LLM Challenges Fixing Verilog Testbenches

Mark Zakharov, Farzaneh Rabiei Kashanaki, Alex Lee, Milind Varma Penumathsa, Jose Renau
Computer Science & Engineering Department
University of California, Santa Cruz
Santa Cruz, USA
{mzakharo, frabieik, alee156, mpenumat, renau} @ucsc.edu

Abstract—Traditional chip design heavily invests in Verilog
verification, with more effort often spent on verification than
coding. LLMs have shown promise in translating error feedback
into source code corrections and can potentially correct Verilog
programs using testbench feedback. This study explores the
challenges of automating Verilog fixes and presents several
potential solutions.

I. INTRODUCTION

This study explores integrating Large Language Models
(LLMs) into the chip design verification process to automate
Verilog code repair with testbench feedback. Despite chal-
lenges like limited Verilog resources and a weaker compiler
ecosystem, leveraging LLMs has shown potential. The re-
search focuses on comparing bug-free Verilog (Gold) with
buggy versions (DUT) using Logical Equivalence Checks
(LEC) for discrepancy identification. Preliminary findings sug-
gest that structured feedback is crucial and may be more
impactful than extensive fine-tuning, offering new strategies
for employing LLMs in specialized fields.

II. SETUP

The study aimed to improve LLMs’ Verilog fixing ability
by providing structured feedback on semantic errors using
an automated flow with Yosys for formal verification of
combinational logic. An Agent was developed to interact
LLMs with Yosys, iterating over compiler errors and using
LEC against a reference model to guide corrections. The LLM
was fine-tuned on a dataset of conversations focused on cor-
recting existing Verilog programs, with various configurations
tested to evaluate overfitting and underfitting effects. Higher-
performing configurations passed up to 6 of 17 tests, showing
that feedback significantly improved success rates for certain
problems.

III. EVALUATION

The evaluation revealed two main issues: result regression
and unnecessary modifications. To address these, a regression
trapping filter and an “update” parameter were introduced to
monitor and correct failures, and the feedback format was
refined to exclude correct outputs. Eight trials indicated that
feedback and the “update” feature slightly impeded perfor-
mance due to bias from previous code versions. Future im-
provements could involve more varied corrections and longer
conversations to avoid the model becoming “’stuck” on similar,
incorrect implementations. These changes aim to enhance

the LLM’s ability to consistently correct Verilog programs
effectively. Overall, refining the feedback mechanism and
dataset can significantly improve the LLM’s performance in
correcting complex logic errors.

701

60

50

40

Tests passed

30 1

—8— no feedback base model

—¥— with feedback base model

—a— with feedback finetune E6
with feedback finetune E3

0 T T T T T T T T
1 2 3 4 5 6 7 8

topk passes

204

10 A

Fig. 1. Final Results with Update

70 A

60

50

40 4

30 4

Tests passed

no feedback base model

with feedback base model
with feedback finetune E6
with feedback finetune E3

201

¥ 14

10

T T T T T T T T
1 2 3 4 5 6 7 8
topk passes

Fig. 2. Final Results without Update

IV. CONCLUSIONS

This work explored improving GPT-3.5-turbo’s ability to
correct Verilog programs using testbench feedback. An agent
flow and fine-tuning dataset were developed, which improved
code generation but are not ideal. The methods presented may
be useful for future work, potentially leading to a hardware
design paradigm where designers focus solely on verification.

REFERENCES

[1] HDLBIts - Verilog Practice. website, November 2017.
[2] The 2020 Wilson Research Group Functional Verification Study, 2020.



