
An Energy Efficient GPGPU Memory Hierarchy with Tiny Incoherent Caches

Alamelu Sankaranarayanan, Ehsan K. Ardestani, Jose Luis Briz∗, and Jose Renau
Dept. of Computer Engineering, University of California Santa Cruz

{alamelu, eka, renau}@soe.ucsc.edu
∗Dept. of Computer and System Engineering and I3A, University of Zaragoza

briz@unizar.es

ABSTRACT
With progressive generations and the ever-increasing promise of com-
puting power, GPGPUs have been quickly growing in size, and at the
same time, energy consumption has become a major bottleneck for
them. The first level data cache and the scratchpad memory are crit-
ical to the performance of a GPGPU, but they are extremely energy
inefficient due to the large number of cores they need to serve. This
problem could be mitigated by introducing a cache higher up in hier-
archy that services fewer cores, but this introduces cache coherency
issues that may become very significant, especially for a GPGPU
with hundreds of thousands of in-flight threads.

In this paper, we propose adding incoherent tinyCaches between
each lane in an SM, and the first level data cache that is currently
shared by all the lanes in an SM. In a normal multiprocessor, this
would require hardware cache coherence between all the SM lanes
capable of handling hundreds of thousands of threads. Our inco-
herent tinyCache architecture exploits certain unique features of the
CUDA/OpenCL programming model to avoid complex coherence
schemes. This tinyCache is able to filter out 62% of memory re-
quests that would otherwise need to be serviced by the DL1G, and
almost 81% of scratchpad memory requests, allowing us to achieve
a 37% energy reduction in the on-chip memory hierarchy. We eval-
uate the tinyCache for different memory patterns and show that it is
beneficial in most cases.

Keywords
GPGPUs, Energy-efficiency, Memory hierarchy, Caches

1. INTRODUCTION
General purpose computing on graphics processors is becoming

ubiquitous with the acceptance of (and advances in) programming
languages like CUDA and OpenCL. This popularity has resulted in
the development of GPGPUs like NVIDIA’s GeForce GTX 7XX [1]
and AMD’s Radeon HD 7000 series [2], which are larger than their
predecessors and deliver higher performance in the teraflop range.
The big challenge however, in progressing toward the next generation
of processors, is sustaining performance within a more conservative
power budget.

Traditional CPUs are highly latency optimized: They have a few,
very complex, high performance cores sharing a pool of memory
and are extremely efficient at handling few threads. In contrast,
throughput processors like GPGPUs rely on an alternative program-
ming model employing hundreds of very simple cores to execute
hundreds of thousands of lightweight threads, to hide long mem-
ory latencies. It is this massive multithreading that helps GPGPUs
achieve high performance. Several complex (and energy hungry)
components are required to make this possible on the GPGPU, in-
cluding highly banked scratchpad memory and data caches. These
caches are shared across multiple processing elements (lanes) within
a streaming multiprocessor (SM) on the GPGPU.

This paper focuses on the first level data cache (DL1G) and the
scratchpad memory that is shared by all the lanes in an SM. The
DL1G is a massive structure, and considering the support it needs
to sustain requests from all the lanes and to coalesce memory, it is
extremely energy inefficient. For the applications we evaluate, we
see that in a typical GPGPU the DL1G accounts for almost 69%

of the dynamic energy consumed by the on-chip memory hierarchy.
With another 25% expended on the scratchpad memory, this amounts
to a total of over 90%, as seen below in Figure 1.
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Figure 1: A breakdown of the energy consumption of the on-chip
memory hierarchy in a typical GPGPU, for the benchmarks listed in
Table 2. The DL1G and the scratchpad memory account for most of
the energy consumed.

A seemingly straightforward solution is to add a small filter cache,
to intercept frequent requests to the shared DL1G, as described in
[3]. The problem is that if we have such a filter cache for each lane
in the GPGPU, we will need to maintain coherence between all the
lanes in an SM. A CUDA/OpenCL kernel usually spawns thousands
of threads that cannot modify the same address without an explicit
barrier, but that typically access the same cache line. This is a com-
mon strategy used by GPGPU programmers to maximize memory
coalescing, which directly impacts the performance (by reducing the
memory bandwidth) of the application. This results in a sharing pat-
tern with high false sharing, very different from one seen in typical
multiprocessor applications, and makes it highly inefficient to have
to maintain coherence between private filter caches per lane.

Instead of simple filter caches, we propose tinyCache, an inco-
herent, write-back cache per lane that leverages an adapted write-
validate policy to maintain correctness. A tinyCache cacheline can be
merged back to the existing shared L1 cache (DL1G) when the data
is displaced, without having to care about invalidations or updates,
made possible by the peculiarities of the CUDA/OpenCL program-
ming model. Section 3 provides more details on how we maintain
correctness, and why this incoherent behavior can only be supported
by the CUDA/OpenCL programming model.

The proposed tinyCache per SM lane filters out a sizable portion
of memory accesses to the DL1G. We find that this simple optimiza-
tion is able to filter out 62% of the memory requests, normally di-
rected toward the DL1G, and about 81% of the requests directed to
the scratchpad memory on an average. This results in an average re-
duction of 37% and 35% in the total energy consumed by the on-chip
memory hierarchy and the energy delay product, respectively.

2. BACKGROUND
A typical GPGPU is an array of streaming multiprocessors (SMs),

each of which contains a number of simple processing elements (lanes).
When a kernel is spawned for execution, groups of threads known
as blocks are assigned to individual SMs for execution, and in turn,



smaller sets of threads known as warps are scheduled by the warp
scheduler to execute on lanes. A warp executes the same instruction
across all the lanes on the SM, and continues a lock-step execution
until it has to stall due to data dependencies, long latency opera-
tions or branch divergence penalties. When it stalls, the warp sched-
uler schedules another ready warp for execution and thus effectively
hides the penalties due to the stalls. The GPGPU typically has plenty
of warps ready to take over and it is this massive multithreading that
helps the GPGPU tolerate high latency memories.

Threads within a single block communicate with each other using
fast on-chip scratchpad memory, but to coordinate with threads of
different blocks, they use global memory which is a combination of
both on-chip and off-chip memory. In addition to these two mem-
ories, threads can also access read-only cached constant and texture
memories. There is another type of memory, called local memory,
which is private per lane, but is situated in the global space. This
local memory is used only in case of register spilling. All the SMs
share a common L2 cache which extends to the memory hierarchy
below (for e.g., an L3 shared with the CPU in case of an unified
CPU-GPU system or to main memory in a system with a discrete
GPGPU).

To enable high scalability with respect to the number of cores,
the programming model does not allow the programmer to assume
a specific order in which thread blocks may be executed. They can
be executed in any order, in parallel or in series. To synchronize
the memory accesses within a block, there are light weight barriers
available, which all threads in a given block must reach before any
of them are allowed to proceed further.

Figure 2a shows the internals of a single SM on a modern GPGPU
like NVIDIA’s Fermi [4] with 32 lanes per SM.

3. MICROARCHITECTURAL CHANGES FOR
ENERGY EFFICIENCY

Our main goal is to cut down the large chunk of energy that is
spent on costly DL1G accesses. To do this, we propose the addition
of tiny incoherent caches per lane in the GPGPU, which serves the
single purpose of filtering frequently accessed addresses and avoid-
ing a lookup from the lower levels. As shown in Figure 2b, the tiny-
Cache becomes the first cache in the memory hierarchy for an indi-
vidual lane. All the global and scratchpad memory requests can be
routed through it. To keep the access latency to this cache as small
as possible, to maximize its ability to store frequently re-used data
and exploit locality, we compare various configurations with a num-
ber of entries and different line sizes for the minimum energy delay
product. As detailed in Section 5.2, we finally pick a tinyCache with
16 entries and 64B line size.
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Figure 2: (a) Internals of a single SM in a typical GPGPU. (b) We
propose adding tinyCaches per lane. These tinyCaches filter both
scratchpad memory and global addresses.

We adopt a write-validate write on-miss policy for the tinyCache
[5]. Figure 3 shows the state diagram for a line in the tinyCache,
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Figure 3: Cache line states and transitions as seen by the tinyCache
controller, which implements a write-validate write-on miss policy
with write-back update. There is a cache line next to each state as
an example. The bits above are the control bits present per half-word
(plus two state bits that are not shown). A shaded half-word means
that the word was written on entering that state. Note that in Dv,
all the half-words are valid (both set and unset control bits denote
valid), whereas in Dpv only the half-words marked dirty are valid
(unset control bits indicate that the corresponding half-word is are
invalid).

detailing our implementation of the write-validate policy with write-
back. We modify the role of the validity bits in the original protocol,
and depending on the state, they can act now as don’t care bits, va-
lidity bits or dirty bits. We will henceforth refer to them as control
bits. Our adaptation of the protocol requires four states, which adds
two bits per line, plus the control bits, to encode the line state (we
omit the transient states here). A control bit per byte would guar-
antee correct operation with an overhead of 64 bits for a typical 64
Byte cache line. We analyzed typical applications and found that a
word or half-word granularity suffices, so we selected the half-word
granularity for our experiments.

All lines enter the invalid state (I) upon initialization of the cache.
A read miss (rm) will make the controller fetch a clean memory
block, setting the line in the clean (C) state (the control bits are don’t
care terms). A write hit on this clean line will switch the state to Dv,
and the control bit(s) of the written half-word(s) will be set (meaning
valid and dirty). The other control bits will be cleared (meaning valid
and clean). Further write hits (wh) on a line in the Dv state will set the
corresponding control bits. Note that any tag hit on a line in this state
is also a half-word hit because all half-words are valid, irrespective
of whether their control bit is set or cleared.

A write miss (wm) will allocate a cache line by selecting a victim,
but will not fetch the missing block from memory to the cache, and
the line will switch to the Dpv state. The control bits of all half-words
will be cleared, except for those half-words that are written upon after
the write miss, For these updates half-words, the control bit will be
set, indicating that the half-word is both dirty and valid. Further read
or write hits on valid (dirty) half-words in the line (rh(v)) imply no
action. Write hits on an invalid half-word (i.e. tag hits, half-word
misses) set the corresponding control bit. A write hit on the last
invalid half-word in the line (wh(last)) will make the state change to
the Dv state with no further action. A read hit on the line, addressing
a half-word which is set invalid (i.e. a tag hit, word miss, noted rh(i))
will also switch the state to Dv, but the controller will fetch the block
from memory and will merge it in the cache line with the half-words
that have their control bit set.

The rpl event in the diagram stands for evictions. When a line is
evicted I becomes a transitory state leading to one of the three other
states. The termination of a thread block triggers an invalidation of



all the tinyCache lines in the SM where the block was executing. The
rpl event on a line in the Dv or Dpv states triggers a write-back of the
valid (dirty) half-words (rpl : wb(v)).

3.1 Maintaining coherence across all the tinyCaches
The biggest implication of having a cache per lane is the task of

maintaining coherence across the lanes, since one or more lane may
cache the same line from either the scratchpad memory or global
memory. However the CUDA/OpenCL programming model allows
us to take certain liberties to establish coherence between these tiny-
Caches with a lower overhead. There are five scenarios to consider:

Some lanes write to different locations in scratchpad memo-
ry/global memory: A typical programming pattern in CUDA ap-
plications is that consecutive threads reference consecutive memory
elements and therefore consecutive lanes will share the same mem-
ory block in their tinyCaches, referencing only a part of it. This false
sharing would wreak havoc on a coherence protocol when it comes
to writings. The write-validate, write-back protocol described earlier
let us obviate any invalidation or update across the tinyCaches. The
CUDA/OpenCL programming model only ensures sequential consis-
tency on writes by a single thread [6]. A thread reading a shared vari-
able will not see a change made by another thread unless explicitly
using a barrier, irrespective of whether or not these threads belong to
the same warp or block, or whether they access the scratchpad mem-
ory or the global memory. Assume x(0) and x(1) are two array ele-
ments lying on the same cache block. Thread 0 writes element x(0),
and then reads element x(1), whereas thread 1, which is running con-
currently, writes element x(1) and then reads x(0). The model does
not allow any assumption on the values read from x(1) and (x2). On
the other hand, both threads will have a copy of the same memory
block in their tinyCache, in Dv state, with different control (dirty)
bits set. When these blocks are replaced, the dirty half-words will be
correctly written-back to memory. It is precisely this subtlety that we
exploit to use incoherent caches.

Some lanes write to the same location in scratchpad memory/
global memory: Since there is no ordering of threads, the program-
ming model does not guarantee which thread will first write to the
address [6]. Thus, we do not need to take further actions beyond
the ones implicit in the write-validate policy with write-back as de-
scribed above.

Atomic operations: Atomic operations need to guarantee a con-
sistent view of the memory. To avoid the coherence overhead, we do
not cache these atomic addresses in the tinyCache.

Synchronization primitives (barriers) : When we hit a barrier,
we evict all the tinyCache entries.

A single byte write access cached by the tinyCache: Since the
cache line only has a control bit per half-word, we do not cache such
addresses. Effectively, we trigger an eviction if the address was al-
ready cached or just bypass the tinyCache if the address was not
cached.

Local memory is transparent to the programmer. It is a specially
allocated area of the global memory, used for spill code. Since there
have been numerous techniques that improve the utilization and ef-
fective capacity of the register file, and given the low frequency of its
occurrence, we reserve the tinyCache only for the global and shared
addresses.

3.2 Area overhead
A control bit per half-word implies 32 control bits per line for a

tinyCache with 64 B line size. The tag SRAM has two bits for the
state plus 79-bit tag for a total of 81 bits per line. The tag is a part of
the extended address that can indicate if a given reference is a global
or a scratchpad memory reference, as well as the block id if needed.
Thus each tinyCache line needs 15B of meta data. Therefore each
16-entry tinyCache costs us just over 1 KB (1264 B), 19% of which
is control overhead.

In all, the tinyCaches account for about 9% of the area of the GPU
on-chip memory hierarchy. Our estimation is based on GPUSim-
Pow [7], including coalescing, shared memory, constant and texture
cache, and the L2 cache, but excluding the LLC.

4. EXPERIMENTAL SETUP

Parameter Configuration

SM cores 4 SMs, 1.5 Ghz
Number of lane per SM 32, in-order
Memory Coalescing Enabled
Maximum concurrent blocks per SM 8
Maximum concurrent warps per SM 24
tinyCache per lane 1KB / 8-way / 64B line /1 cycle
scratchpad memory per SM 48KB / 8 banks / 18 cycles
L1 cache per SM 32KB / 8-way /128B line/ 18 cycles
L2 cache per die 256KB / 16-way /128B line/ 7 cycles
LLC per die 8MB / 32-way / 128B line /14 cycles
Memory 18GBytes/s BW with 50ns access time

Table 1: Simulation parameters

Our baseline architecture, depicted in Figure 2a, is based on the
specifications of Fermi [4]. Following the trend of integrating GPUs
and CPUs in a single die sharing caches [8], we incorporate a LLC
in our baseline, similar to [8–10]. Some relevant configuration pa-
rameters are listed in Table 1. Our proposal to add a tinyCache per
lane, shown in Figure 2b, is built on top of the baseline. The tiny-
Caches were sized and its parameters were chosen on the basis of
the energy-delay product (ED), and the IPC. More details about the
sizing are available in Section 5.2. We use CACTI [11] to estimate
the latencies of the memory structures, except for the DL1, whose
complex architecture is not modeled well with CACTI. We rely on
measurements and published Fermi latencies that estimate the DL1
latency to be around 18 cycles. Our assumptions are consistent with
[12] and [8].

ESESC [13] is a simulator that supports several ISAs (ARM and
SPARC). We extended the simulator to use PTX instructions. ESESC
execution driven simulation uses GPU instructions and simulates an
array of SMs, modelling the baseline architecture (timing model of
the compute units). To model a GPU, we use public information from
NVIDIA Fermi [4] like the maximum number of threads that can be
allocated per SM based on register file and scratchpad memory usage
per thread, and the hardware limits set for an architecture. To model
SIMD execution, we simulate the execution of threads in a warp by
advancing the program counter in a lock-step fashion, syncing inter-
mittently per basic block. This allows threads to diverge if needed
until they reach the basic block where they finally re-converge. For
warp scheduling, we model a simple round-robin, single-level mech-
anism, and we switch warps at memory operation boundaries. There
are fixed number of threads per warp, and we limit the maximum
number of in-flight (active) warps to the limit specified for a specific
architecture. This is the default option in other GPGPU simulators
(GPGPU-Sim [14] and Multi2Sim [15]). We model memory coa-
lescing.

Benchmark Description

Backprop A machine learning algorithm used in a graph
BFS A graph traversal algorithm
Convolution (convo) An image processing algorithm

HotSpot
A tool to estimate the temperature for
an architectural floorplan

SAXPY A common subroutine which performs z = α ∗ x+ y
SGEMM Matrix Multiplication

SPMV
A commonly used implementation
for multiplication of sparse matrices

SRAD Used to remove locally correlated noise in an image
Transpose Compute the transpose of a matrix

Table 2: GPU workloads used in our evaluation.

Our power model is based on GPUSimPow [7] and CACTI. Our
estimations include only the on-chip dynamic energy, we do not in-
clude DRAM. As far as the tinyCaches go, we do not treat the line
fills and coalescing requests like other regular requests; they are more
expensive and accounted for separately. We expect the same leakage
as with DL1 memory structures (without coalescing and crossbars),
which should be less than 10% of the leakage of the total on-chip
memory hierarchy.



Our benchmarks are from Rodinia [16] and Parboil [17] in addi-
tion to a few regular benchmarks from the CUDA SDK [18]. Table 2
lists and briefly describes the GPU workloads that we use in our eval-
uation. All benchmarks from the standard benchmark suites were run
to completion with the largest dataset made available. SAXPY uses
8MB arrays. Convolution was performed on a 3072×3072 sized 2D
image. Transpose uses a 2688×2688 square matrix as its input.

5. ANALYSIS AND OBSERVATIONS
Section 5.1 presents our main results and emphasizes the ability

of the tinyCache to meaningfully filter out accesses to the DL1G,
cutting down the energy. The sizing of the tinyCache is presented in
Section 5.2.

5.1 Main Results
Different benchmarks exhibit different memory patterns, domi-

nated by global references, scratchpad memory references or both.
To maximize the potential of the limited entries in the tinyCache,
each benchmark needs a specific set of references to be cached. We
ran experiments where the tinyCache was allowed to cache only the
global or only the scratchpad memory or both references and noted
which configuration was the most effective in minimizing the energy
delay product for each benchmark.

Typically programmers are encouraged to make use of the scratch-
pad memory, and we see that caching these references does not affect
the caching ability of the tinyCache for global references. We pick
this configuration as our default policy and refer to it as tCbase. To
highlight the potential of tinyCaches for energy savings and their im-
pact on performance we compare tCbase with a handpicked optimal
configuration per application tCpick, which could be a configuration
that cached either one or both global and scratchpad memory refer-
ences, offering maximum savings in the energy-delay product. Both
are normalized to the baseline with no tinyCache notC.
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Figure 4: Addition of a tinyCache per lane reduces the dynamic
energy consumption of the on-chip memory hierarchy by 37%.

A well designed tinyCache will be effective in filtering out fre-
quent expensive requests to the DL1G and replacing these requests
with energy-efficient accesses to the tinyCache. Figure 4 highlights
that our base policy, tCbase, which caches both the global and scratch-
pad memory accesses, is able to achieve a significant reduction of
around 37% in the total dynamic energy consumed by the on-chip
memory hierarchy. Note that tCpick is just tCbase in many bench-
marks, except in the case of convo and SAXPY. SAXPY performs
significantly worse with tCbase policy. SAXPY is a streaming ap-
plication with no re-use of the data it fetches or intra-thread locality.
In addition, each miss on the tinyCache entails an expensive line fill
operation from the DL1. Thus the presence of the tinyCache only
adds overhead without filtering any traffic from DL1G. As a result, it
is not beneficial to use a tinyCache with such applications. Since our
emphasis for this paper is the energy efficiency, tCpick for SAXPY
is essentially the same as notC, since by bypassing global, we do
not cache any references in the tinyCache. We could disable the
tinyCache by exposing it through the API to the driver that spawns
the kernels, similar to disabling L1 caching in the Fermi. We could
also potentially detect streaming accesses in hardware and disable the
tinyCache transparently; we leave this exploration to future work.

Figure 5 shows that the IPC per lane does not vary significantly
across different policies. This is because of the large number of
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Figure 5: The IPC remains largely unchanged for most benchmarks,
with a 2.3% reduction seen on average.

threads available on the GPGPU for interleaving, which makes it
possible to tolerate a wide range of memory latencies. We note that
unlike the increase reported in SAXPY’s energy numbers, the tiny-
Cache does not hurt its performance. Transpose is a similar case.
This application is right behind SAXPY, when we consider the tiny-
Cache miss ratio, and yet the performance is not affected. This is
because the latency added by the tinyCache, very small compared
with the rest of the memory levels, is easily engulfed by the warping
mechanism. We see a similar decrease in the IPC, even if we opt for
the tCpick policy.
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Figure 6: We see a 35% reduction in the ED after the addition of a
tinyCache per lane

The ED plot shown in Figure 6 closely follows Figure 4. The
average reduction in the Energy-Delay product with respect to the
baseline in Figure 6 highlights how tinyCaches achieve substantial
energy savings for the moderate performance losses observed in Fig-
ure 5. Applications like backprop, SGEMM, SPMV and SRAD ben-
efit very well with a tinyCache: they show a large decrease in the en-
ergy (68%, 85%, 32% and 52% respectively) for a negligible loss in
performance. Convo yields good numbers if we bypass the scratch-
pad memory references and provide more space for the global ref-
erences, but a streaming application like SAXPY does not benefit at
all.

Figure 7 shows the breakdown of memory accesses to each mem-
ory level, normalized to the baseline (no tinyCache). The leftmost
bar in each group plots the baseline breakdown as a reference. The
bars in the center and on the right stand for the base tinyCache (tCbase)
and the best pick per application (tCpick) according to Figure 8. We
observe that the number of accesses to DL1G drops by almost 62%
on an average, and by almost 81% for scratchpad memory references.
Note that an access to the tinyCache is significantly lesser expensive
compared to DL1G. This is because an access to the tinyCache does
not require going through the coalescer and the address and data dis-
tribution network, which are expensive parts in terms of energy con-
sumption. The L2 cache shows a minor improvement as well. This
is probably because the tinyCache is able to retain references that
would otherwise have been displaced from the DL1G and incurred a
costly L2 reference.

We should note that memory accesses that would have coalesced
in a typical GPGPU memory hierarchy still have the same bene-
fits in the tinyCache configuration, except that they may have less
data reuse in the tinyCache. Effectively, all the tinyCaches have
the same address cache misses and these tinyCache misses are coa-
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Figure 7: A breakdown of the memory accesses seen by each cache in the on-chip memory hierarchy for the baseline, the baseline tinyCache and
the best pick per application. We see a 61.8% and 81% reduction to the number of accesses to the DL1G and scratchpad memory respectively.

lesced. Due to evictions at different times, we could potentially have
a higher number of DRAM accesses. The worst case is evident in
SAXPY, where the number of DRAM accesses nearly doubles with
tinyCaches, increasing from a 1.7% global miss rate to 3%. Nev-
ertheless, this is the worst case benchmark, and on an average we
maintain the same global miss rate of 1.5% across applications.
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Figure 8: A tinyCache which caches both global and scratchpad
memory references provides the most optimal savings in ED (and
E) (bypass_none) as compared with a configuration caching only
global references (bypass_shared) and one caching only scratchpad
memory references (bypass_global).

We see that a tinyCache that caches both the global and scratch-
pad memory references is often the configuration that yields the best
savings in E and the ED product, as seen in Figure 8. The long laten-
cies associated with global references make them a good candidate
for caching. However, this is not necessarily the optimal choice for
all benchmarks. For example, an application like SGEMM which
is highly scratchpad memory intensive prefers a configuration where
we cache only the shared references and exploit the spatial local-
ity exhibited. On the other hand, convo, which involves both global
and scratchpad memory references, prefers caching global references
only. The reason behind is how consecutive threads reference neigh-
boring array elements in convo. When these elements fall in differ-
ent cache lines some thrashing may occur. We have observed that
this effect strongly decreases in convo as we increase the size of the
tinyCache.

5.2 Sizing the tinyCache
Determining the size of the tinyCache is a crucial step. In the ar-

chitecture we propose, we add an extra level in the memory hierarchy
–tinyCaches– between the lane and the DL1G to save energy by re-
ducing the distance traversed by on-chip data transfers as close as
thread locality allows, filtering requests that otherwise pass through
the coalescing logic and go to the DL1G. This may sacrifice perfor-
mance on behalf of the energy savings if the hit rate in this new level
is low, because all the misses incur an additional delay. The tiny-
Cache thus needs to be large enough to retain as many memory ref-
erences as possible to maximize the hit rate, but conveniently small

for energy efficiency. Since we know that memory access patterns
are usually quite varied, a poorly designed cache might not be able
to provide the benefit we seek. Our goal in picking a configuration
was primarily energy efficiency, but not at the cost of a significant
performance difference. We thus use ED as our primary metric to
pick the tinyCache configuration.
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Figure 9: Impact of varying the line sizes and entries in the tiny-
Cache on Energy (E) and Energy Delay (ED).

We observe that the IPC per lane hardly fluctuates along the design
space by changing the configuration of the tinyCache. Figure 9 plots
the normalized E and ED. We have chosen 16 entries and a line size
of 64 B, as it is the smallest configuration with minimum ED, to keep
leakage low. In any case, as mentioned in Section 5.1, the overall
leakage on the tinyCaches of the 32 lanes in this range is negligible
compared to the rest of the system, and will likely be compensated
by the reduction in temperature on DL1 and the coalescer.

6. RELATED WORK
Most of the research on GPGPUs is steered toward improving their

ability to sustain a high throughput (performance) in a discrete sys-
tem. The trade-off between the thread block size, blocks per SM
and storage allocation (registers and scratchpad memory) is an im-
portant issue to be understood by every CUDA programmer, and is
documented in [6]. Bakhoda et al. [14] noted the criticality of the
memory access latencies to the performance of non-graphics appli-
cations and their sensitivity to the memory bandwidth.

With the newer generations of GPGPUs getting larger on one hand,
and the adoption of mobile GPGPUs on the other, there is a growing
emphasis on the energy efficiency of GPGPUs.

Gebhart et al. explore several register allocation algorithms and
propose a compiler specifiable register file hierarchy that allows shar-
ing of temporary register file resources among running threads, re-
ducing the usage of this energy hogging resource [19], [12]. They
also propose a unified scratch, register and primary cache that can be
configured at runtime to minimize the access latencies [20].

The filter cache was first proposed for uniprocessors in [3], where
the authors proposed power consumption as an important and valid
tradeoff for a loss in performance. The idea was extended to mul-



ticore processors in [21], where the best configuration included a
victim cache at the filter cache level. A figure with a per-lane private
data cache appears before the first level cache in the organization of
the Echelon GPU architecture [22], but there is no mention or expla-
nation of any kind in the write-up. To the best of our knowledge, we
are the first to propose a data cache per lane, exploiting the program-
ming model to hide the overhead of coherence.

The tinyCache can be empowered by combining them with many
ideas proposed in the references above, particularly those that at-
tempt to improve the inter and intra -thread and block level locality.

7. CONCLUSIONS
Meeting the power budget is often the biggest challenge to over-

come as we move toward the next generation of parallel processors.
With advancements in the programming model, the trend is toward a
growing number of cores and a severely lagging memory system sup-
porting it. As GPGPUs get more pervasive, be it through phones, or
hand held gaming consoles, or cameras, energy efficiency becomes
more crucial. In this paper, we propose adding a tinyCache per lane
in the GPGPU to filter out requests to the energy inefficient DL1 and
shared memory to save energy. We do this by exploiting features of
the unique programming model and avoid incurring the overhead as-
sociated with coherence. We see a substantial saving of roughly 37%
of the energy consumed by the on-chip cache hierarchy on average,
and a 35% reduction in the energy-delay product. While there are
some memory access patterns that can benefit with larger tinyCache
capacities or by caching more types of references, the difference is
not large enough to justify a complex adaptive mechanism. The tiny-
Cache also makes it possible for us to think beyond the data access
patterns typically used while writing GPGPU applications, and ex-
ploit locality in the tinyCache to gain further savings.
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