line in source code
where the bug is located.

hwBugHunt works with any type of testbench, but this pa-
per focuses upon the most challenging case: the integration
testbench on a modern out-of-order processor. This testbench
verifies that retiring instructions generate the same architec-
tural state. Once a bug is flagged, the proposed infrastructure
automatically finds a list of possible bug sources in the HDL
code.

There has been much work done in locating the source for
errors by looking at the erroneous netlist [2]. The output of the
method is a set of locations in the netlist that is the cause for
the error. In the work, [6] the authors compare several SAT-
based and simulation based methods of locating the source
of an error. Most of the work that has been done identify
the erroneous gate that causes an error or fault. Our work
differs from the above mentioned because, we pinpoint the
line of HDL code that causes the testbench to fail and not the
erroneous line at the gate level.

In the recent years, there has been work that focusses on
the problem of finding bugs in traditional programming lan-
guages such as C/C++/Java. The most relevant work includes
DIDUCE [9] and Daikon [5]. These two tools find bugs by ex-
tracting code invariants during a training phase and enforcing
those invariants during the testing phase. Although detecting
invariants has a great potential for HDL languages like Ver-
ilog, hwBugHunt gains its advantage by tracking multiple cov-
erage metrics instead of variable values. Further, hwBugHunt
has unified the training/testing phase and our work is based
on coverage analysis instead of invariant deduction. To our
knowledge, hwBugHunt is the first tool to use this method as
a way to find bugs in HDLs.

IODINE [8] is a tool designed by the same author as
DIDUCE to work with processor synthesis. IODINE is ca-
pable of extracting design properties using dynamic analysis.
This information is used to extend the test suite and detect

possible problems in the design. This is quite different from
hwBugHunt which searches for specific lines of code that are
the source of error.

hwBugHunt is complementary to Assertion Based Verfica-
tion (ABV), as it adds value to the debugging phase by local-
ising the source of the bug. ABV can be used for finding and
localising the bugs. To employ ABV, there is need to modify
the code by typing in the assertions at appropriate locations in
the source code. With hwBugHunt the focus is on localising
the bug as we rely on the testbench to detect it and there is no
need to modify the source code.

To test the proposed infrastructure, an HDL design with in-
jected errors is required. For that purpose, several bugs are in-
troduced into the IVM [12] HDL processor description. IVM
is a synthesizable Verilog implementation of an Alpha-21264.
It is a 4 issue, out-of-order, superscalar processor capable of
executing a subset of SPECint. To have a fair evaluation, a
representative sample of bugs found in a typical design needs
to be inserted in IVM. This requires an assortment of bugs of
different types. To accomplish this, the bug classification re-
ported by Al-Asaad [1] is followed. For each non-language
specific class of bugs, three different bugs are created.

Bug-finding-tools need to be evaluated by their accuracy
to find bugs, the percentage of false positives (correct state-
ments incorrectly flagged as errors) and execution overhead.
For example, a tool with many false positives is probably use-
less even if it is able to find every bug. hwBugHunt tries to
minimize the number of false positives as it is generally better
to ignore a given bug rather than reduce the entire program
efficacy by returning many false positives. Further, the sim-
ulation overhead must be minimized. Given the time-critical
nature of design verification, this coverage analysis must be
fast.

For the IVM processor analyzed, hwBugHunt correctly pin-
points 62% of the bugs. On average, for the correctly located
bugs, there are just 0.6 false positives. hwBugHunt keeps the
overhead to a minimum even for the non correctly located
bugs (38%) where the average number of false positives is just
3.1 (i.e.,) hwBugHunt reports on an average just 3.1 lines of
HDL code as being the source of the bug when in reality they
are not. The result is a tool that significantly reduces debug
time on modern processors.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed hwBugHunt infrastructure. Section 3 de-
scribes the evaluation setup. Section 4 evaluates the accuracy
and overheads of the models. Section 5 presents conclusions
and future work.

2 hwBugHunt
Figure 1 shows the main steps followed by the functional veri-
fication teams. Whenever a bug is detected, engineers need to
locate it. To do so, engineers, typically, generate an execution
trace history or Value Change Dump (VCD) to find a given
bug. Once all the outstanding bugs are solved, engineers have
to decide whether the test suite is sufficient or whether they
still need to add additional tests or expand the inputs set. A
test suite is considered ”good enough” when a specific set of
HDL coverage targets are met, and when no outstanding bugs

remain.

Instrument
HDL

Run
test suite

Bugs
Detected?

Run
test suite

No Yes

Expand
test suite

Enough?

Finish

YesNo

Bug
solve

hwBugHunt

Figure 1: Verification work flow.

hwBugHunt slightly modifies the traditional verification
work flow. As Figure 1 shows, three new steps are required
once a bug is detected. First, HDL code is instrumented (Sec-
tion 2.1). Second, the test suite is run to gather information
(Section 2.2), and finally, the bug-finding algorithm is run to
find the specific location of the bug (Section 2.3).

2.1 HDL Instrumentation

In this work hwBugHunt instruments the code adding a pre-
processing path. hwBugHunt reads a Verilog file and gener-
ates instrumented Verilog files. The instrumentation is done
to gather metrics for line coverage and toggle coverage. The
instrumentation done provides a unique identifier for the cor-
responding line of code. In the case of toggle coverage, the
instrumentation is done so that any change in value is kept
track of. In addition to the coverage metrics, the instrumen-
tation of the code also keeps track of whether the testbench
reports a pass or fail. We call this instrumented code as Cov-
erage Mark. If an error is detected, the simulation is halted
and the gathered statistics are dumped to the disk. There is no
need for any manual intervention as this is done automatically
by the algorithm.

2.2 Gathering Statistics

Traditional coverage simulators keep only one coverage
checkpoint, which summarizes the coverage utilization for the
whole execution. The key difference, between the method
used to instrument HDL code by hwBugHunt and those of
more traditional coverage gathering methods, is that hw-
BugHunt creates multiple coverage checkpoints as the design
under test executes. Instead, hwBugHunt creates a new cov-
erage checkpoint each time an instruction retires. Each cov-
erage check point is a collection of Coverage Mark that occur
since the last coverage check point. The advent of multiple
coverage checkpoints allows for improved bug-searching.

Figure 2 shows the DUT running at the same time as the
architectural simulator. Each time that a Coverage Mark is
found (either a new line of code executes, or a wire or register
toggles), it is added to the current coverage checkpoint. hw-

2

HDL Processor
(DUT)

Simulator
(testbench)

Time

=? =? =?

OK OK
Not-OK

(bug detected)

Coverage Checkpoints

Figure 2: Execution time line as the simulator verifies
the results from the DUT.

BugHunt creates a new coverage checkpoint each cycle that
an instruction retires. Conceptually, this would require nearly
as many checkpoints as execution cycles. This would repre-
sent a significant memory overhead. However, it is not nec-
essary to keep all the checkpoints as most bugs can be de-
tected a few hundred cycles after they happened. This value
is processsor dependant. A narrower processor may require
fewer cycles than a processor with a deeper pipeline. Al-
though configurable, hwBugHunt keeps a list of 100 active
checkpoints. Once checkpoint 101 is created, the two oldest
coverage checkpoints are joined or collapsed.

hwBugHunt uses three types of logic operations to man-
age checkpoints. Let C1 and C2 represent two random check-
points.

Join C1 ∪ C2
And C1 ∩ C2
Diff C1 - C2

Table 1: Basic coverage checkpoint operations used by
hwBugHunt.

Join merges two coverage checkpoints, this is, it does a
union of the two coverage checkpoints under consideration.
And finds the common Coverage Marks between two check-
points. The Diff operation corresponds to an inverted implica-
tion in boolean logic.

2.3 Bug Find Algorithm

Once the instrumented test suite finishes execution, it provides
hwBugHunt with a collection of runs. Each run has up to 101
checkpoints 1. The test suite, obviously, is composed of multi-
ple tests – some of them run without detecting the bug, we la-
bel these successful tests as “pass run.” Some tests, however,
detect the bug and subsequently fail. We label the negative
tests as “failed run.” Note, that some pass runs may contain a
bug that went undetected.

The pass runs have multiple coverage checkpoints with
Coverage Marks that did not detect the bug. hwBugHunt
Joins every OK checkpoint into a single coverage checkpoint
(OK coverage checkpoint), failed runs include OK and not-
OK checkpoints. Therefore, it is unclear which coverage
checkpoint has the Coverage Mark associated with the bug.

1A run has less than 101 checkpoint only if the bug is detected before
creating the coverage checkpoint 101.

In the failed runs the testbench fails after the bug has been
detected. However, the bug could have occurred inside the
current checkpoint or anywhere in the previous checkpoints.

Therefore, for each Coverage Mark, we need to calculate
a confidence value that this specific Coverage Mark is the
source of the bug. From the OK and not-OK gathered cov-
erage checkpoints, four discrete cases emerge as shown in the
Equations numbered 1 through 4.

marks not present in pass run & marks present in failed run (1)
marks present in pass run & marks present in failed run (2)

marks not present in the pass run & marks not present in the failed run (3)
marks present in pass run & marks not present in failed run (4)

In equation 1, we find a Coverage Mark in the failed run
that is not present in the pass run. This means that the instruc-
tion corresponding to this Coverage Mark got executed in the
failed run and was not executed in the pass run. Since, this
Coverage Mark is found in the recent checkpoint, the proba-
bility that this instruction caused the testbench to fail is high.

In equation 2, we find a Coverage Mark in both the pass
and the failed runs. This means that the instruction associated
with the Coverage Mark was executed during one or more of
the pass runs and during the failed runs. Such an instruction
can be the cause for a bug, but we cannot deduce anything
from this scenario.

In equation 3, we find that a Coverage Mark is not found in
both the pass and in the failed runs. This means that the cor-
responding instruction was not executed during the program’s
run, hence cannot be the source of the bug.

In the case of Equation 4, we see that a Coverage Mark
that happens during the pass run but does not happen during
the failed run. This means that an instruction that executes in
the pass runs do not get executed in the last 100 cycles of the
failed runs. This may have caused the testbench to fail. This
Coverage Mark is marked with a low confidence.

The compound confidence of each Coverage Mark is cal-
culated as shown in the following equation:

confidence = count(# of marks not present in pass run &
of marks present in failed run) *a

+ count(# of marks present in pass run &
of marks not present in failed run)*b

+ count(# of marks not present in pass run &
of marks not present in failed run)*c

+ count(# of marks present in pass run &
of marks present in failed run) *d

A confidence value is generated for each Coverage Mark.
As a result, to reduce false positives, only Coverage Marks
with the highest confidence need to be reported as potential
bug locations. Following this rule of thumb, we only report
the locations for the top 10% elements in the confidence rank-
ings. For example, if there are 50 bugs, each of them with
a confidence from 1 to 50, only the top 5 potential bugs are
reported.

The pseudo-code for the Bug Find algorithm shown in Fig-
ure 3 quickly finds the confidence for each Coverage Mark. To
simplify the algorithm parameter selection, we use a = 1 and
b = c = d = 0. The algorithm concatenates the OK coverage
checkpoint with a subsection of each failed run (past). The
last 100 coverage checkpoints of the failed runs are joined to-

3

gether (recent). Once the two temporal checkpoints are avail-
able, a Diff operation is performed. The resulting coverage
checkpoint has a list of ”possible” bug locations. The algo-
rithm reports each Coverage Mark or the bug location with a
confidence.

confidence = 0
for_each_checkpoint in Failed run { |nok|
for_each_checkpoint in Pass run { |ok|
confidence++
Join all ok ckps with oldest nok ckp
past = Join ok[0:100] nok[0]
Join recent nok ckps
recent = Join nok[1:100]
What did happen on the last failed run?
res = Diff recent past

for_each_mark in res { |mark|
counter[mark]++

}
}

}
for_all_marks { |mark|
puts mark, 100*counter[mark]/confidence

}

Figure 3: Bug Find algorithm.

Both the Join and the Diff functions run in O(n), where n
is the number of coverage checkpoints per run (100+1). As
previously stated, the number of coverage checkpoints is re-
stricted to 100+1 active checkpoints in order to reduce mem-
ory overheads. Therefore, assuming that there are m tests, the
overall complexity of the Bug Finding algorithm is O(m ∗n).

3 Evaluation Setup
To evaluate the proposed system we need a representative set
of bugs injected into the design under test. To have a fair
evaluation, we create random bugs following the bug classifi-
cation [1]. For each bug category we create 3 bugs with some
pass and some failed runs. The bug number and category rela-
tion is shown on Table 2. We do not introduce any Finite State
Machine (FSM) bugs because the IVM implementation only
has one explicit FSM. Therefore, we can not create multiple
FSM bugs.

Design Error Category Bugs Introduced

Wrong signal source 102, 113, 115
Conceptual error 207, 210, 211
Case statement 301, 302, 304
Wrong constant 601, 602, 603
Logical expression wrong 702, 703, 704
If statement 1101, 1102, 1104
FSM error none
Wrong operator 1501, 1502, 1505

Table 2: Bugs introduced to IVM.

The created bugs are introduced into the Illinois Verilog
Model (IVM) [12]. IVM implements a subset of the Alpha
21264 microarchitecture. To test the bugs introduced, we
use the test suite provided with the IVM infrastructure. This
test suite is built around simplescalar [4]. To drive the archi-
tectural simulator, we run a subset of SPECint (bzip, crafty,
twolf, vpr, gcc, mcf, gap) for over 20K instructions for each
test. In addition, we also use some kernels that test branches
and logic operations.

4 Evaluation
4.1 Overall Results

The results of the Bug find algorithm is summarized in Ta-
ble 3. The first column is the BugId, bugs are categorised
based on the classification reported as in Table 2.

The results from the Bug Find algorithm provides a list of
several lines of code that may be the source of the bug. Using
hwBugHunt confidence estimation, the lines of code flagged
by the algorithm are ranked. A 1st position on the ranking
indicates that the bug was correctly located with 0 false posi-
tives (correct lines of code incorrectly flagged as errors).

In some cases, hwBugHunt reported several lines of code
with the same ranking, in such cases an average was taken
and this was used to report the rank. For example Bug603, 11
lines were marked with the same ranking, so an average was
taken to determine the rank (rank: 6 = 1+2+...+11/11). Hence,
Bug603 was located with 5 false positives reported. On an
average we found that there were only 0.6 false positives for
every correctly found bug.

In some cases hwBugHunt was not able to locate a source
for bug without reporting several lines of code. To minimize
the false positives reported, hwBugHunt ignores a bug when
the confidence is lower than (10%) of the top confidence re-
ported. This makes the false positives equal to the reported
bugs when the bug is not found or leser when found. On an
average we found that only 3.1 false positives were reported
for every bug analyzed. Columnns 2, 3, 4,5 show whether the
bug was located or not, the ranking, the confidence and the
top confidence for each bug.

The sixth column, ’Reported’ shows the number of bugs
reported in the top (10%) of the highest confidence. The sev-
enth column in the table shows the number of false positives
reported.

A total of 16 different SPECint bencmarks were used. The
eighth and ninth columns in the table show the number of
Pass-runs (runs where the bug was not located) and the to-
tal Failed-runs(where the bug was located). In some cases,
these 2 columns do not add upto 16, that reason was because
for some of the bugs the tests were failing in the very first few
cycles.

From the 21 bugs analyzed, hwBugHunt is able to correctly
locate 13 bugs in the top 10% confidence (Reported). These
reported bugs are localized with high accuracy. On average,
correctly located bugs are reported in the 1.6 ranking position.
Eight of them are reported as the first ranking position. This
has clear advantages to reduce the bug searching time.

Eight (38%) of the introduced bugs are not located. As
the detailed results section shows, there are two major rea-
sons: silent bugs and not enough Coverage Marks. Silent
bugs are triggered bugs not detected by the test suite. The
problem with those bugs is that the Bug Find algorithm (Sec-
tion 2.3) assumes that the OK run does not have Coverage
Marks for the bug. Since the bug is not detected and the Cov-
erage Marks associated with the bug are set, the confidence
for finding such bugs decreases. This happens in bugs like
Bug601 and Bug703 where the bug is notified by in a position
with too low confidence.

The lack of related Coverage Marks further prevents hw-
4

Bug Located Ranking Confidence TopConf Reported FalsePos pass runs failed runs

102 Yes 1 64% 64% 1 0 12 4
113 No NA NA 36% 6 6 13 3
115 Yes 1 55% 55% 9 0 11 5
207 Yes 1 56% 56% 1 0 6 10
210 No 31 32% 63% 3 3 5 10
211 No 312 3% 25% 2 2 6 9
301 Yes 1 45% 45% 5 0 4 12
302 Yes 1 28% 28% 2 0 5 11
304 Yes 2 60% 60% 4 1 7 5
601 No 238 10% 44% 3 3 7 9
602 Yes 1 50% 50% 4 0 12 4
603 Yes 6 20% 20% 11 5 11 5
702 Yes 1 20% 20% 1 0 10 5
703 No 53 11% 30% 4 4 5 9
704 No 6 30% 38% 3 3 4 10
1101 Yes 2 68% 68% 3 1 10 6
1102 No NA NA 40% 1 1 9 7
1104 Yes 1 36% 36% 3 0 5 11
1501 Yes 1.5 14% 14% 7 0.5 9 7
1502 Yes* 1 37% 37% 2 0 4 11
1505 No NA NA 16% 3 3 1 14

Found Avg. 13 Yes 1.6 43% 43% 4.1 0.6 8.9 7.4
Not Found Avg. 8 No – – 36% 3.1 3.1 6.25 8.9

Table 3: hwBugHunt overall results for all the bugs analyzed.

BugHunt from localizing certain bugs. For example, Bug1102
and Bug1505 are not localized at all. This is because there
are no Coverage Marks associated with these bugs. The solu-
tion to this approach is to introduce additional Coverage Mark
types on the instrumented HDL code. This is left for further
work.

Although several bugs are not located, hwBugHunt keeps
the overhead to a minimum. Minimized overhead is one of
the design principles of hwBugHunt. This is achieved on all
the bugs where the number of false positives is just 3.1. This
means that even for the not located bugs, just analyzing 3.1
potential bugs is enough to decide to fall back to more tradi-
tional bug detection methods. Together with the low execu-
tion overhead and success rate of (62%), we believe that hw-
BugHunt will contribute effectively to reducing the time and
effort required in verification.

4.2 Detailed Results

We now proceed to evaluate some of the successes and fail-
ures of hwBugHunt. This involves a more detailed analysis
such that the benefits and shortcomings of hwBugHunt are
well understood.

To perform this analysis, we specifically analyze the results
in Table 3 and each failing bug is individually evaluated.

Bug113 swaps the names of the stores wires on the ROB.
IVM can retire up to 2 stores per cycle, this bug performs
the retirement out of order for two consecutive stores. There
are two reasons why this bug is not detected: lack of failing
test suites and Coverage Marks. Bug113 only has one failing
test. In addition, it is not detected because many stores can
still retire correctly (both are set or unset), and there is no
Coverage Mark trying to track when one store is retired and
not the other.

Bug210 loses registers when the processor pipeline stalls.
The problem with this bug is that its detection requires several
hundreds cycles. The testbench does not detect a bug until the
processor pipeline deadlocks due to lack of registers. A more
detailed testbench that tracks the physical register used by the

retiring instruction should suffice to detect this bug.
Bug211 changes the recycle policy on the ROB. This bug is

not detected due to a similar reason as Bug113. Nevertheless,
several of the top 10 bug rankings point to the ROB file.

Bug601 changes the opcode for which a shift operation is
performed. The bug is not detected because the alternative
opcode generates similar results for several tests. As a result
the ranking decreases to 238.

Bug703 and Bug704 are not detected, the reason being the
short length of the pass runs. As a result, the bug find algo-
rithm produces low confidence values even for the most con-
fidence bug (Confidence). Increasing the test suite with tests
that do not fail would improve the reporting accuracy.

Bug1102 is not reported on the top 10% confidence sample
(Reported). This bug modifies the rename logic by selecting
an incorrect forwarding on the group of instructions renamed.
The Coverage Marks inserted are not enough to localize the
bug because all the related Coverage Marks are set by fail-
ing and not-failing testbenches. Unless additional Coverage
Marks are tracked the bug could not be detected.

Bug1502 is detected, but the variable reported is not the
reason for the bug but a cause of the bug. Bug1502 incor-
rectly searches the oldest load in the load queue to do for-
warding. hwBugHunt is not able to detect the incorrectly up-
dated pointer, but it detects that the load id generated for some
instructions as potential bugs.

Bug1505 is not detected due to the lack of pass runs. This
bug incorrectly enables store instructions. As a result, only
two small tests that do not perform memory operations are
able to pass the test. Although hwBugHunt ranks the memory
module 2 out of the 3 false positive reported, hwBugHunt is
unable to locate the source. Adding additional pass tests could
improve the accuracy.

4.3 Sensitivity Analysis

To better understand hwBugHunt, this section performs two
sensitivity studies. First, we partially deactivate different cov-
erage metrics. Second, we introduce two bugs at once to see

5

the effectiveness of hwBugHunt with multiple bugs.
Coverage Sensitivity: hwBugHunt instruments the HDL
code to gather multiple coverage metrics. Each of them has a
different instrumentation overhead. While line coverage has a
smallest performance overhead, toggle coverage has the max-
imum performance overhead. To verify the importance of the
different coverage metrics gathered, we deactivate some of
them and analyze the accuracy of the bug finding algorithm
when less coverage information is provided.

With line coverage only, most of the bugs are missing.
More interesting is the case when all but the toggle cover-
age are activated. The resulting simplified framework locates
7 bugs instead of 13 bugs. Removing the toggle coverage
only improves the accuracy of Bug704. While the default hw-
BugHunt ranks this bug in 6th position, without toggle cover-
age the same bug is ranked on 2nd position.

For the bugs analyzed, we conclude that the four types of
coverage utilized are required.
Multiple Bugs Sensitivity: hwBugHunt is built around the as-
sumption that one bug happens at a time. Obviously, several
bugs can happen simultaneously, and different testbenches
can fail due to different bugs. To evaluate the effectiveness of
hwBugHunt under such conditions, we activate several bugs.

When Bug302 and Bug1104 are active at the same time,
hwBugHunt fails to locate them. Both bugs happen on the
same file (data cache). When both are active, hwBugHunt pin-
points them but not on the top 10% confidence.

In another experiment, Bug207 and Bug301 are active at
the same time. In this case, hwBugHunt correctly finds both
bugs in the top 10% confidence.

Mixed results are achieved with Bug301 and Bug601. In
that case, only the Bug301 is located on the top 10% confi-
dence. Nevertheless, once the bug is solved Bug601 can be
studied in isolation and therefore located correctly. A simi-
lar result is achieved when Bug302 and Bug702 are activated
simultaneously. In this case, only Bug302 is located by hw-
BugHunt.

5 Conclusions
hwBugHunt targets the 58% part of the verification pie that
accounts for debugging [10] This work puts forth an attrac-
tive means for reducing a substantial percentage of the time
spent during debugging. With verification being recognised as
a major bottleneck in the design cycle, tools like hwBugHunt
that target specifically to cut down the costs of verification
can have a huge impact on lowering the overall development
costs.

Although there are many tools on the market to reduce ver-
ification costs, to our knowledge they focus on many aspects
of verification like bug detection, formal verification, detect
the faulty gate in netlist, and/or speedup the simulations, but
none of them pinpoint the line of HDL code where the bug
is located. The closest thing are lint tools, but those tools al-
ways perform static checking and never use dynamic informa-
tion provided by testbenches. As a result, we see this work as
highly novel with a great potential impact to the verification
industry.

Acknowledgments
We like to thank the reviewers for their feedback on the pa-
per. This work was supported in part by the National Science
Foundation under grants 0546819 and 720913; Special Re-
search Grant from the University of California, Santa Cruz;
Sun OpenSPARC Center of Excellence at UCSC; gifts from
SUN, Altera, Xilinx, and ChipEDA. Any opinions, findings,
and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views
of the NSF.

REFERENCES
[1] H. Al-Asaad, D.V. Campenhout, J.P. Hayes, T. Mudge, and

R. Brown. High-Level Design Verification of Microprocessors
via Error Modeling. In IEEE International High-Level Design
Validation and Test Workshop, pages 194–201, 1997.

[2] M. Fahim Ali, A. Veneris, A. Smith, S. Safarpour, R. Drech-
sler, and M. Abadir. Debugging sequential circuits using
boolean satisfiability. In ICCAD ’04: Proceedings of the
2004 IEEE/ACM International conference on Computer-aided
design, pages 204–209, Washington, DC, USA, 2004. IEEE
Computer Society.

[3] Semiconductor Industry Association. International Technology
Roadmap for Semiconductors (ITRS), 2002.

[4] D. Burger, T.M. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical Report CS-
TR-1996-1308, 1996.

[5] M.D. Ernst, A. Czeisler, W.G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In ICSE ’00:
Proceedings of the 22nd international conference on Software
engineering, pages 449–458, New York, NY, USA, 2000. ACM
Press.

[6] Görschwin Fey, Sean Safarpour, Andreas Veneris, and Rolf
Drechsler. On the relation between simulation-based and sat-
based diagnosis. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pages 1139–1144,
3001 Leuven, Belgium, Belgium, 2006. European Design and
Automation Association.

[7] R. Goodall, D. Fandel, A. Allan, P. Landler, and H. R. Huff.
Long Term Productivity Mechanisms of the Semiconductor In-
dustry. www.sematech.org, 2002.

[8] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty. Io-
dine: a tool to automatically infer dynamic invariants for hard-
ware designs. In DAC ’05: Proceedings of the 42nd annual
conference on Design automation, pages 775–778, New York,
NY, USA, 2005. ACM Press.

[9] S. Hangal and M.S. Lam. Tracking down software bugs using
automatic anomaly detection. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages
291–301, New York, NY, USA, 2002. ACM Press.

[10] Collett International. 2003 IC/ASIC Design Closure Study,
2003.

[11] R. Liang. Personal communication. Sun Microsystems, 2006.

[12] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel. Characteriz-
ing the Effects of Transient Faults on a High-Performance Pro-
cessor Pipeline. In International Conference on Dependable
Systems and Networks. IEEE Computer Society, Jun 2004.

6

