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Abstract—PARSEC is a popular benchmark suite designed
to facilitate the study of CMPs. It is composed of 13 parallel
applications, each with an input set intended for native execu-
tion, as well as three reduced-size simulation input sets. Each
benchmark also demarcates a Region of Interest (ROI) that
indicates the parallel code in the application. The PARSEC
developers state that users should model only the ROI when
using simulation inputs; in other cases the native input set
should be used to obtain results representative of full program
execution.

We analyzed the runtime scalability of PARSEC using real
multiprocessor systems and present our results in this paper.
For each benchmark we analyzed the runtime scalability of
both the ROI and full execution for all the input sets. We found
that for 6 of the benchmarks the ROI scalability matches that
of the full program regardless of the input set used. For the
remaining 7 benchmarks, for at least some of the input sets
there is significant divergence between the scalability of the
ROI and the full program. Three of these benchmarks have
much lower scalability for the full program than the ROI, even
when run with the native input set. We found that for most of
the benchmarks the runtime scalability of the simulation inputs
differs significantly from that of the native input set, both for
the ROI and the full program.

I. INTRODUCTION

The PARSEC benchmark suite is “designed to provide
parallel programs for the study [of] CMPs” [6]. It was
introduced in 2008 and has been widely used for computer
architecture research since then. Developed with the needs of
researchers in mind, it has features that make it easier to use
with architectural simulators. Each benchmark has multiple
input sets, including three that are intended to run with
simulators (simsmall, simmedium, simlarge), and one that is
intended to be representative of a real application (native).1

This allows users to simulate a smaller workload but obtain
results representative of a real workload. Each benchmark
also defines a Region of Interest (ROI) indicating which
part of the benchmark executes in parallel. By simulating
only the ROI, PARSEC users can reduce simulation time.
The ROI is also important for ensuring that results obtained
using simulation inputs are representative of real program
behavior [5].

Choices in input set size and whether to model the whole
program, or only the ROI, can lead to different interpretations
when analyzing benchmark results. For instance, Figure 1

1Two additional input sets (test and simdev) are included for simulator
testing and are not appropriate for scientific studies.
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Fig. 1. Speedup for the full execution of Blackscholes is much less than
ROI, when using the native input set and running on a 48-core system.

shows the scalability of ROI only and full benchmark execu-
tion for blackscholes running on a 48-core system and using
the native input set. The ROI achieves a maximum speedup of
43 times, while the maximum speedup of the full benchmark
is less than 9 times.

Several papers characterize the behavior of the PARSEC
benchmark suite [1], [2], [4], [5], [6], [7], [8], [10], [23] but
none of them compare the runtime scalability of the native
input sets with that of the simulation input sets, nor do they
compare the runtime scalability of the ROI to that of the full
program. This paper provides this missing characterization
and highlights the importance of PARSEC users reporting
data about what input set was used in their own papers.

In this paper we measure the runtime scalability of the four
main PARSEC input sets, and we compare the scalability
of the ROI with that of the whole program. We do so by
running the benchmarks on real multicore systems, varying
the number of threads, and measuring the runtime of the
ROI and the full program for the four different input sets.
Our contributions are as follows:

• First systematic analysis of the runtime scalability of all
PARSEC input sets. We found that in many cases dif-
ferent inputs to the same benchmark have very different
scalability characteristics

• First systematic analysis of the runtime scalability of the
ROI compared with full-program execution for all input
sets. We identify 6 benchmarks where the scalability



of ROI and full program execution has significantly
different behavior, while for the other 7 benchmarks ROI
and full program execution have very similar behavior.

The rest of this paper is organized as follows: Section II
provides background about PARSEC; Section III describes
our experiment setup; Section IV provides detailed results;
Section V surveys related work; and Section VI concludes.

II. BACKGROUND

PARSEC was developed between 2005 and 2009 as part
of a collaboration between Princeton and Intel [5]. The
developers’ goal was to create a benchmark suite of emerging
parallel workloads that would help architects and researchers
design emerging multicore and multiprocessor systems. After
its initial release in 2008, PARSEC quickly became popular
among computer architecture researchers and has since been
widely used in published research.

Six different input sets are defined for each benchmark:
test, simdev, simsmall, simmedium, simlarge, native. Test
and simdev should only be used to test that the benchmark
can run. Native is intended to approximate realistic input
indicative of how the benchmark application would be used
in practice. The remaining three simulation inputs were
created by scaling down the native input sets in a way that
maintained a representative mix of instructions. The inputs
were selected so that serial execution of the native input
sets on a real machine should complete in 15 minutes or
less, while the simlarge, simmedium, and simsmall inputs
should complete execution within 15 seconds, 4 seconds, and
1 second respectively.

The inputs set scaling process skews the amount of time
spent in serial phases compared to parallel phases. As a result
PARSEC defines an ROI for each benchmark that marks
the parallel phase of the benchmark. Although the PARSEC
documentation stresses the importance of only using results
from the ROI, our results show that this is only important
for 6 of the 13 benchmarks.

PARSEC supports three different threading models:
pthreads, OpenMP, and Intel Thread Building Blocks (TBB).
PARSEC also allows users to specify the minimum number
of threads run with the benchmark by setting a parameter (n)
when the benchmark is started. Table I shows the correspon-
dence between the user-specified number of threads and how
many threads the benchmark actually spawns.

In most cases there is a single main thread which spawns n
worker threads, but some of the benchmarks use a pipelined
parallelization model and spawn multiple threads for each
one the user specifies. In addition x264 spawns twice as
many threads as there are frames in its input (native has
512 frames), but it uses the parameter n to limit how many
threads run in parallel. Most of the benchmarks allow n to
range from 1 up to at least 128; however, there are a few
restrictions:

TABLE I
BENCHMARKS AND THREADS IN PARSEC

Benchmark Threads
blackscholes 1 + n
bodytrack 2 + n
canneal 1 + n
dedup 3 + 3n
facesim 1 + n
ferret 3 + 4n
fluidanimate 1 + n
freqmine n
raytrace 1 + n
streamcluster 1 + 2n
swaptions 1 + n
vips 3 + n
x264 1 + 2× frames

• Facesim is limited to the values 1, 2, 3, 4, 6, 8, 16, 32,
64, 128.

• Swaptions is limited to the number of entries in its input
set (16 for simsmall, 32 for simmedium, 64 for simlarge,
and 128 for native).

• Fluidanimate requires the number of threads to be a
power of 2.

• x264 is limited by the number of frames in its input
set.2 We restricted n to 1–8 for simsmall and 1–32 for
simmedium in our experiments.

In this paper we analyze the 13 benchmarks and input sets
first released with PARSEC 2.0.3 We use the native, simlarge,
simmedium, and simsmall input sets, and we use pthreads for
all benchmarks except freqmine (which requires OpenMP).
We vary the number of threads using the minimum threads
parameter n and we report n as the parameter of interest
in our results instead of reporting how many threads were
actually spawned.

III. EXPERIMENT SETUP

When PARSEC was developed multicore systems only
had a few cores, and most of the initial characterization
of PARSEC was done using simulators. In the intervening
years the number of cores available in mainstream server
systems has increased significantly. We wanted to understand
how benchmark performance using the simulation inputs
compared to the native inputs when running on real systems,
which have overheads and bottlenecks that are not always
accounted for when using cycle accurate simulation.

We analyzed the scalability of PARSEC by running the
benchmarks on three different real multicore/multiprocessor
systems and measuring the runtime. The systems each had
different microarchitectures and were developed by two dif-
ferent processor vendors.

2This limitation is not reported when the benchmark is launched, but in
our experiments we observed the output was not correct for n greater than
9 for simsmall and n greater than 33 for simmedium.

3We used PARSEC 3.0 downloaded from the PARSEC website, but there
are minimal changes between 2.0, 2.1 and 3.0 for the benchmarks we
analyzed.



The precise scalability results are specific to the systems
that we used for our evaluation. However, we expect that the
relative scalability trends we identified will apply to most
systems because often the underlying cause is differences
in workload distribution between the various different input
sets or between the ROI and full benchmark execution. The
configuration of the systems we used are as follows:

• A single CPU system with 4 cores, 2 threads per core,
for a total of 8 logical processors, along with 16 GB of
RAM.

• A dual socket system with 8 cores per socket, 2 threads
per core, for a total of 32 logical processors, along with
64 GB of RAM.

• A quad socket system with 12 cores per socket, 1 thread
per core, for a total of 48 logical processors, along with
64 GB of RAM.

The detailed system specifications are shown in Table II.
In the rest of this paper we refer to the 8-logical processor
system as M8, the 32-logical processor system as M32, and
the 48-logical processor system as M48.

TABLE II
SPECIFICATIONS OF SYSTEMS USED FOR EXPERIMENTS

System Configuration
1 x Intel Xeon E3-1275 v3 (4 core, 2-way SMT)

M8 32 KB L1, 256 KB L2, 8 MB L3 cache
16 GB DRAM
2 x Intel Xeon E5-2689 (8 core, 2-way SMT)

M32 32 KB L1, 256 KB L2, 20 MB L3 cache
64 GB DRAM
4 x AMD Opteron 6172 (12 core)

M48 64 KB L1, 512 KB L2, 5 MB L3 cache
64 GB DRAM

All of the systems used the x86 64 version of Arch Linux
with version 3.18.6-1 of the Linux kernel. All benchmarks
were compiled with version 4.9.2 of gcc/g++. We disabled
ASLR but did not do any other special tuning. The OS
and hardware were allowed to schedule threads and control
CPU frequency using default scheduling algorithms. We
used PARSEC hooks to identify the ROI, and for each
configuration we recorded the runtime of the ROI and full
benchmark execution.

We repeated each experiment at least 10 times and calcu-
lated the mean and the confidence interval at a 95% confi-
dence level. For configurations where the initial confidence
interval after 10 runs was not within 5% of the mean we
repeated the experiment until the confidence interval was
within 5% of the mean. The speedup results we present are
computed by dividing the mean execution time of a system,
input set, and ROI or full configuration with a single thread
by the mean execution time of the same configuration with
multiple threads.

IV. RESULTS

The two main questions that we sought to answer are: how
does the scalability of the ROI compare to the scalability of
full benchmark execution? And how does the scalability of
each of the simulation inputs compare to the native input set?
In this section we present the results of our analysis. First in
Section IV-A we analyze the theoretical maximum speedup
of the full input sets and identify where it is limited in
comparison to the ROI. Next we analyze the actual speedup
results we measured using our systems. In Section IV-B we
present results for the maximum speedup for each of the
input sets; Section IV-C compares the average speedup of
the ROI to full, and of the native input set to each of the
simulation inputs. Finally, Section IV-D presents a graphical
view of scalability trends for each of the benchmarks along
with some insights about the reasons different input sets have
differing scalability characteristics.

A. ROI Percentage

The ROI is the only part of the PARSEC benchmarks that
executes in parallel, and thus the only part where parallel
execution can speedup the benchmark. Figure 2 shows the
percentage of time that each benchmark spent executing
the ROI with the number of threads n = 1. Seven of the
benchmarks spent over 98% of their execution time in the
ROI for all input sets, and so the ROI percentage is unlikely
to limit potential speedup from parallel execution.

The other six benchmarks spent less than 90% of their
execution time in the ROI for at least some of their input
sets, and the maximum theoretical speedup is less than 10
times. Table III lists the percentage of time each of these
benchmarks spends executing in the ROI along with the
maximum theoretical speedup. The maximum speedup is
calculated using Amdhal’s law and not listed for input sets
where it is not a bottleneck.

TABLE III
ROI PERCENTAGE AND MAXIMUM THEORETICAL SPEEDUP

Benchmark Native Simlarge Simmedium Simsmall
blackscholes 89 9 89 9 88 9 87 8
bodytrack 100 – 94 16 86 7 68 3
canneal 81 5 31 1 31 1 23 1
facesim 100 – 69 3 –
fluidanimate 100 – 89 9 88 9 90 10
raytrace 70 3 20 1 9 1 4 1

• Blackscholes: The time outside of the ROI is spent
initializing the input array and writing out the results.
This amount of work scales linearly with the input set
size; consequently a larger input set does not improve
the scalability. We confirmed this experimentally by
creating an input set 10 times larger than the native input
set included with PARSEC and measured the same ROI
percentage for this larger input set.
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Fig. 2. Percentage of full execution time that is in the ROI measured by running benchmarks on M8 with a single thread. Seven of the benchmarks spend
nearly 100% of their execution time in the ROI, while the other six spend significantly less for at least some input sets.

• Bodytrack: uses helper threads to load image data for
the next frame concurrently with the threads processing
the current frame. However, the thread pool must be
created and the first image loaded before any parallel
computation can occur. This initialization is done before
the ROI starts. A negligible percentage of total execution
time is consumed for the native input set, but a signif-
icant fraction of time is consumed for the two smallest
input sets.

• Canneal: The majority of the time outside of the ROI
is spent initializing the netlist. This initialization time is
proportional to the size of the netlist. However, there are
two ways to increase the work done by the benchmark.
Either the netlist size can be increased, or the number of
temperature steps can be increased. We tested using 10
times as many temperature steps for the native input
set with the same netlist, which increased the ROI
percentage to 98%.

• Facesim:4 There is a fixed amount of work done outside
the ROI based on the facial features that will be ani-
mated. The work done to animate each frame is in the
ROI, and this work scales with the number of frames.
The native input set processes 100 frames, while the
simulation inputs process only a single frame.

• Fluidanimate: The benchmark simulates fluid dynamics
for use in animation sequences. The work outside of the
ROI is mostly involved with partitioning how a single
animation frame is processed. The work in the ROI
scales with the number of frames in the workload, and
adding frames adds more work in the ROI. The native
input set has 500 frames, while the simulation inputs
only have 5 frames.

• Raytrace: It is possible to increase the amount of work
in the ROI by rendering more frames. The native input
set renders 200 frames; when we increased this to 2,000
frames the ROI increased to 95%.

4Facesim only has one simulation input set

B. Maximum Speedup
The fraction of time that a benchmark spends executing

parallel code is not the only limiting factor on its scalability.
In many cases other factors, such as inter-thread communica-
tion and imbalances in workload distribution, limit scalability
more than the fraction of code that can be executed in
parallel.

Figures 3 and 4 show the maximum speedup for each input
set on the M48 and M32 systems respectively. Since M48
has 48 cores the maximum expected speedup is 48 times
(assuming no superlinear effects). The M32 system has 16
cores, and each core can execute 2 threads simultaneously,
so the maximum linear speedup is 32 times. However,
since simultaneous multithreading shares core resources it
is unlikely that benchmarks will have linear speedups for all
32 threads.

Blackscholes executing the ROI of the native input comes
closest to achieving the maximum linear speedup. But most
of the benchmarks and input set combinations have a much
lower maximum speedup. As expected the six benchmarks
we identified with low ROI percentage show a big difference
between the speedup of full and the ROI. Thus results from
ROI and full may not be comparable in these cases and it is
important for users to properly specify which region of the
benchmark they measured.

The divergence between the speedup of ROI for each of
the native inputs and the speedup of ROI for each of the sim-
ulation inputs is potentially more problematic because results
obtained using simulation inputs may not be representative of
actual application behavior. But in many instances simulators
are used because real hardware is not available.

C. Quantifying Similarity
The maximum speedup results presented in the previous

section demonstrate that there are bottlenecks which limit
the scalability of the PARSEC benchmarks, and that these
bottlenecks affect different benchmark and input set combi-
nations in different ways. But comparing maximum speedup
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Fig. 3. Maximum speedup measured on M48 for each benchmark, region, and input set combination.
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Fig. 4. Maximum speedup measured on M32 for each benchmark, region, and input set combination. Scale is same as Figure 3

only shows the scalability difference for a single data point.
We also quantified the average scalability difference between
ROI and full, and between the native input set and each of
the simulation inputs.

ROI and Full: Table IV shows the percentage difference
between the average speedup of the ROI and full benchmark
execution averaged over all data points. As an example of
how this was calculated consider blackscholes. When running
with the full native input set on the M32 system with 8
threads results it has a 4.3 times speedup compared to a single
thread, while the speedup of 16 threads is 5.6 times. For
the same configuration the speedup of the ROI is 7.7 times
for 8 threads and 15.0 times for 16 threads. The average
speedup of these two points is 5.0 times for full and 11.4
times for ROI. The difference of these averages is 6.4, and
this difference is 128% of the average of full. The reason
for presenting the difference as a percentage of full is that
the same absolute speedup difference represents less relative

TABLE IV
SPEEDUP % DIFFERENCE: ROI AND FULL

Benchmark Native Simlarge Simmedium Simsmall
blackscholes 174 129 108 93
bodytrack 0 6 11 15
canneal 151 528 463 368
dedup 2 4 4 7
facesim 1 55 –
ferret 1 9 14 6
fluidanimate 1 59 65 77
freqmine 0 0 1 2
raytrace 394 887 735 414
streamcluster 0 0 0 1
swaptions 0 1 2 2
vips 0 2 4 5
x264 0 2 4 3
geomean 1 9 11 14

error if the total speedup for the full execution is larger. This
explanatory example uses only two data points, but the results



TABLE V
SPEEDUP % DIFFERENCE: NATIVE AND SIMULATION

Benchmark Simlarge Simmedium Simsmall
full roi full roi full roi

blackscholes 10 28 20 54 41 104
bodytrack 11 9 39 24 96 69
canneal 104 15 109 10 142 40
dedup 30 31 15 16 22 24
facesim 89 21 –
ferret 218 192 337 289 505 471
fluidanimate 99 21 115 24 152 30
freqmine 150 149 230 228 347 337
raytrace 134 28 162 62 176 169
streamcluster 231 231 961 962 3449 3482
swaptions 16 15 33 31 39 36
vips 31 29 75 69 197 181
x264 117 114 140 131 127 120
geomean 61 49 96 79 155 139

in Table IV were calculated by taking the average of all of
the data points for each configuration that was compared.

For six of the seven benchmarks that we identified as
spending nearly all of their time in the ROI (dedup, freqmine,
streamcluster, vips, x264) the average speedup difference
is usually less than the 5% margin of error we set when
computing average execution time.

Although ferret spends 98% of its execution time in the
ROI for the simulation inputs, it also has low scalability. For
instance on the M32 system the maximum speedup for the
simmedium input set is 4 times for full execution and 5 times
for ROI. As a result ferret stands out as having a significant
percentage difference between ROI and full execution despite
spending nearly all of its execution time in the ROI when
running with a single thread.

The remaining six benchmarks are ones we identified as
spending a significant percentage of benchmark execution
time in the single threaded region. Of these, bodytrack has a
relatively small percentage difference between ROI and full,
but this is because its overall maximum speedup is less than
10 times.

The other five benchmarks (blackscholes, canneal, facesim,
fluidanimate, raytrace) have very large relative differences
between the speedup of ROI and full for at least some
of the input sets. Consequently it is not a good idea to
compare full and ROI results when using these benchmarks.
This is particularly noteworthy for blackscholes, canneal, and
raytrace where even the native input sets have large speedup
differences between ROI and full.

Native and Simulation: Table V shows the average
speedup difference between the ROI and full for each of the
input sets. These results were computed using a methodology
similar to the ones used to compare the percentage difference
in ROI and full speedup. In this case the speedup for each
simulation input was compared to that of the native input. The
percentage difference is calculated by dividing the average
speedup difference of the native input by the average speedup

difference of the simulation input.
The first thing that stands out is that none of simulation

inputs are particularly similar to the native input set. The best
case is for bodytrack executing the ROI for the simlarge input
set at 9% speedup difference compared to the native input
set. As expected the larger simulation input sets are generally
more similar to the native input set. However, even for the
ROI of simlarge the geometric mean for all the benchmarks
of the speedup difference compared to the native input set is
nearly 50%.

The most noteworthy outlier is streamcluster where in the
worst case for simsmall the speedup differs by over 3,000%.
The reason for this is that streamcluster is able to maintain at
least slight speedup when executing the native input set. But
it suffers extreme slowdown for small simulation inputs. For
instance when running on M48 with 48 threads using the
simsmall input set, streamcluster is 100 times slower than
when running the same input set with a single thread.

D. Measured Scalability

The previous section quantifies the similarity of the differ-
ent input sets. In this section we present a visualization of the
scalability data. We varied the number of threads from 1 to
the number of logical processors in the system and measured
the runtime of full execution and ROI for all benchmarks
using all input sets. For each data point we plotted the
speedup of the multithreaded benchmark execution compared
to executing with a single thread. Although we plotted 8
data sets for each benchmark, in some cases fewer points are
visible because the ROI and full results overlap completely.
We split the results into three figures, which are interspersed
along with benchmark analysis. Figure 5 shows the scalability
of blackscholes, bodytrack, canneal, dedup, facesim, and
ferret on both the M48 and M32 systems. Figure 6 shows the
scalability of fluidanimate, freqmine, raytrace, streamcluster,
swaptions, and vips. It uses the same legend as Figure 5 but
the legend is not repeated in order to save space. Finally
Figure 7 shows the scalability of x264, again using the same
legend shown in Figure 5.

Blackscholes has the best scalability of any benchmark
for the ROI with the native input set. The maximum speedup
of the full execution is limited to less than 9 times because
of the serial portion of the benchmark. It is also noteworthy
that even for the ROI, the simulation inputs do not scale as
well as the native input set for large numbers of threads.
On M48 the execution time of the ROI for the simsmall
input when running with 48 threads is 14.4 ms. We tested
a modified version where the worker threads spawn and
return immediately without doing any work and the ROI time
dropped to 4 ms. Thus it does not appear that the thread
creation overhead prevents further scaling of the benchmark.

Bodytrack has relatively good similarity between ROI and
full for native and simlarge. For simmedium and simsmall,
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Fig. 5. Scalability of blackscholes, bodytrack, canneal, dedup, and facesim on M48 and M32 systems. Native, simlarge, simmedium, and simsmall are
represented respectively with squares, circles, triangles, and diamonds. Points representing ROI are hollow and those representing full are solid.

speedup of full and ROI drops noticeably, particularly on
M48 with many threads.

Canneal has limited scalability for full for all of the input
sets with a maximum speedup of less than 5 times for native
input. Even for ROI only, the total scalability is limited and
on M48 the speedup of ROI drops after roughly 30 threads.
Canneal uses atomic operations to synchronize data between
threads; as a result adding more threads increases the chance
of conflicts between threads. There is a tradeoff between the

size of the netlist and the number of temperature steps. We
think this is why the simlarge input has higher scalability than
native. When we tested with an input with more time steps
than native we found that the scalability of full improved,
but the scalability of the ROI dropped.

Dedup has an erratic speedup pattern due to a work dis-
tribution imbalance between threads. Dedup creates queues
for partitioning work between threads, and the number of
queues created is n threads/4+n threads mod 4. Afterwards
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Fig. 6. Scalability of fluidanimate, freqmine, raytrace, streamcluster, swaptions, and vips. Same legend as Figure 5.

each queue is assigned 4 worker threads, except the last
queue, which has n threads mod 4 threads. This workload
imbalance causes the scalability to be best when the number
of threads is a multiple of 4. It is also noteworthy that the
simlarge input set has a maximum speedup with 12 user
threads while the other inputs sets have a maximum speedup
with 8 user threads, and the maximum speedup of simlarge
input is much higher than that of native for both ROI and full.
We suspect this is caused by differences in the input set data.
Dedup performs deduplication, and simlarge achieves 2.38X

compression factor, while native, simmedium, and simsmall
achieve 1.05X, 1.06X, and 1.09X compression respectively.

Facesim has much lower scalability for the simulation
input than for the native input set for both full and ROI.
The lower scalability of full is explained by the fraction
of the benchmark that is in the ROI. Since simulation and
native inputs both process the same frame, we expect the
differences between the scalability of the two inputs are
related to additional initialization overhead that is included
in the ROI time but not amortized over multiple frames.

Ferret also has much lower scalability for the simulation



 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30  35  40  45

S
p

e
e

d
u

p

PARSEC minimum threads parameter

x264 (M48)

 0

 2

 4

 6

 8

 10

 12

 5  10  15  20  25  30

S
p

e
e

d
u

p

PARSEC minimum threads parameter

x264 (M32)

Fig. 7. Scalability of x264. Same legend as Figure 5

inputs than for native. It uses pipelined parallelization, but
the first and last stages in the pipeline only spawn a single
thread. We experimented with removing these stages from
the ROI, but that did not improve the ROI scalability for
the simulation inputs. Bienia [5] notes that the simulation
inputs for ferret have less opportunity for parallel execution,
while Pusukuri et al. [23] found that the speedup for the
native input set was limited by lock contention. Although
we do not have a definitive explanation for the scalability
difference, we do note that the simulation inputs reach their
maximum speedup much earlier than when using the native
input, and this maximum speedup is much lower than when
using native inputs.

Fluidanimate’s low scalability for full execution of the
simulation inputs is explained by the lower fraction of the
benchmark in the ROI. However, even for the ROI the
scalability of the simulation inputs is lower than that of
the native input set. We suspect this is due to the thread
communication overhead that is proportional to the number
of particles in the input set, and so the overhead is more for
the smaller input sets. It is also noteworthy that the speedup
of simsmall on M48 drops when increasing from 16 to 32
threads.

Freqmine is another benchmark with much lower scalabil-
ity for the simulation inputs than the native input set. Both the
native and simulation inputs have a high percentage of their
work included in the ROI. However, freqmine uses OpenMP
and we suspect that the smaller simulation inputs have their
scalability constrained by the serial portions of the workload
and that the parallel loops are too small to provide much
speedup.

Raytrace has extremely limited scalability for the full

execution because of the low fraction of the benchmark in the
ROI. Increasing the number of frames from the 200 used by
the native input set to 2,000 increases the maximum speedup
from 3.5X to 16X. Cebrián et al. [10], [11] argue that the
version of raytrace in PARSEC should be replaced by one
with SIMD instructions. It is also noteworthy that the ROI
for the simulation inputs does not scale nearly as well as the
native input set, particularly for simmedium and simsmall.

Streamcluster uses barrier based synchronization, and
the scalability for simmedium and simsmall is much worse
than for native. On M48, running simsmall with 48 threads
is 68 times slower than running with 1 thread. Of even
greater concern, the maximum speedup for simsmall on M48
occurs when the PARSEC minimum thread parameter is 2,
and afterwards the performance worsens as more threads
are added. Roth et al. [25] observed similar behavior and
attributed it to inefficiency in the barrier synchronization.

Swaptions has very similar scalability for the ROI and
the full program. The simulation inputs also match native
scalability at some points but diverge at others. The appli-
cation itself has a stairstep type of scalability caused by
an imbalance in workload distribution between the threads.
Earlier papers [23], [25] also identified this problem and our
results support their observations.

Vips also uses a pipelined parallel programming model
with two threads for performing I/O and then n threads for
processing the data, and we suspect this is what causes worse
scalability for smaller input sets. Bienia’s dissertation [5]
notes that the size of the output buffers can limit parallelism,
and that this problem may be corrected in future versions of
PARSEC. Although most of our tests used the benchmark
code from PARSEC 3.0, for vips we reverted to PARSEC
2.1 because the source code for PARSEC 3.0 was missing
ROI annotations. After noting Bienia’s comment we tested
using the vips code in PARSEC 3.0, but observed the same
scalability as PARSEC 2.1.

x264 also has much lower scalability for the simulation
inputs than for the native input set. The x264 application
compresses an input video stream, and the simulation inputs
have fewer and smaller frames than the native input. The
smaller inputs have more dependencies between frames, and
this limits the overall potential for achieving parallel speedup.

V. RELATED WORK

Christian Bienia’s 2011 dissertation [5] is the most com-
prehensive study of the PARSEC benchmarks and extends
material published earlier [4], [6], [7], [8]. The character-
ization of PARSEC in Bienia’s work relies on simulation
and is intended to be machine independent. In contrast, our
characterization is done using real machines and we focus
on runtime as performance metric of interest.

Pusukuri et al. [23] developed Thread Reinforcer to pick
an optimal number of threads for a parallel application.
They evaluated their proposal using 8 of the 13 PARSEC



benchmarks running on a 24-core system. They used the
native input sets for their evaluation, and like us, found that
the maximum speedup of the full execution of blackscholes
and canneal was limited due to the fraction of serial code.
Part of the motivation for our study was noting differences
in Bienia and Pusukuri et al.’s characterization of PARSEC’s
scalability.

Several other papers have also studied the problem of
thread scheduling and included characterization of some of
the PARSEC benchmarks as part of their evaluation [18],
[19], [20], [21], [22], [24], [26].

There are also several papers that characterized the per-
formance of PARSEC. Like us, Bhadauria et al. [2] studied
the scalability of PARSEC workloads using real machines,
but they did not compare different input sets, or ROI and
full program execution. Barrow-Williams et al. [1] analyzed
communication patterns between threads in PARSEC and
SPLASH using Simics. Bhattacharjee and Martonosi [3]
analyzed TLB behavior of PARSEC benchmarks using a
combination of native execution and simulation. Ferdman
et al. [16] analyzed the single threaded performance of a
variety of benchmark suites including PARSEC. Cebrián
et al. [10], [11] proposed extending PARSEC with better
support for SIMD hardware. Bryan et al. [9] examined
how synchronization overhead and other system-level effects
limited the potential scalability of PARSEC 1.0 benchmarks.

Several papers have also analyzed the scalability of some
of the PARSEC benchmarks while developing techniques to
find performance bottlenecks in parallel applications [12],
[13], [14], [15], [17], [25].

VI. CONCLUSION

Benchmarks are a critical part of the quantitative approach
to computer architecture research. But the complex interac-
tion of the many layers of the computing stack, coupled with
the slow speed of architectural simulators, forces architects to
make approximations when simulating benchmark execution.
PARSEC provides reduced size input sets and demarcates
a ROI as ways to reduce simulation time while still ap-
proximating the behavior of the actual workload. However
initial characterization of the PARSEC input set scalability
was performed using simulation and it may have overlooked
bottlenecks that exist in real systems.

Our characterization of the scalability of PARSEC using
real multiprocessor systems shows two important ways in
which results can vary depending on benchmark parameter
selection. First, the choice between measuring ROI and full
only has a significant impact on the scalability of seven of
the benchmarks. Second, we showed that the scalability of
the four different input sets that PARSEC provides differs
dramatically when the benchmarks are executed on a real
system. We recommend that users of PARSEC report the
parameters selected for their experiments (both input set size
and whether measuring ROI or full).
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