
Releasing Efficient Beta Cores to Market Early

Sangeetha Sudhakrishnan, Rigo Dicochea, and Jose Renau
Dept. of Computer Engineering, University of California Santa Cruz

sangeetha, rigo, renau@soe.ucsc.edu
http://masc.soe.ucsc.edu

ABSTRACT

Verification of modern processors is an expensive, time consuming,
and challenging task. Although it is estimated that over half of total
design time is spent on verification, we often find processors with
bugs released into the market. This paper proposes an architecture
that tolerates, not just the typically infrequent bugs found in current
processors, but a significantly larger set of bugs. The objective is
to allow for a much quicker time to market. We propose an archi-
tecture built around Beta Cores, which are cores partially verified.

Our proposal intelligently activates and deactivates a simple single
issue in-order Checker Core to verify a buggy superscalar out-of-
order Beta Core.

Our Beta Core Solution (BCS), which includes the Beta Core,
the Checker Core, and the logic to detect potentially buggy sit-
uations consumes just 5% more power than the stand-alone Beta
Core. We also show that performance is only slightly diminished
with an average slowdown of 1.6%. By leveraging program signa-
tures, our BCS only needs a simple in-order Checker Core, at half
the frequency, to verify a complex 4 issue out-of-order Beta Core.
The BCS architecture allows for a decrease in verification effort

and thus a quicker time to market.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-

mance measures

General Terms

Reliability, Verification

Keywords

Verification, Microprocessors, Defects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

1. INTRODUCTION
Processor design is an extremely difficult and time consuming

task. Hundreds of engineers are involved in the design and verifica-

tion of a new processor. This process typically lasts between 3 and
6 years. Although significant effort is devoted to designing flawless
processors, the biggest companies, like Intel and AMD, are unable
to release bug free processors. This fact is documented in the nu-
merous erratas [1–5] detailing complex situations that generate in-
correct or buggy results. Bugs are inevitable, but tolerating even
more bugs can potentially accelerate the time to market for future
systems. We go one step beyond current proposals, instead of tol-
erating just a few bugs, we propose an architecture that efficiently
tolerates a partially verified processor. We call this architecture the
Beta Core Solution (BCS).

Recent research work [6–9] aimed at tolerating processor bugs

can be broadly classified into 2 major categories: always re-execute
and a priori bug detection. Always re-execute architectures, re-
execute all instructions before they are allowed to commit or retire
from the ROB. A complex core is coupled with another core that
always checks the results [6, 7]. Always re-execute solutions re-
quire a correct Checker Core to verify a faster but potentially buggy
core. The general solution to mitigate the Checker Core require-
ments is to allow the buggy or more complex core to run ahead and
provide prefetching information to the Checker Core. Always re-
execute architectures provide protection against unknown bugs, but
at a high power cost because a non trivial checker is always active.

A priori bug detection systems tackle the issue in a fundamen-
tally different manner. A priori bug detection architectures only re-
execute instructions based upon prior knowledge of an existing bug.
An a priori bug detection approach taps control signals and creates
signatures [8, 9] used to detect previously specified bugs. They
create a signature using several control signals from the proces-
sor. Their solution hashes most of the processor control signals and
compares the results with a predefined “bug database”. A signature
hit means that the processor can potentially generate incorrect re-
sults. This triggers a recovery mechanism that can potentially have
several orders of magnitude slowdown. Equally problematic, these

systems require a database with all known potential bugs. This pro-
cess involves the designers, which makes it difficult for systems in
which new bugs are constantly detected. Contrary to always re-
execute solutions, a priori bug systems have a low overhead, but
they can not protect from unknown bugs.

A contribution of this work is an incorporation of the strengths
of two techniques, "a priori bug systems" and "always re-execute
systems", into a robust unified architecture. Our Beta Core Solu-
tion (BCS) is not just an integration, it requires a substantial re-
design. An a priori bug detection system does not provide any ben-
efits when integrated with an always re-execute system because the

http://masc.soe.ucsc.edu

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
D

e
fe

c
t

A
rr

iv
a

l
D

e
n

s
it
y

Time ->
Design Development Verification Release

(~99% found)

Beta Core

(~99.999% found)

Typical

Figure 1: Defect arrival model using a SLIM model [10].

always re-execute is already able to verify all instructions. BCS
uses a unique signature mechanism for re-executing the frequent
bugs in the Checker Core, and the infrequent bugs with an a priori
system.

BCS provides a novel method to dynamically create signatures.
We comprise our signatures of enough critical information to detect
bugs but not contain so much information that they become too

large. An overly detailed signature will have the Checker Core
frequently active, a simple signature, like using program phases,
can not capture all bugs. Our evaluation shows that our signature
construction satisfies both constraints.

Conceptually, already executed code does not need to be con-
stantly re-verified, our proposed signature system avoids re- checks.
Our signature incorporates program phases with processor timing
information. The signature is compared to a database of verified
signatures. When a new signature is created, the Checker Core ver-
ifies the Beta Core’s retiring instruction bundle before it is allowed
to retire from the Beta Core. If the results from the Beta Core and

Checker Core match, the instruction bundle retires and the new sig-
nature is added to the good signature database. If we find a signa-
ture that already exists, we retire the instructions without calling the
Checker Core. If there is a mis-match between cores, the Checker
Core flushes the Beta Core and executes several instructions before
copying the new context to the Beta Core.

The previous approach works for most bugs, but there could still
be potentially difficult to catch bugs that are missed. These infre-
quent and difficult bugs are captured with a bad database method-
ology defined in a signature. We have a database of good signa-
tures to detect already verified code and we have a set of bad signa-

tures for known bugs in the processor. The bad signature detection
methodology is equivalent to a priori bug detection work.

In addition to the good and bad signature logic, we also pro-
pose a new modified register file for the Checker Core so that it
can efficiently start for frequent bug phases. The Checker Core’s
Architectural Register File (ARF) is updated at the same time the
ARF in the Beta Core is updated. When instructions retire from the
Beta Core, the ARF from the Beta Core and the Checker Core are
updated.

BCS is able to utilize a simple in-order Checker Core, as op-
posed to a complex out-of-order Checker Core, as a result of its
low activity. If the Checker Core were active 100% of the time, this

would necessitate the use of a complex checker as a means to keep
up with it’s partner Beta Core. When the Checker Core is inac-
tive the Beta Core executes at full speed without the Checker Core
constraining it’s performance. The proposed Checker Core offers
two major advantages, it is architecturally simplistic and consumes
minimal power. As the evaluation shows, a single issue in-order
core, at half the frequency of the Beta Core is able to verify a 4 is-
sue out-of-order core. Since the simple Checker Core cycles at half

the frequency, we can use a low power ASIC flow, clock gating,
and several trade-offs to further reduce power consumption.

To estimate the power and performance overhead, we synthe-
sized a 4 issue out-of-order core (IVM [11]) and a simple in-order
core (Rachael [12]) with STMicro 90nm technology. We did not
use a low power ASIC flow or clock gating for the simple core, thus
demonstrating our results are actually worst case power consump-

tion. The synthesis results show that the Checker Core consumes
only 50mW, while the Complex Core consumes 2.8W. Checking
the signature tables adds approximately another 50mW overhead.
This means that the proposed BCS solution increases power con-
sumption by less than 4%. Equally important, the Checker Core
requires less than 5% of the area used by the Beta Core.

The rest of the paper is organized as follows. Section 2 covers
related work; Section 3 describes the proposed Beta Core Solution
and the required hardware to build signatures; Section 4 charac-
terizes the setup of our evaluation; Section 5 presents and analyzes
some of our results from simulation and implementation of the pro-

posed architecture; and Section 6 concludes.

2. BACKGROUND INFORMATION

2.1 Defect Arrival Model
Figure 1 shows a typical defect arrival or detection rate for a

generic processor. The figure uses the SLIM [10] model which is
commonly used by software and hardware industries to estimate
the number of pending or still unknown defects. Initially, very few
bugs are detected, as more lines of code are added, additional bugs
are created and corrected. For a period of time, most bugs are elim-
inated, but some bugs still exist. There are always hard to find bugs
which require a significant amount of time to detect and/or correct.
Solutions with a priori bug detection mechanisms protect from in-

frequent bugs, but they can not tolerate significantly buggy cores
because of the unbound performance impact. As a result, they are
more of a safety net than a technique to release a processor ear-
lier to market. Our Beta Core Solution releases partially verified
processors.

Beta Cores have a higher bug frequency than current released
cores which could be considered the equivalent to a final release in
software. Figure 1 shows that by tolerating 1% of the bugs, the pro-
cessor could be released significantly earlier. This is not an exact
value because the SLIM model needs to be adjusted per core, but it
clearly shows the potential.

2.2 Prior Work
There are several architectures [6,7,13–18] that propose a buggy

core coupled with a Checker Core. In every case, except for Pace-

line [7], the Checker Core is always active. This always on property

Beta Core

Checker Core

execute without retiring

load retire state

pipeline stall

checking retire bundle

execute and retire

 inactive

flush & recover ARF state

 sync checking retire bundle
load retire state

execute and retire execute and retire

retire retiring bundle

bug detected!! no bug detected
Time

Figure 2: Sample BCS execution timeline

is good for verification, but it adds significant performance pressure
to the Checker Core and power overhead to the system.

DIVA [13] is the seminal work proposing an architecture ca-
pable of tolerating buggy cores. The authors propose an always
re-execute architecture which verifies all retiring instructions with
custom hardware. Although DIVA checks instructions before they
retire, it is different from our BCS solution and modern always
re-execute solutions. DIVA’s checking hardware is not a complete
core and therefore does not allow for decoupled execution. The
checking hardware is customized logic comprised of two parallel
pipelines, one for verification of all functional computations and
the other for memory verification. The checking component can
essentially be seen as additional pipeline stages required for in-

struction retirement. The checker hardware is a 4-way in-order unit
which cycles at the same frequency as the processor. Our checker
is a 1-way in-order core, which cycles at half the frequency of the
Beta Core, the low activity rate for our Checker Core supports this
implementation.

DIVA’s checker hardware is coupled with the main processor ar-
chitecture, as such, it could prove more tedious from a verification
perspective. The tight coupling of the main core with the verifica-
tion logic requires a higher level of core modifications. To main-
tain information used by the checking logic, the main core design
is complicated. This intrusive design specification could result in

substantially more design and verification time. DIVA was also
designed for low bug frequency, whereas BCS is aimed at high fre-
quency bug systems. If the DIVA Checker is active 100% of the
time, it has 120 times slowdown on average [19]. BCS has an av-
erage slowdown of 4 times when active 100% of the time. Power
analysis was not provided for DIVA, however, the impact of a 4-
way multi-stage checker unit could prove substantial. Our evalua-
tion provides details for power and synthesis flow.

More recent proposals use full cores to verify the execution of
retiring instructions. This "checker core" is decoupled from the
potentially buggy core allowing for a smaller performance impact
on the potentially buggy core. Recent works [6, 7] have been de-

signed to tolerate cores with high bug frequency. In comparison,
DIVA was designed for infrequent bugs. In this work, we focus on
the more modern re-execution models because we target high bug
frequency systems.

Paceline [7] proposes an architecture similar to Tandem [6] but
allows the checker to be deactivated. Their deactivation is at coarse
level, and it’s main goal is to catch faults generated from an over-
clocked core. If it is not overclocked there is no need to have it
checked.

In Tandem [6], a 4 issue in-order core was able to check a 4 is-
sue out-of-order core. The out-of-order core was able to provide

prefetched information from the caches and the branch predictors.

In Slipstream [15], the leader executes only a subset of the instruc-
tion stream. The leader core executes speculatively, only what it

thinks is necessary for forward progress. The checker, executes the
same instruction stream non speculatively. The main focus of this
work was to increase speed of execution, but the biggest difference
with our work is that both cores need to be fully verified. In all the
above works, the checker is always active, which is a big differ-
ence from what this work proposes. Another main difference with
all existing work is that all of them propose architectures capable
of tolerating infrequent bugs, unlike our solution where we propose
an architecture able to tolerate frequent bugs. This idea of a higher
tolerance to buggy processors is vital if designers seek to decrease
the time to market through a reduction in verification time.

Another work [20] proposes an architecture aimed at tolerating
bugs yet to be discovered. But, their approach is dependent upon
the quality of signals built during verification time. The authors
state that the dependency can be overcome by creating additional
guardians. Additionally, the core’s minimum functionality has to
be 100% validated. Since we remove the dependency on signals,
our approach is more robust.

3. THE BETA CORE SOLUTION
At a high level, the proposed architecture couples a simple in-

order processor, Checker Core, with a partially verified complex
out-of-order processor, Beta Core, as a method to capture design
bugs. The Checker Core can verify the instructions before they re-
tire from the Beta Core. To reduce overheads and to allow a much
simpler Checker Core, a signature database determines whether the
Checker Core needs to verify the Beta Core. Utilizing the signature

information we can determine whether or not a bundle of instruc-
tions should be allowed to retire without verification. We refer to
the instructions that can be retired in the current clock cycle as the
retiring bundle.

Some bugs prevent the processor from retiring any instructions.
To prevent stalls in the system, we implement a deadlock detector
in the Beta Core. If no instruction retires for an extended period of
time, we flush the Beta Core pipeline and transfer the context to the
Checker Core to execute additional instructions before transferring
context back to the Beta Core. The Checker Core must execute the
additional instructions before control is transferred back to the Beta

Core because defects have a high temporal locality.

3.1 Beta and Checker Core Coordination
Figure 2 shows a sample flow of the BCS architecture. We

see the Beta Core executing instructions, then activate the Checker
Core when a new signature is detected. The Checker Core must
then be synchronized with the Beta Core. The Checker Core loads

the retirement state and verifies the current retiring bundle. When

Recover ARF State

Learn Signature

Start Checking

Update ARF State

Retire Bundle

Beta Core

ROB

P
C

1
P

C
2

P
C

3
P

C
4

P
C

5
P

C
6

Retiring Bundle

LatReg S1

Good Signature

Table

Learn

Last Sign S2

Bad Signature

Table
Hit?

Learn

ROB

Issue Logic

Fetch

Execution Units

...

Checker Core

IF ID EX MMWB

Architectural

Register File

Retiring Bundle State
Hit?

Figure 3: Beta Core Solution integrating an out-of-order Beta Core and a simple in-order Checker Core. LatReg is the latency
register indicating the number of cycles since the last retirement. S1 and S2 are the signature generators for the good and bad

signatures respectively.

the Checker Core detects a bug, it notifies the Beta Core. The Beta

Core must flush it’s pipeline and recover the ARF state from the
Checker Core. After a few cycles, the Checker Core is inactive and
the Beta Core resumes normal execution.

In the second portion of Figure 2 we see a scenario that occurs
when the Checker Core does not detect a bug, the Checker Core
is activated, it synchronizes, and loads the retirement state. After
this it checks the retirement bundle, but sees that no bug is detected.
The Beta Core is now allowed to retire the instructions it previously
fetched and executed.

Figure 3 shows the overall proposed architecture. The commu-
nication between the Beta Core and the Checker Core is performed
in the following manner. When a Start Checking trigger is received

from the Beta Core, the Checker synchronizes itself with the Beta
Core. Once synchronization is completed, the Beta Core sends the
Retiring Bundle State to the Checker. The Checker reads the re-
tiring bundle state and simultaneously starts to execute the bundle
of instructions. If the bundle of instructions generate a correct re-
sult, the Checker Core notifies the Beta Core to learn the signature
(Learn Signature) and to retire the bundle (Retire Bundle). If there
is a mismatch, the Beta Core is flushed and the Checker executes
a fixed number of additional instructions (Checker Active Instruc-
tion) to remove potential bugs related to consecutive instructions.
The Checker then copies the architectural register state to the Beta

Core (Recover ARF State). Once the transfer is completed, the
Beta Core starts to execute as usual and the Checker Core becomes
inactive.

3.2 Signature Composition
A key component of the proposed architecture is the utilization

of signatures. We have a good signature table and a bad signature
table. While the good signature table targets frequent bugs, the bad
signature table provides a safety net by protecting against all the

infrequent bugs and the bugs not captured by the good signature
table.

The good signature is dynamically built to detect already verified
components from the Beta Core. The bad signature table is con-
structed in the same manner as the a priori bug detection work [8]
which essentially creates a database of bad signatures created from
designers after the processor has been fabricated. In this work, we
focus on the good signature table, and as the evaluation will show
we did not need to create bad signatures for any of the applications
and bugs analyzed.

For comprehensive reasons, a complete signature might include
all the control and data values from the Beta Core. However, the

complexity associated with this type of signature proved to be un-

Algorithm 3.1: CREATE GOOD SIGNATURE(every cycle)

if (rob_retire_r f)

then















lat_reg← 0
sign_tmp← hash{retired_inst, lat_reg}
signature←{sign_tmp, last_sign}
last_sign← signature

else

{

lat_reg← lat_reg+1
signature← last_sign

return (signature)

Figure 4: The good signature algorithm.

necessarily high. This would also require an unreasonable amount
of memory (several megabytes in our experiments) to store the sig-
natures. The resulting database with too many new signatures re-
quires the Checker Core to be frequently active.

Our solution divides the problem into two signatures: good and
bad. The good signature covers the most frequent cases, but it does
not guarantee results. The correctness can be guaranteed with a
complex but infrequently used bad signature, which triggers the
Checker Core.

Figure 4 provides an algorithmic explanation of the good sig-
nature creation. This algorithm corresponds to the S1 block from
Figure 3. The proposed good signature includes retiring instruc-
tion information and timing references. Although it would improve
the signature quality to incorporate the data inputs and outputs for
each retiring instruction, this significantly increases the number of

required signatures. Building the good signature is a two-step pro-
cess, we first build a hash using data commonly available during
retirement: destination physical register id, PC, re-order buffer id,
load store queue entry id (mobid), and whether the instruction is
a load or a store. In the second step we add the number of cycles
since the last retiring bundle, and the signature of the last retired
bundle. The reason for including the timing information is that
many bugs are timing dependent, and without including timing in
the signature we miss many bugs.

The Beta Core creates a good and bad signatures every cycle. A
signature can be thought of as a set of signals which capture the
current state of the processor. If the generated signature is a hit in

the good signature table and a miss in the bad signature table, the

processor retires the bundle, updates the Checker Core architectural
register file (Update ARF State), and proceeds as usual. Otherwise,

the Beta Core stalls the retirement, triggers a Start Checking sig-
nal, and transfers the state of the instructions in the retiring bundle
(Retiring Bundle State) to the Checker. This state transfer requires
several cycles. We call this the Checker constant activate overhead.

An important decision we had to make was the optimal signa-
ture size. A very small signature reduces the hardware require-
ments needed to generate and store the signature, but it increases
the probability of a false positive. A false positive will occur when
a new signature is created for a situation that has previously been
verified. It is important to notice that most false positives will not
have a large negative effect because it is expected that most of the
time the Beta Core will be correct.

To estimate the signature size, we set a requirement that a false
positive should miss a bug once every 30 years or more for typical
applications. The SPEC application, with the highest number of
signatures, generates a new signature every 40 cycles on average.
Conservatively, we assume a 3GHz processor with an IPC 1 that
has 1000 faults per second on average. These very conservative
assumptions require 40 bits/signature.

40 = ceil(log2(
(30 years∗3×107 sec

year ∗4×109 Freq)

4×106 Cycles between faults
)) (1)

The size of the signature table is determined by the size of each
signature and the total number of signatures. It is only necessary to
keep the tag of the signature in the table. For example, a signature
table which contains 43 bit signatures and 8K entries(13 bits) would
require 30,000 Bytes (8K*30/8).

Every time a new good signature is detected the Checker Core
re-executes the same instruction as the Beta Core. If the retiring in-
structions, for which the signature is being created, finish correctly
on the Checker Core the new signature is saved. Minimizing the
overall number of new signatures while at the same time capturing
all correct states is the goal. Our results show that a 16K cache
suffices and yields good results.

3.3 Timing Relevance
Bugs which manifest based on the current state of the processor,

or occur as a result of other instructions in concurrent execution,
are referred to as timing related bugs. Bugs can occur due to envi-
ronment and not solely because the instruction has an inherit bug.
For example, a cache miss or a full instruction buffer may invoke
signals which cause the executing instructions to fail.

The timing of each bundle is captured through our LatReg which
counts the number of cycles that have elapsed since the last bundle
of instructions was retired. This timing information is equivalent
to time stamping the newly fetched instruction from the fetch stage

and through retirement, but this would require significantly more
resources.

The previous signature is not perfect because it can not capture
bugs like 2+2= 3 if we have previously executed the 3+3= 6 in
the same instruction. Originally, we thought that this would have
been a problem, but after analyzing all the IVM bugs and the hw-
BugHunt bugs [21] we found that this type of time-independence
bug was not common. Most of the bugs happen when some “un-
common” condition happens like a buffer full when X happens.

As an example, the code snippet shown in Figure 5, demonstrates
that these types of bugs cannot be captured without timing informa-
tion. In this piece of code, we look for the most recent load to be

forwarded. But due to the existence of the bug instead of the most

Algorithm 3.2: TIMING BUG EXAMPLE()

tmp_ldq= ldq_tail_ f −1;
i= 0;

while (ldq_valid_ f [tmp_ldq]) &&
(ldq_robid_ f [tmp_ldq] != f inished1hint_in) &&
(i <= DQ_SIZE)











































i= i+1;
tmp_ldq= tmp_ldq−1;

ldq_mobid_ f in1<= tmp_ldq;

i f (BUG_EXISTS)
tmp_ldq= ldq_tail_ f +1;

else

tmp_ldq= ldq_tail_ f −1;

Figure 5: IVM bug not found without timing information.

recent load, the oldest load gets forwarded. The bug only affects
the result when the load store queue provides incorrect data for-
warding. We found that, for some loads, the first execution did not
have forwarding, and successive executions did. Since forwarding
changes the execution time, a signature with timing information
helps to protect against this timing dependent bug.

Since some bugs can be missed with the good signature, we use
a bad signature to capture more complex and difficult to detect
bugs. The bad signature solution follows the previously proposed
Phoenix approach. We can not use the same approach for the good
signature because it would require too many signatures.

3.4 Checker Core Synchronization Overhead
This paper proposes active and inactive states for the Checker

Core as a method to leverage the fact that it’s a simple in-order
core. This approach can only work if the Checker Core can be kept

in an inactive state for a significant portion of the time, and if the
activation overhead is kept in check. This section objective is to
explain the sources and techniques to mitigate switching overhead.

There are several steps before the Checker Core starts to verify
the retiring bundle of instructions. First, the Checker Core is acti-
vated. Second, the Beta Core then loads the architectural state to
the Checker Core. Third, the Beta Core transfers the retiring bun-
dle state. The final step occurs when when the Checker Core starts
to execute and verify the retiring bundle of instructions.

Loading the ARF from the Beta Core to Checker Core requires
a transfer of all the architectural registers (approximately 64 reg-

isters). Since the Checker Core operates at half the frequency and
we can use the 3 ports from the register file (1 WR and 2 RD/WR
ports), it requires approximately 44 cycles (44 ≈ 2 ∗ 64

3). We per-
formed some simulations based on the signature generated with a
16K entry good signature table, and we observed under 100 cy-
cles between Checker Core activations on average. This means that
for an ideally fast Checker Core, the overhead will be over 30%.
Clearly this is not acceptable.

To mitigate the overhead, we propose several techniques: First,
we propose to update the Checker Core architectural state while
the Beta Core retires instructions. After a retirement takes place in
the Beta Core, the results are sent to the Checker Core for writes

into its register file. This eliminates some of the activation over-

Structure Beta Core and Baseline Checker Core

Out-of-Order Yes, 4 issue No, single issue
Frequency 3GHz 1.5GHz
Issue Window/LSQ/ROB 16-entry/64-entry/256-entry NA
McFarling Predictor 16K/16K/16K entries NA
RAS/BTB 32/4K 4-way NA
L1 Data 32 KB, 2-way, 32 B line, 2 clk 16 KB, 2-way, 32 B line, 1 clk
L1 Inst 32 KB, 2-way, 64 B line, 2 clk 16 KB, 2-way, 64 B line, 1 clk

L2 Data shared 1024 KB, 8-way, 64 Byte line, 4ns hit, 60ns miss

Good Signature Table 16K entries x 40 bits entry
Deadlock Detector 333 ns

Table 1: Beta Core, Checker Core, and shared simulation parameters.

head associated with preparing the Checker Core for execution. As
our results demonstrate it is more efficient to keep the architectural
states of both cores in sync. This functionality is already provided
by several ROBs that update the local Architectural Register File
(ARF) as the instructions retire. Our proposed system allows for
the Beta Core to update the local ARF and the Checker Core ARF.

We also propose to keep the Beta Core executing instructions

while the Checker Core verifies the retiring bundle, we just need to
block the retiring. This works extremely well as the most common
case is for the Checker Core to not find a bug in the Beta Core.
In such cases, the Beta Core can “prepare” work and accumulate
instructions ready for being retired.

Finally, we allow the Checker Core to start executing the retir-
ing instructions while we transfer the retiring bundle state. Even a
simple 5 stage processor needs 5 cycles from fetch to retirement.
These cycles can be used to overlap the state transfer. The resulting
system can hide most of the overhead. The evaluation will show
the overall impact.

4. SIMULATION SETUP
The goal of this work is to reduce the amount of time necessary

to verify and release a processor. To validate this work, we used a
modern high performance processor to implement our architecture.
We used IVM, the Illinois Verilog Model, a 4 issue out-of-order
Alpha processor. The processor has features like speculative in-
struction scheduling, memory dependence prediction, and a com-
plex branch predictor. The simulation parameters are detailed in
Table 1.

For RTL synthesis of IVM we used Synopsys Design Compiler
C-2009.06 with a 90nm STMicro process node. The front-end flow
was derived from Synopsys Reference Methodology as defined in

the solvnet portal. It is important to note that we did not use any
low power methodologies, in which case our synthesis output is
actually worst case results. We used an Alpha EV6-like processor
for the signature and bug detection evaluation. The Illinois Ver-
ilog Model (IVM) [11] implements a subset of the Alpha EV6 ar-
chitecture, it was designed originally at the University of Illinois
for fault-tolerant research. It contains over 30K HDL statements.
The processor is not complete, and it has several bugs. For exam-
ple, it can not execute most of the SPEC CFP2000 applications be-
cause it does not support floating point operations. Also, it fails to
completely execute the SPEC benchmarks because of several bugs.
Very few benchmarks can execute over 100K instructions without

requiring a pipeline flush. In this regard IVM actually serves as

an ideal candidate for our work. It provides an architecture with
complex features, but also not thoroughly verified.

We use Rachael [12] to characterize the Checker Core. Rachael
is a derivation of the Leon2 [22] processor, both are 5 stage in-order
SPARC32 ISA processors.

Design Error Category

Wrong signal source
Conceptual error
Case statement

Wrong constant
Incorrect logical expression
If statement
Wrong operator

Table 2: Bugs introduced to the Beta Core.

For the evaluation we used a subset of SPEC CINT2000 (bzip2,
crafty, gcc, mcf, perlbmk, vpr, gap, twolf, eon) on the simulated
Verilog design. SPEC CFP2000 is not evaluated because IVM
lacks support for floating point operations. The missing integer

benchmarks were excluded because IVM had a very high failure
rate for these applications, thus the Beta Core had bugs every few
cycles, and therefore the Checker Core is always active. In practice
this is not very realistic, this is equivalent to executing all instruc-
tions on the Checker Core. Although we do not present these re-
sults, our signature detected and corrected all bugs. We did evaluate
the performance impact when the Checker Core is active 100% of
the time, this diminished performance by roughly 4 times.

Modeling at the Register Transfer Level (RTL) is a slow pro-
cess, to speedup simulation we used SimPoint 3.2 [23]. Since RTL
is several orders of magnitude slower than traditional architectural

simulators (≈ 0.02KIPS), we used simulation intervals of 20M in-
structions with 2 intervals per benchmark. We warmed up the RTL
with the architectural simulator state. As a result, the RTL sim-
ulation has a correctly trained state before each simulation point
begins.

5. EVALUATION
In this section, we present the overall results of our proposed

Beta Core Solution (BCS). The architectural parameters are shown
in Section 4. We evaluate our BCS architecture against a base-
line architecture and an "always re-execute" system. The baseline
architecture is a 4-issue out-of-order core. The always re-execute

implementation is the same as the BCS architecture, however, the

Checker Core is kept active 100% of the time. We demonstrate
the advantages of dynamically turning on the Checker Core when

needed, rather than keeping it on at all times.
Figure 6 shows the performance slowdown for the proposed BCS

architecture compared against a previously proposed a priori bug
detection architecture and an always re-execute architecture. As
Figure 6 shows, the Beta Core Solution tolerates buggy cores as
well as the always re-execute proposal, and it limits the maximum
performance penalty for the worst case situations. It is able to do
so with a simple in-order core cycling at half the frequency, which
has significant power saving advantages.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rf

o
rm

a
n
c
e
 o

v
e
rh

e
a
d

Bug Distance (Instructions retired between bugs)

Always re-execute
A priori bug detection

BCS

Figure 6: Slowdown for different techniques to tolerate bugs

5.1 Overall Results
Our results show that the proposed BCS captures all frequent

bugs with our good signature table. To evaluate this effectiveness,
we inserted bugs from two sources: hwBugHunt and the bugs al-
ready existing in IVM.

The bugs inserted from hwBugHunt differ in classification and

provide a a wide range of plausible bugs. Table 2 classifies the
types of inserted bugs.

IVM has several bugs because it was designed, mainly by one
student, in one year as a university project [24]. On average a bug
occurs every 200 retired instructions. This is due to non exhaustive
verification. Hence, we consider the IVM processor to be an ideal
candidate for a Beta Core.

The proposed solution detected all the bugs found during RTL
simulation. We added a bug from each of the categories listed in
hwBugHunt [21]. Our good signature found all the bugs. We did
not use the safety net provided by the bad signature table for any of
the bugs.

 0

 1

 2

 3

 4

 5

bzip2 crafty gcc mcf perlbmk vpr twolf eon gap

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Always re-execute
BCS

Baseline

Figure 7: Execution time for a plain Checker Core and an

always re-execute Checker Core.

In Figure 7, we show the normalized execution time to the base-
line. Our methodology is labeled as BCS and the first bar is the
performance for the always re-execute. Clearly, our methodology,
is able to keep up with the 4 issue out-of-order in terms of perfor-

mance with a slowdown of an average 1.6%.

The always re-execute methodology has a high execution time
because the Checker Core is running at half the frequency of the

4 issue out-of-order. For our methodology, instead of keeping the
Checker Core active at all times, we activate it only when needed.
On average, the Checker Core needed to be turned on only for about
3.6% of the 9 benchmarks listed.

The benchmark requiring the least Checker Core activity is eon,
the most is gcc. Applications that have many phases will have many
new signatures. Table 3 shows that the highest slowdown has a cor-
responding high activity rate. Similarly, eon has the least slowdown
and it induces the least Checker Core activity.

The worst case in terms of average number of instructions be-
tween new signatures (#Inst#Sign) is gcc with just 5.4 instructions. Nev-

ertheless, it is active only 6.4% of the time. Using the 1.2 IPC
and the active time from gcc, we get around 18 cycles/sign which
is clearly higher than the gcc’s 5.4 #Inst

#Sign . The reason is again the

new signature clustering. Intuitively, whenever a program reaches
a new phase, it generates many back to back new signatures, which
trigger a Checker Core activation.

5.2 Synthesis Results
We synthesized the 4 issue out-of-order Beta Core (IVM [11])

and a Checker Core (Rachael [12]) with STMicro 90nm technology
to study the power and area overhead. The synthesis results show

that the Checker Core consumes only 50mW while the Beta Core
consumes 2.8W. For our signature caches, we obtained a 50mW
output from our 90nm memory compiler. Therefore, we can safely
state BCS increases power by 4%, and the Checker Core uses less
than 5% of area used by Beta Core.

5.3 Overheads Characterization

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

bzip2 crafty gcc mcf vpr perl twolf eon gap

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

No ARF opt.
No freeze retirement opt.

BCS

Figure 8: Performance impact of the proposed optimization
techniques (freeze, adaptive, and ARF transfer)

Figure 8 shows the effect each overhead has on the execution
time. There are several overheads before the Checker Core can be-
gin to verify the retiring bundle of instructions. Loading the archi-
tectural register file, transferring the bundle of retiring instructions.

Optimization 1: Transfer ARF State After the Checker Core is
active, we need load it with the current architectural state. To load
the architectural register file after the Checker Core is active would
require about 44 cycles (Section 3.4). Clearly, this is expensive,
so we propose to update the Checker Core ARF, while the Beta
Core updates its ARF. Figure 8 shows the breakdown without our
optimization.

Optimization 2: Freeze Only ROB When the Checker Core is
verifying the retiring bundle, we allow the Beta Core to continue
executing instructions and just block it from retiring more instruc-
tions, until the Checker Core has verified the current retiring bun-
dle. During this phase, the Beta Core can accumulate instructions

and once the verification is done, it can retire the instructions. To

Benchmark bzip2 crafty gap gcc mcf perlbmk vpr twolf eon average

IPC 2.20 1.83 2.44 1.20 0.150 1.07 1.141 0.855 2.045
Active Time (%) 2.7 3.9 4.6 6.4 4.9 3.3 1.2 4.9 0.064 3.6
#Inst
#Sign 18.8 9.4 8.2 5.4 15.8 6.9 23.2 119.0 17.7 24.9

Table 3: Main results showing the percentage of time with the Checker Core active (%Active Time) and the distance in retired
instructions between new signatures.

Benchmark ∞ entry 64K entry 32K entry 16K entry 8K entry 4K entry 2K entry 1K entry

bzip2 99.5 98.5 97.7 95.7 93.3 89.4 82.8 74.1
crafty 98.7 95.4 92.8 88.5 82.1 72.3 59.9 44.8
gcc 95.2 90.3 86.4 80.1 70.9 59.8 48.3 37.4

mcf 99.5 97.6 96.2 94.1 91.2 86.7 79.8 71.5
perlbmk 98.7 94.4 90.2 84.0 74.6 60.3 44.9 31.0
vpr 99.7 98.8 97.8 96.0 93.0 87.4 77.7 65.8
twolf 99.5 98.3 97.8 93.0 83.0 77.4 65.7 55.4
eon 99.7 98.4 97.4 94.0 74.0 60.4 45.7 40.8
gap 99.2 95.3 91.7 85.6 75.8 62.8 47.1 32.3
average 98.6 95.8 93.3 89.1 83.0 74.1 62.9 51.0

Table 4: Signature table hit rate (%) for several table sizes.

study the effect of this optimization, instead of freezing only the
ROB, we freeze the Beta Core while the Checker Core is checking

the correctness of the retiring bundle.
Figure 8 studies the impact each of these optimizations has on

execution time normalized to the proposed BCS execution time.
The label marked “no freeze” is where we we stall the Beta Core
while the Checker Core verifies the retiring bundle. Here we see
that it in some benchmarks it adds additional execution time, thereby
decreasing the performance of the Beta Core. The transferARF
optimization has a bigger impact. When we removed that, the
Checker Core was required to transfer the previous correct ARF
state to itself before verifying the bundle of verifying instructions.

5.4 Signature Characterization
A key characteristic of the proposed architecture is the use of

signatures. This section starts showing the cache miss rates for
different signature table sizes, and continues showing problems as-
sociated with simpler program phase signatures and more complex
control signal based signatures.

Table 4 shows the cache hit rates for several good signature ta-
bles. An unlimited table has 98.6 average hit rate. From a high
level first approximation, this means that a program with an IPC
of 1 needs a signature every 71 cycles. In reality it is much larger
because the signatures are not randomly distributed. They have a
log-normal distribution with most of the signatures having a 1 or 2

cycles distance. We performed simulations and 22% of the signa-
tures have a distance of 1 cycle. This means that whenever a new
signature is found, there is a 22% chance that the following cycle
will be a new signature too. Table 4 also provides insights on table
size requirements. Tables smaller than 4K entries start to decrease
the cache hit rate faster. As expected the larger the table the better.
Since it will be difficult to cycle a 32K entry table in a couple of
cycles, we decided with a 16K table for this work.
What if the signatures used all the control signals?

We also performed experiments to understand the effect of using
all control signals to compute the signature. The problem with this
method is that the signatures become too large and would require

extremely large caches. We found that the signatures had a max

hit rate of 1.9% for twolf, a minimum hit rate of 0.1% for gap and
perlbmk, while the average hit rate was .5%. This type of signature

also forces the Checker Core to be constantly active due to the large
number of new signatures.
What if the signature just used the program phases?

In our experiments, we have observed that tracking all the basic
blocks is not sufficient to build signatures to detect all the bugs.
We missed several bugs when only the PC was used. The reason
is because, the basic blocks alone are not sufficient to capture all
the state information. We find that in the buggy IVM [11], we
miss a bug every 925 retired instructions when only the basic block
information is used. Thus it is clear that in order to capture all
the bugs in the system, we need more than just the program phase

information.
What if the signature does not include timing information?

We removed the timing information from the signature, and the
IVM processor missed bugs in all the benchmarks. For benchmarks
like crafty we missed up to 25% of the bugs. Clearly, the timing
information is necessary.

6. CONCLUSIONS
Ideally, processor verification would be simple and capture all

bugs before a processor is released into the market. Since this is
clearly not the case, researchers have proposed architectures to tol-

erate infrequent bugs [8, 13]. This work goes a step beyond these
approaches and proposes a design to efficiently tolerate, not only
infrequent bugs, but frequent bugs found in partially verified pro-
cessors like IVM. The proposed solution allows for the release of
Beta Cores earlier to market.

This paper makes several contributions; It proposed the Beta
Core Architecture, which included a novel signature generation
that avoided redundant checks. This allowed for our simple half
frequency in-order Checker Core to run alongside a Beta Core cor-
recting hard to find bugs while incurring a minimal amount of over-
head. We also proposed a simplistic Checker/Beta Core interaction
as a method to limit the complexity, power overhead, and area of

the Checker Core. Our signature creation methodology integrated

ideas of program phases with control signals to avoid overly com-
plex large signatures.

We proposed a novel signature composition to capture frequent
bugs with a good signature table. The evaluation shows that a tra-
ditional signature with most control signals may work for the bad
signature table, but it does not work for the good signature table
due to a very high (99.5%) miss rate. Such a high miss rate keeps
the checker frequently active. The evaluation also shows that re-
membering previously verified basic blocks does not work either
because it misses too many bugs (1 bug every 925 instruction). Our
signature methodology produces a hit rate of over 90% in the good
table. Furthermore, it does not miss any bugs inherit in IVM or
inserted from hwBugHunt.

Power is a major design constraint in current systems. The BCS

solution is effective because the power consumption is kept in check
with a 5% overhead using detailed synthesis results. It is important
to note that our Checker Core was not subjected to any power opti-
mizations. It does enter states of inactivity, however, our evaluation
considers it to be on at all times but not necessarily performing cor-
rections on the Beta Core.

Processor verification is an arduous necessary task, the goal of
this paper is to reduce this time. In an effort to shorten the release
to market time frame, while at the same time not compromise the
integrity of the processor, BCS proves to be a valuable architecture.
Our results showed that our checker was active only 3.5% of the

time on average with just a 1.6% overall system slowdown.

7. ACKNOWLEDGEMENTS
This work was supported in part by the National Science Foun-

dation under grants 0546819, 0720913, and 0751222; OpenSPARC
Center of Excellence at UCSC; Special Research Grant from the
University of California, Santa Cruz; gifts from SUN, nVIDIA,
Altera, Xilinx, ChipEDA, and AMD. Any opinions, findings, and
conclusions or recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the NSF.

8. REFERENCES

[1] Intel Corportation, “Intel xeon processor, specification

update doc. no.249678-056,” Dec 2006.

[2] Intel Corportation, “Intel core 2 extreme processor x6800
and intel core 2 duo desktop processor e6000 and e4000,
specification update doc. no.313279-024,” Feb 2008.

[3] Intel Corportation, “Intel pentium m processor, specification

update doc. no.252665-033,” Jan 2008.

[4] Intel Corportation, “Intel pentium 4 processor, specification
update doc. no.249199-069,” May 2007.

[5] AMD, “Revision Guide for AMD Family 10h Processors,”

2011.

[6] F. Mesa-Martinez and J. Renau, “Effective
optimistic-checker tandem core design through architectural
pruning,” in MICRO ’07: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture,
Washington, DC, USA, Dec. 2007, pp. 236–248, IEEE
Computer Society.

[7] B. Greskamp and J. Torrellas, “Paceline: Improving
single-thread perfomance in nanoscale cmps through core
overclocking,” in the 16th International Conference on
Parallel Architectures and Compilation Techniques,
Washington, DC, USA, Sep. 2007, IEEE Computer Society.

[8] S. Sarangi, A. Tiwari, and J. Torrellas, “Phoenix: Detecting

and recovering from permanent processor design bugs with

programmable hardware,” Microarchitecture, IEEE/ACM
International Symposium on, vol. 0, pp. 26–37, Dec. 2006.

[9] K. Constantinides, O. Mutlu, and T. Austin, “Online design
bug detection: Rtl analysis, flexible mechanisms, and
evaluation,” in 41st Annual International Symposium on
Microarchitecture (MICRO-41), Nov. 2008.

[10] S. Fenstermaker, D. George, A. Kahng, St. Mantik, and

B. Thielges, “METRICS: A System Architecture for Design
Process Optimization,” in International Conference on
Design Automation, Jun. 2000, pp. 705–710.

[11] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel,
“Characterizing the Effects of Transient Faults on a
High-Performance Processor Pipeline,” in International
Conference on Dependable Systems and Networks. Jun.
2004, IEEE Computer Society.

[12] M. Cowell and A. Postula, “Rachael SPARC: An Open
Source 32-bit Microprocessor Core for SoCs,” in
Proceedings of the 2006 9th EUROMICRO Conference on
Digital System Design, Aug. 2006, pp. 415–422.

[13] T. Austin, “DIVA: A reliable substrate for deep submicron
microarchitecture design,” in the 32th International
Symposium on Microarchitecture, Nov. 1999, pp. 196–207.

[14] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz,
“Transient-Fault Recovery for Chip Multiprocessors,” in
International Symposium on Computer Architecture, San
Diego, California, Jun. 2003, pp. 98–109.

[15] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A study of
slipstream processors,” in the 33th International Symposium
on Microarchitecture, 2000, pp. 269–280.

[16] S. Reinhardt and S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in ISCA, 2000, pp. 25–36.

[17] E. Rotenberg, “AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors,” in Symposium on
Fault-Tolerant Computing, 1999, pp. 84–91.

[18] C. Weaver and T.M. Austin, “A Fault Tolerant Approach to
Microprocessor Design,” in DSN ’01: Proceedings of the

2001 International Conference on Dependable Systems and
Networks (formerly: FTCS), Washington, DC, USA, Jul.
2001, pp. 411–420, IEEE Computer Society.

[19] Todd Austin, “Diva: A dynamic approach to microprocessor
verification,” Journal of Instruction-Level Parallelism, vol. 2,
pp. 2000, May 2000.

[20] I. Wagner and V. Bertacco, “Engineering trust with semantic
guardians,” in Proceedings of the conference on Design,
automation and test in Europe, San Jose, CA, USA, Apr.
2007, DATE ’07, pp. 743–748, EDA Consortium.

[21] S. Sudhakrishnan, L. Su, and J. Renau, “Processor
verification with hwbughunt,” in ISQED ’08: Proceedings of

the 9th international symposium on Quality Electronic
Design, Washington, DC, USA, Mar. 2008, pp. 224–229,
IEEE Computer Society.

[22] J. Gaisler, “The Leon-2 Processor,” 2003.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically characterizing large scale program behavior,”
in Proceedings of the 10th international conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Oct. 2002, vol. 30, pp.
45–57.

[24] C. Bazeghi, F.J. Mesa-Martínez, and J. Renau,
“µComplexity: Estimating Processor Design Effort,” in
International Symposium on Microarchitecture, Nov. 2005.

	Introduction
	Background Information
	Defect Arrival Model
	Prior Work

	The Beta Core Solution
	Beta and Checker Core Coordination
	Signature Composition
	Timing Relevance
	Checker Core Synchronization Overhead

	Simulation Setup
	Evaluation
	Overall Results
	Synthesis Results
	Overheads Characterization
	Signature Characterization

	Conclusions
	Acknowledgements
	References

