
Energy-Efficient Hybrid Wakeup Logic
�

Michael Huang, Jose Renau, and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ABSTRACT
The instruction window is a critical component and a major en-
ergy consumer in out-of-order superscalar processors. An impor-
tant source of energy consumption in the instruction window is the
instruction wakeup: a completing instruction broadcasts its result
register tag and an associative comparison is performed with all the
entries in the window.

This paper shows that a very large fraction of the completing
instructions have to wake up no more than a single instruction cur-
rently in the window. Consequently, we propose to save energy
by using indexing to only enable the comparator at the single in-
struction to wake up. Only in the rare case when more than one
instruction needs to wake up, our scheme reverts to enabling all
the comparators or a subset of them. For this reason, we call our
scheme Hybrid. Overall, our scheme is very effective: for a proces-
sor with a 96-entry window, the number of comparisons performed
by the average completing instruction with a destination register is
reduced to 0.8. The exact magnitude of the energy savings will
depend on the specific instruction window implementation. Fur-
thermore, the application suffers no performance penalty.

Categories & Subject Descriptors:

C.0 Computer System Organization: System Architectures.
C.1.1 Single Data Stream Architectures: RISC/CISC,VLIW Architectures
C.5.3 Microcomputers: Microprocessors.

General Terms: Design, Experimentation, Performance

Keywords: Low Power, Wakeup Logic, Issue Logic

1. INTRODUCTION
The instruction window is a central piece of the machinery re-

quired to support out-of-order execution in modern high perfor-
mance processors. Instructions are inserted in the instruction win-
dow after their registers have been renamed to eliminate output
and anti dependences. Instructions wait in the window until their
operands are ready, at which point true dependences can be satis-
fied and the instructions can be issued to the functional units for
execution.

�

This work was supported in part by the National Science Founda-
tion under grants CCR-9970488, EIA-0081307, EIA-0072102, and
CHE-0121357; by DARPA under grant F30602-01-C-0078; and by
gifts from IBM, Intel, and Hewlett-Packard.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

When an instruction finishes its execution, its destination reg-
ister number is typically broadcasted to all the instructions in the
window. The purpose is to inform all dependent instructions of
the availability of the result. Each entry compares the broadcasted
tag to its own source register tags. If there is a match, the source
operand is latched and the dependent instruction may be ready to
execute.

This tag broadcast and associative comparison is called instruc-
tion wakeup. It requires driving a register tag through long wires
and comparing it to all the source register tags in the instruction
window. Consequently, it can consume substantial energy.

To reduce the energy consumed by instruction wakeup, Foleg-
nani and Gonzalez have recently proposed several optimizations [5].
Specifically, window entries that are either empty or contain in-
structions that already have all their source operands available, are
not compared against the broadcasted register number. Further-
more, the size of the instruction window is dynamically adjusted
to reduce empty area. According to [5], by disabling comparisons
to empty and ready entries in a 128-entry window, we decrease the
number of comparisons performed by the average completing in-
struction to only 14.2.

While this is a very significant reduction, our data indicates that
we can further reduce the number of comparisons per finishing in-
struction. Indeed, we will show that the large majority of com-
pleting instructions have only one single dependent instruction in
the window. Furthermore, the location of the dependent instruction
can be easily recorded when the latter is inserted into the instruc-
tion window. Consequently, we propose to remember the location
of the dependent instruction, and use indexing to enable only the
comparator in the single dependent instruction. This is much more
energy efficient. In the rare case when more than one instruction
needs to wake up, we revert to enabling all the comparators or a
subset of them. This scheme, which we call Hybrid, is very ef-
fective: for a processor with a 96-entry window, the number of
comparisons performed by the average completing instruction is
reduced to 0.8.

The rest of the paper is organized as follows: Section 2 discusses
the rationale for our optimization, Section 3 shows the microar-
chitectural design, Section 4 presents the evaluation environment,
Section 5 evaluates the design, Section 6 discusses related work
and, finally, Section 7 concludes.

2. RATIONALE
Figure 1 shows the typical operation of the instruction window.

An instruction window has many entries, each one corresponding
to one instruction. The information recorded in an entry includes
the opcode and the physical register numbers (also called tags) for
the source operand(s) and the destination. There is one ready bit
for each source operand. Once all the ready bits for the instruction
are set, the instruction is ready to be executed. The arbiter selects
ready instructions and sends them to the proper functional units

for execution. Right before an instruction finishes execution, the
destination register number is broadcasted back to the instruction
window to wake up the waiting instructions. This broadcast and the
resulting many comparisons typically consume substantial energy.

FU

FUIn
st

ru
ct

io
n

W
in

do
w

Destination register number broadcast

Ready1 Ready2
SRC1 tag SRC2 tag

A
rb

ite
r

OP, DEST tag

Figure 1: Typical operation of the instruction window.

Comparisons are needed because many instructions may depend
on the result of a single instruction. However, if we look at ordinary
code, not many instructions have multiple dependent instructions.
For example, as shown in Figure 2, we find that in a normal dy-
namic instruction stream (of the applications detailed in Section 4),
around 70% of the instructions with a destination register 1 have at
most one dependent instruction. Furthermore, if we only consider
dependent instructions that are in the window when the producer
completes, the fraction of instructions with at most one dependent
is significantly higher. This is because an instruction may have a
dependent so far down the instruction stream that, by the time the
instruction finishes, the dependent is not yet in the instruction win-
dow and, therefore, does not need to be woken up by the producer.
We call the dependent instructions that are in the window close-by
dependents.

���

�����

�	�	

�	�	

�	�	�

�������

������� ���! "$#&%('�)�*�+-,(.�/�0(1 24365 798�:�; <>=�?�@ A(B�C

DFE	G H	I4JLK�M&NLO PQ�R�ST9U�VW�X�Y Z

Figure 2: Breakdown of dynamic instructions based on the number of
dependent instructions that they have.

The fraction of instructions that have one or no close-by depen-
dent depends on the compiler and the actual processor. As an ex-
ample, Figure 3 shows the fraction of instructions that have one or
no close-by dependent in a 96-entry window. We consider two pro-
cessor architectures, namely Normal and Slow Memory. Normal
models a typical workstation with a high-end processor, as detailed
in Section 4. Slow Memory simply doubles the latency and occu-
pancy for each level of the memory hierarchy to factor in the widen-
ing speed gap between memory and processor. As can be seen, in
Normal, on average 91.3% of the completing instructions have at
most one close-by dependent instruction. Moreover, widening the
gap between the processor and memory speed does not change the
result much.
[
Branches and stores do not have a destination register.

\]�^ _ ` a b�c d egf h
i j k

l m�n o p q r
s t uwv x�y z�{ |�}�~ � � ��� � � �� ��� � � ���

� ���
� ��� ��� � ��� � � ��� � ��� �¡ ¢ £ ¤

¥�¦

§�¨�©

ª�«L¬

�®�¯

°�±�²

³	´�µ�¶

·>¸!¹9º¼»!½6¾ ¿ÁÀÃÂ�Ä>ÅLÆ!ÇÉÈ�ÊÃË9Ì�ÍÏÎÑÐÃÒ ÓÕÔ�ÖF×ÙØÕÚ!Û!Ü Ý�ÞLß

àâá�ã(äLå(æLç�è(é	ê ë�ì&íFî ïâð(ñòâó�ô(õLö(÷Lø�ù(ú	û ü	ý6þ ÿ��������	��
 �
������������������ ����� � !	"�#
$�%�&�'�(�)�*�+�,�- .�/10 2�3�4�5�6	7�8 9

Figure 3: Percentage of completing instructions with no more than
one close-by dependent instruction in a 96-entry window.

This measurement suggests that a plain broadcast-based wakeup
mechanism can be improved upon. If each entry in the instruction
window had a single pointer pointing to a close-by dependent in-
struction, in most of the cases, using that pointer would suffice to
wakeup all the necessary instructions.

3. ENERGY-EFFICIENT WAKEUP LOGIC
To reduce the energy consumed by instruction wakeup, we pro-

pose to use indexing. Furthermore, given the measurements of Sec-
tion 2, we optimize the micro-architecture for single-instruction
wakeup. The resulting system is very energy-efficient because it
eliminates the need to activate comparators in every entry of the in-
struction window. Instead, only one comparator is activated in the
common case.

In the following, we present the micro-architecture and then con-
sider instructions that have to wake up more than one instruction.
We also examine other issues.

3.1 Proposed Micro-Architecture
Our scheme adds one field to the Register Alias Table (RAT), and

one field and one bit to the instruction window. These extensions
are shown in solid shaded pattern in Figure 4.

Value

R
eg

is
te

r
Fi

le

In
st

ru
ct

io
n

W
in

do
w

Bit
Ready

R
A

T Dependent

Producer

Existing Fields
Physical
Register #

Empty Bit

Snoop Bit
Broadcast Bit

DIEPIE

Figure 4: Proposed micro-architectural extensions.

Typically, when an instruction is about to be inserted in the in-
struction window, a check is made to determine whether or not its
source registers are available. This can be done by checking some
state in the register file or RAT. For illustration purposes, Figure 4
uses a ready bit per register in the register file. If any of the source
registers is not ready, the instruction waits in the window until all
its remaining source operands are produced, at which point the in-
struction is ready to execute.

In our optimized micro-architecture, when an instruction is in-
serted in the instruction window and any of its source registers is
not ready yet, we take a special action. For each source register
not ready, we identify the entry of the producer instruction in the
window. Then, in that entry, we store a pointer to the consumer
instruction. The pointer is simply the index of the consumer in-
struction in the window. The pointer is stored in a new Dependent
Instruction-window Entry (DIE) field (Figure 4). In addition, the
Empty bit of the producer instruction is reset.

Note that we can easily identify the producer instruction for any
source register that is not ready. This is because, as shown in Fig-
ure 4, we add a new field in the RAT called the Producer Instruction-
window Entry (PIE). The PIE points to the entry in the window for
the instruction that will produce the corresponding register. The
PIE is set when the producer instruction is inserted into the instruc-
tion window.

With this support, instructions proceed as follows. When an in-
struction is decoded and inserted into the instruction window, if any
of its source registers is not ready, we follow the PIE pointer(s) to
find the producer instruction(s). Then, the DIE pointers of such
instructions are set to point to the entry in the window correspond-
ing to the consumer instruction. Later, when a producer instruction
completes, it passes its DIE pointer through a decoder to only en-
able the comparator in the consumer instruction and wake it up.
Such a selective wakeup saves energy.

3.2 Waking Up More Than One Instruction
A scheme with a single DIE pointer per instruction window en-

try can only support instructions that have at most one dependent
instruction in the window. To handle the much less likely case of
instructions with more than one close-by dependent instruction, we
propose two possible approaches.

The first solution we propose involves stalling. We call this
scheme Indexing-Only. In this scheme, when an instruction that
is about to be inserted into instruction window finds that at least
one of its producers has the Empty bit reset, it is not inserted, and
instruction decoding is stopped until the producer executes. This
mechanism is similar to the case when the system runs out of re-
named registers.

The second solution we propose involves reverting back to broad-
casting. We call this approach Hybrid. For this approach, we need
the additional hardware shown in the striped area in Figure 4: the
Broadcast bit and (optionally) the Snoop bit in the instruction win-
dow. In this case, when an instruction is being inserted into in-
struction window, the Empty bit of its producer instruction(s) is
checked. If the Empty bit is reset for one producer, the hardware
sets the Broadcast bit of that producer. The same is done for the
other producer, if any. This bit will force the producer instruction
to broadcast its result tag to all the instructions in the window upon
completion. We call this scheme Hybrid-Plain.

We can improve on the Hybrid-Plain scheme with the use of the
Snoop bit. This bit can gate unnecessary comparisons. With this
bit, when a result tag is broadcasted to all instructions, only the en-
tries with the Snoop bit set will actually perform the comparison.
Consequently, when we set the Broadcast bit for a producer in-
struction, we also set the Snoop bit for two instructions: the newly-
inserted consumer instruction and the one pointed to by the DIE
pointer of the producer. If the Broadcast bit was already set, then
we only need to set the Snoop bit for the newly-inserted consumer.
With this support, when a producer instruction broadcasts a result
tag, only a very small number of the entries (those with the Snoop
bit set) will actually perform the comparison. We call this scheme
Hybrid-Snoop.

A third alternative could be to add a second DIE pointer per win-
dow entry. However, such a solution is not very attractive: although
we increase the number of cases handled without broadcast, we still
have to handle the case of not having enough DIE pointers. More-
over, the hardware gets significantly more complicated. One way to
reduce the hardware complexity would be to support only the case
where one of the dependent instructions needs the result through
the first source register, and the other dependent instruction needs
it through the second source register. This case is easier to support
than having the two DIE pointers point to any instruction without
restrictions. Unfortunately, as shown in Figure 5, only around 1%
of the dynamic instructions actually have exactly two close-by de-
pendent instructions, each sourcing the result through a different
source register. The figure corresponds to the Normal architecture
of Figure 3. Consequently, we discard the approach of using mul-
tiple DIE pointers per window entry.

0%

2%

4%

6%

8%

10%

APSI BZIP CRAFTY HYDRO MCF MP3D MP3E Avg

Others
1 SRC1 + 1 SRC2

Figure 5: Percentage of instructions that have more than one close-by
dependent instruction. 1 SRC1 + 1 SRC2 corresponds to instructions
with exactly two close-by dependent instructions, one of which sourc-
ing the result through SRC1, and the other through SRC2. Others cor-
responds to the other cases of two close-by dependents and more than
two close-by dependents.

3.3 Handling Branch Mispredictions
The proposed schemes easily support branch misprediction. In-

deed, when a branch is predicted, processors typically checkpoint
the RAT [13] (or equivalent tables). In our case, we include the
RAT’s PIE field in the checkpoint. If the branch outcome is de-
clared mispredicted, we follow the typical steps of restoring the
RAT and squashing the wrong-path instructions in the window.
Such squashing does not confuse our schemes. To see why, con-
sider the cases when either a producer instruction or a dependent
instruction are squashed.

If a producer instruction is squashed, then its dependent instruc-
tions in the window must have also been squashed. Therefore, the
extra fields that we added to the instruction window do not be-
come inconsistent. However, if a dependent instruction is squashed,
its producer instruction(s) may not be squashed. In this case, the
DIE field in its producer instruction(s) becomes a dangling pointer
pointing to an incorrect entry.

To address this issue, we could include the DIE field and the extra
bits from the instruction window (Figure 4) in the checkpoint, and
restore them on misprediction. While this solution eliminates the
dangling pointers, it is too costly in resources and energy.

Our proposed solution is to tolerate the dangling pointers. Such
pointers do not cause any error such as a failure to wake up a cor-
rect instruction; they can only induce some unnecessary stall and/or
comparisons. Specifically, when a true dependent instruction of a
producer with a dangling pointer is about to be inserted into the
window, it will have to stall (Indexing-Only) or mark the Broad-

cast bit (Hybrid) of the producer instruction. In either case, when
the producer completes, it will enable the comparator for a use-
less instruction (in addition to the ones for the correct instruction
in Hybrid). Overall, it can be shown that these unnecessary stalls
and/or comparisons have a minimal impact on the performance and
energy consumed.

3.4 Applicability to Other Organizations
While we have assumed a centralized instruction window, other

window designs are possible. For example, some designs use mul-
tiple instruction windows [10]. In this case, our schemes work sim-
ilarly. The main difference is that the DIE pointer now contains
both a window ID and an entry ID so as to correctly index the de-
pendent instruction. The resulting circuitry does not have a high
line capacitance because the signals to the non-selected windows
are gated. However, the overall circuitry is a bit more complicated.

Other designs use a compacting instruction window [4]. In this
case, window entries move. Since our schemes use pointers for
direct indexing, they do not work for these windows without addi-
tional support.

4. EVALUATION ENVIRONMENT
We evaluate our proposal on a simulated generic out-of-order

processor with a centralized instruction window structure. Table 1
shows some parameters of the simulated system. Our execution
driven simulator system models the contention and occupancy of
all the resources [8].

Processor
Frequency: 1 GHz Branch units: 1
Issue width: 6 Branch penalty: 8 cycles
Dynamic issue: yes RAS entries: 32
I-window size: 96 BTB entries: 2048
Load/store units: 2 BTB assoc: 4
Int,FP units: 5,4 Branch predictor: GAp(10,8)
Pending loads,stores: 16,16
Caches Bus & Memory
L1 size: 32 KB FSB freq: 333 MHz
L1 OC,RT: 1,3 ns FSB width: 128 bits
L1 assoc: 2 way LRU Mem: 2-channel Rambus
L1 line: 32 B DRAM bandwidth: 3.2 GB/s
L2 size: 512 KB Mem RT: 108 ns
L2 OC,RT: 4,12 ns
L2 assoc: 8 way PLRU
L2 line: 64 B
I-cache: 32 KB 2way 32 B line

Table 1: System configuration. OC, RT, PLRU, FSB, and RAS stand
for occupancy, contention-free round trip from the processor, pseudo
LRU, front side bus, and return address stack respectively.

To show the impact of our proposal on different types of ap-
plications, we run seven applications from the multimedia, integer,
and floating-point domains. The applications are compiled with the
IRIX MIPSPro compiler version 7.3 with -O2 optimization. The
applications are simulated from the beginning to the end, and last
from hundreds of millions of cycles to over one billion cycles.

Table 2 shows the applications used. For the SPECint and SPECfp
applications, we use a reduced input dataset. We verify that the re-
duced data set produces similar cache and TLB miss rates as the
native execution with the reference data on a MIPS R12000-based
workstation. For the multimedia applications, we use an mp3 de-
coder (MP3D) and an mp3 encoder (MP3E).

Domain Application Input Data Set

SPECint 2000
CRAFTY Reduced ref
BZIP Reduced ref
MCF Reduced ref

SPECfp 2000 HYDRO Reduced ref
APSI Reduced ref

Multimedia MP3D (mpg123-0.59r) Hifi
MP3E (lame-3.85) Voice

Table 2: Applications executed.

It is challenging to accurately estimate the energy consumed in
the instruction window. The reason is that, since the window is one
of the most critical components of the processor core, it is heavily
tuned and has diverse implementations. Therefore, we do not at-
tempt to report the absolute or relative energy consumptions of the
different designs. Instead, we use the number of tag comparisons
in the instruction window required by the different schemes as a
qualitative, relative measure of the energy consumed.

5. EVALUATION

5.1 Indexing-Only Scheme
The main advantage of this scheme is that all instruction com-

pletions enable at most one single comparator. Consequently, the
number of tag comparisons is approximately

[
���������
	 of those in

the unoptimized architecture, where
����������

is the number of en-
tries in the instruction window. For our simulated architecture, this
corresponds to a 99% reduction in tag comparisons.

The disadvantage of this scheme is that it sometimes stalls the
processor and, therefore, slows down program execution. Figure 6
shows the increase in execution time of the applications caused
by the Indexing-Only scheme. We can see that the scheme slows
down the applications by an average of 8%. Some applications
take quite a bit longer to complete. Note that, depending on the
degree of clock gating, the longer execution time could diminish or
even negate the energy savings achieved by the reduced number of
comparisons. Consequently, Indexing-Only is not a good wakeup
scheme.

5.0%

8.9%

5.1%
3.5%

7.4%
6.7%

8.0%

19.1%

0%

5%

10%

15%

20%

APSI BZIP CRAFTY HYDRO MCF MP3D MP3E Avg

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
 T

im
e

Figure 6: Increase in execution time caused by the Indexing-Only
scheme.

5.2 Hybrid Schemes
The advantage of the Hybrid schemes is that they do not stall

the processor when instructions have multiple close-by dependent
instructions. Consequently, the application does not suffer any per-
formance penalty. However, the disadvantage of these schemes is
that a completing instruction may induce more than one tag com-
parison. We will see, however, that the number of comparisons is
still close to the Indexing-Only scheme, and much smaller than the
full broadcast, baseline scheme.

With simple calculations, we can estimate the reduction in com-
parisons relative to the full broadcast scheme. Note that in instruc-
tion streams, there are instructions that do not have a destination
register, such as stores and branches. Even in the baseline broad-
cast scheme, they do not require tag comparisons. Here we only
consider instructions that have a destination register. We consider
the Hybrid-Plain scheme first. In this scheme, the number of com-
parisons required relative to full broadcast scheme is given by�

� �
����� ��������� �
	�� �� � ������� ���

In the formula,
� ���������

is the number of entries in the instruction
window, � ��� ��	�� � is the probability of instructions having a single
close-by dependent instruction, and ����� � � is the probability of in-
structions having more than one close-by dependents. If we use� ��� � ���������

, as it corresponds to our simulated architecture (Sec-
tion 4), ����� �
	�� ������� �
� �

, and ����� ������� � ��!�"
as shown in Figure 3

for the same architecture (Normal), we obtain 9.2% for the fraction
of remaining comparisons. This means that Hybrid-Plain reduces
the comparisons by 90.8% relative to the full broadcast scheme.

For the Hybrid-Snoop scheme, the fraction of remaining com-
parisons relative to the full broadcast scheme is

�
� �
����� � ��� �#� �
	�� �

� � � �$�&%
� �
����� � ���'��� � �

In the formula,
� � � �(�#% is the average number of entries with the

Snoop bit set when an instruction broadcasts the result tag. In our
experiments, we measure that

� � � �$�#% ranges from 2.2 to 3.4 for
the different applications. Taking the average across applications,� � � �$�&% is 2.8. Consequently, using these numbers, we obtain that
the fraction of remaining comparisons is 0.8%. This means that
Hybrid-Snoop reduces the comparisons by 99.2% relative to the
full broadcast scheme. This is a very large reduction, which makes
the Hybrid-Snoop scheme potentially very energy efficient.

Figure 7 shows the actual number of comparisons per completing
instruction for different applications. The figure compares the two
hybrid schemes: Hybrid-Plain and Hybrid-Snoop.

) * +
, - .

/ 0 1 2

3 4 5

6 798 :
; < =

> ? @ A B C

D E F GH9I J KL9M N OP Q R ST U V WX9Y Z [\9] ^ _ `9a b cd
e
f
g
h
i j
k l
m n

oqpsr�t uwv&x y{z(|&}q~��s�����q�q��� �$�(� ���w�w� �����s� �����
� �� �
� ��
 ¡¢
£ ¤¥¦ §¨
©ª«¬ ®
¯ °±²³
´ µ¶ ·�¸ ¹»º ¼ ½»¾ ¿sÀ Á»Â ÃÄ�Å Æ»Ç È É»Ê Ë&Ì�ÍÏÎ»Ð

Figure 7: Average number of comparisons per completing instruction
for Hybrid schemes. The instruction window has 96 entries.

We can see that, for a 96-entry window, the two schemes perform
very few comparisons per instruction. Hybrid-Snoop has fewer
comparisons – on average only 0.8 per completing instruction. As
a result, this scheme is potentially very energy efficient. However,
it also has a more complex hardware support.

If we remove the support for the Snoop bit, we get the Hybrid-
Plain scheme. This scheme is simpler in hardware but results in an
average of 8.9 comparisons per instruction.

Finally, for comparison purposes, we have also simulated a scheme
like the one proposed by Folegnani and Gonzalez [5]. Specifically,
we eliminate the support for indexing and simply gate the com-
parators for entries that are either invalid or that have all source

operands ready. Note that we do not support the dynamic resizing
of the instruction window proposed in [5] because it is orthogonal
to our schemes. Overall, with such support, we obtain an average
number of comparison per completing instruction equal to 23.72.
We see that while this scheme has a simpler hardware than our
schemes, it requires many more comparisons and, therefore, it is
potentially more energy consuming.

5.3 Analysis of Stall Cycles
In the Indexing-Only scheme, if an instruction already has a de-

pendent instruction, we stall the insertion of a second dependent
instruction until the producer completes. For these stalled instruc-
tions, Figure 8 shows the distribution of the number of cycles that
they stall. In the figure, each curve represents one application,
while the thicker line with large marks shows the average of all
applications.

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

Number of Cycles to Stall

P
er

ce
n

ta
g

e
o

f
A

cc
u

m
u

la
te

d
 In

st
rt

u
ct

io
n

s

APSI BZIP

CRAFTY HYDRO

MCF MP3D

MP3E Avg

Figure 8: Distribution of the number of cycles that stalled instructions
wait due to their producer already having one dependent instruction.

The average line shows that about 45% of these instructions stall
for only one cycle. This suggests two optimizations. One of them is
to further reduce the number of comparisons in the Hybrid schemes
by always stalling for one cycle the decode and insertion of an in-
struction that is about to set the Broadcast bit. In 45% of the cases,
it will not be necessary to set the Broadcast bit one cycle later. Of
course, the drawback is that the application will take longer to exe-
cute. Indeed, Figure 9 shows the increase in execution time of the
applications when we apply this optimization to any of the Hybrid
schemes. On average, the applications take 2.1% longer to run.
Overall, given that the number of broadcasts in the original Hybrid
schemes is already very low (Figure 3) and that any slowdown usu-
ally involves additional energy consumption, this stalling policy is
unattractive.

1.1%

2.8%

1.4% 1.4%

2.3% 2.2% 2.1%

3.5%

0%

1%

2%

3%

4%

APSI BZIP CRAFTY HYDRO MCF MP3D MP3E Avg

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
 T

im
e

Figure 9: Increase in execution time of the Hybrid schemes when the
instructions that would set the Broadcast bit are forced to stall for one
cycle.

Ñ
This number is slightly different than the one obtained by Foleg-

nani and Gonzalez because we are simulating a different system
architecture.

A second optimization that can benefit the schemes just described
and the Indexing-Only scheme is to use the compiler to schedule the
code to reduce these stalls. Scheduling the stalling instructions only
one cycle later is likely to make a major difference. Exploiting this
optimization is beyond the scope of this paper.

6. RELATED WORK
The work most related to ours is [5], where comparisons to empty

and fully ready entries in the instruction window are gated out to
reduce power consumption. In their simulated architecture, this op-
timization reduces the average number of comparisons performed
by each completing instruction in a 128-entry instruction window
to 14.2. In our work, we exploit a different fact: on average, over
91% of the dynamic instructions need to wake up no more than one
single instruction currently in the window. This leads us to pro-
pose a scheme that combines direct indexing (most of the time) and
broadcasting (occasionally). For a 96-entry window, the number of
comparisons performed by the average completing instruction is
only 0.8.

Using indexing to replace associative search at instruction wakeup
has been examined in two papers. In [12], an algorithm similar to
our Indexing-Only scheme called Direct Tag Search (DTS) is pro-
posed. The goal is to reduce hardware complexity. In [7], two-level
RAM bitmap arrays are proposed, which support indexing-based
wakeup for all instructions, regardless of their number of depen-
dent instructions. The goal is to have a scalable design. However,
the design is complex and is likely to be energy-inefficient. Overall,
in our paper, we combine frequent indexing and occasional broad-
cast to obtain fast and energy-efficient schemes (our Hybrid algo-
rithms). We also show experimental data that justify why single-
indexing works most of the time.

Some other works try to use a direct addressing table to maintain
the dependence chain and, as a result, reduce the required instruc-
tion window size. Among those, Dynamic Data Forwarding (DDF)
uses the Wait Memory to complement the Match Unit, an equiva-
lent of the instruction window [9]. DDF brings only some of the
instructions from the Wait Memory to the Match Unit for associa-
tive check. In [3], two different schemes are studied that use some
auxiliary structure to reduce the size of a fully-associative instruc-
tion window. One of the schemes uses a table that keeps the first
consumer instructions of register results. When these instructions
are ready to execute, they move to the ready queue, bypassing the
instruction window. Like our proposal, such a scheme also exploits
the fact that most instructions have no more than one dependent.
However, it uses this fact to reduce the size of the window.

Select-free scheduling logic selects for execution all the instruc-
tions being woken up [2]. Extra circuitry handles the situation
when more than one instruction wakes up and thus a collision oc-
curs. This work leverages the fact that there is often only one in-
struction waking up inside each wakeup array. Such a fact is consis-
tent with our observation that most instructions have no more than
one close-by dependent. However, their work focuses on modify-
ing the selection logic, while we change the wakeup logic.

There are many other related works that propose clustered win-
dows or improvements to the selection logic [6, 10, 14]. In general,
these works are orthogonal to ours.

Finally, in other works, the issue logic is dynamically adjusted
to reduce the number of idle window entries or issue slots and,
therefore, save energy [1, 5, 11]. These optimizations are largely
orthogonal to our schemes and can still be applied to further reduce
energy consumption.

7. CONCLUSIONS
This paper presented a simple hardware extension to improve

the energy efficiency of the wakeup logic in a superscalar proces-
sor. The idea is based on the observation that a very large fraction
of the completing instructions have no more than one dependent
instruction currently in the window. For example, this fraction is
on average 91.3% for a 96-entry window. Consequently, we pro-
posed to save energy by using indexing to only enable the com-
parator at the single dependent instruction. When more than one
instruction needs to wake up, our support automatically reverts to
enabling all the comparators (Hybrid-Plain scheme) or a subset of
them (Hybrid-Snoop scheme). Overall, the two schemes that we
propose are shown to be very effective: for a system with a 96-
entry window, the number of comparisons performed by the aver-
age completing instruction under Hybrid-Plain is 8.9, while under
the slightly more complicated Hybrid-Snoop, it is only 0.8. The ex-
act magnitude of the energy savings will depend on the specific in-
struction window implementation. Furthermore, in both schemes,
the application suffers no performance penalty.

8. REFERENCES
[1] R. Bahar and S. Manne. Power and Energy Reduction Via

Pipeline Balancing. In International Symposium on Computer
Architecture, pages 218–229, May 2001.

[2] M. Brown, J. Stark, and Y. Patt. Select-Free Instruction
Scheduling Logic. In International Symposium on Microarchi-
tecture, pages 204–213, Dec. 2001.

[3] R. Canal and A. Gonzalez. A Low-Complexity Issue Logic. In
International Conference on Supercomputing, pages 327–335,
June 2000.

[4] J. Farrell and T. Fischer. Issue Logic for a 600-MHz Out-of-
Order Execution Microprocessor. IEEE Journal of Solid-State
Circuits, 33(5):707–712, May 1996.

[5] D. Folegnani and A. Gonzalez. Energy-Effective Issue Logic.
In International Symposium on Computer Architecture, pages
230–239, May 2001.

[6] K. Ghose. Reducing Energy Requirements for Instruction Issue
and Dispatch in Superscalar Microprocessors. In International
Symposium on Low Power Electronics and Design, pages 231–
233, Aug. 2000.

[7] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, T. Kitamura,
and S. Tomita. A High-Speed Dynamic Instruction Scheduling
Scheme for Superscalar Processors. In International Sympo-
sium on Microarchitecture, pages 225–236, Dec. 2001.

[8] V. Krishnan and J. Torrellas. A Direct Execution Framework
for Fast and Accurate Simulation of Superscalar Processors. In
International Conference on Parallel Architectures and Com-
pilation Techniques, pages 286–293, Oct. 1998.

[9] S. Onder and R. Gupta. Superscalar Execution With Dynamic
Data Forwarding. In International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 130–135, Oct.
1998.

[10] S. Palacharla, N. Jouppi, and J. Smith. Complexity Effective
Superscalar Processors. In International Symposium on Com-
puter Architecture, pages 206–218, June 1997.

[11] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing Power Re-
quirements of Instruction Scheduling Through Dynamic Allo-
cation of Multiple Datapath Resources. In International Sym-
posium on Microarchitecture, pages 90–101, Dec. 2001.

[12] S. Weiss and J. Smith. Instruction Issue Logic in Pipelined
Supercomputers. IEEE Transactions on Computers,
33(11):1013–1022, Nov. 1984.

[13] K. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2):28–41, Apr. 1996.

[14] V. Zyuban and P. Kogge. Optimization of High-Performance
Superscalar Architectures for Energy Efficiency. In Interna-
tional Symposium on Low Power Electronics and Design,
pages 84–89, Aug. 2000.

