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simple to implement in hardware, these two statis-
tics can effectively guide reconfiguration decisions.

Daniele Folegnani and Antonio Gonzalez use
program parallelism statistics, rather than issue
queue usage, to guide reconfiguration decisions.8

Specifically, if the processor rarely issues instruc-
tions from the back of the queue—that portion of
the queue that holds the most recent instructions—
the system assumes the queue to be larger than nec-
essary and downsizes it. The system also periodi-
cally upsizes the queue at regular intervals to limit
performance loss.

Researchers commonly use cache miss rate to
guide cache configuration decisions. The DRI-
cache, for example, measures the average miss rate
over a set operation interval to determine whether
to change the cache size. As miss rate information
may already be available in microprocessor per-
formance counters, the system can essentially
acquire this statistic for free.

Compiler-based profiling offers an alternative to
hardware monitoring. With this approach, devel-

opers either instrument the application and run it
on the target machine to collect statistics, or they
run it on a detailed simulator to gather the statis-
tics. Michael Huang and his colleagues use the sim-
ulator approach to collect statistics about the
execution length of subroutines for phase detection.9

The application behavior observed during the
profiling run must be representative of the behavior
encountered in production. Because this assump-
tion may not hold for many general-purpose appli-
cations, and inexpensive hardware counters are
readily available in modern microprocessors or can
be added with modest overhead, hardware-based
monitoring is more frequently used in adaptive pro-
cessing.

Triggering. A microprocessor can use several
approaches to trigger a reconfiguration decision.
The first approach reacts to particular character-
istics of the monitored statistics. For example,
Ponomarev’s adaptive-issue queue scheme upsizes
the queue when the average number of valid queue
entries over the interval period is low enough that

A major challenge in adaptive processing is to determine when
to trigger an adaptation. To do this, we need to partition the
program into phases that behave differently enough to warrant
adaptation. Ideally, the behavior within each phase is homoge-
neous and predictable. The granularity of each phase should not
be too fine or too coarse. If it is too fine, transient states and
adaptation overheads can negate any gains. If it is too coarse, the
behavior probably is not homogeneous. 

In the context of improving energy efficiency, we use low-
power techniques for adaptation. An LPT is a hardware struc-
ture that, if activated, typically saves energy at the expense of
some performance. The processor activates LPTs at the begin-
ning of a phase on the basis of their predicted effect.

We classify adaptation approaches based on how they exploit
program behavior repetition. The conventional temporal
approach1exploits the similarity between successive intervals of
code in dynamic order; the newer positional approach2 exploits the
similarity between different invocations of the same code section.

The two approaches activate and deactivate LPTs based on
different criteria. Specifically, temporal schemes divide the exe-
cution into time intervals and predict the upcoming interval’s
behavior based on previous intervals’ behavior. Positional
schemes, instead, associate program behavior with a particular
code section. Thus, a positional scheme tests LPTs on different
executions of the same code section. Once the positional scheme
determines the best configuration, it applies that configuration
on future executions of the same code section. This approach is
based on the intuition that program behavior is largely deter-
mined by the code being executed. Experimental analysis shows
that calibration is more accurate in the positional approach.2

Positional adaptation is also very flexible. We propose three
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Figure A. Different implementations of positional adaptation and
targeted workload environments.

Figure B. Energy-delay tradeoff curve. Starting from left to right in
the E-D tradeoffs region, the positional scheme applies pairs until
the cumulative slowdown reaches the slack.
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a smaller configuration could have held the aver-
age number of instructions. The system can easily
determine this condition from the sampled aver-
age occupancy statistics, the queue’s current size,
and the possible queue configurations. To prevent
nonnegligible performance loss, the system upsizes
the queue immediately when the overflow counter
exceeds a preset threshold.

Another approach detects phase changes to trig-
ger reconfiguration decisions. Balasubramonian’s
adaptive memory hierarchy10 compares cache miss
rates and the branch counts of the last two inter-
vals. If the system detects a significant change in
either, it assumes that a phase change has occurred.
Ashutosh S. Dhodapkar and James E. Smith11

improve on this approach by triggering a phase
change in response to differences in working-set
signatures—compact approximations that repre-
sent the set of distinct memory elements accessed
over a given period. A significant difference in
working-set signatures constitutes a phase change.

Still another approach triggers a resource upsiz-

ing only when a large enough increase in perfor-
mance would be expected. This technique can be
used to upsize an adaptive-issue queue.12 A larger
instruction window permits the stall time of instruc-
tions waiting in the window to be overlapped with
the execution of additional ready instructions in the
larger window. However, if this overlap time is not
sufficiently large, upsizing the queue will provide
little performance benefit. The system estimates the
overlap time and uses it to trigger upsizing decisions.

Huang and colleagues proposed positional adap-
tation,9 which uses the program structure to iden-
tify major program phases. Specifically, as the
“Managing Multiple Low-Power Adaptation
Techniques: The Positional Approach” sidebar
describes, this approach uses either compile-time
or runtime profiling to select an appropriate con-
figuration for long-running subroutines. In the sta-
tic approach, a profiling run measures the total
execution time and the average execution time per
invocation of each subroutine. Developers identify
phases as subroutines with values for those quan-
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different implementations that target different workload envi-
ronments. They differ on which adaptation decisions they make
statically and which decisions they make at runtime.2 Specifically,
as Figure A shows, instrumentation (I) is the selection of when
to adapt the processor, and decision (D) is the selection of what
LPTs to activate or deactivate at that time. The system can make
each selection statically (S) before execution or dynamically (D)
at runtime. For example, an implementation can produce static
instrumentation and static decision (SISD).

The targeted environments are labeled as embedded or spe-
cialized server, general-purpose, and highly dynamic. In these
implementations, we use the program’s major subroutines as the
code section. The core control algorithm for all the implemen-
tations is essentially the same. 

Tests of the different LPTs on different subroutines record the
impact on energy and performance for comparison with other
LPT and subroutine combinations. Specifically, we rank the pairs
in decreasing order of energy savings per unit slowdown. 

Figure B shows this ranking for a sample application in a 
system with several LPTs. The difference between the three
implementations is how much information they provide. The
more static schemes are more accurate because they have more
information thanks to offline profiling.

The origin in the figure corresponds to the system with no acti-
vated LPT. As we follow the curve, we add the contribution of all
subroutine-LPT pairs from most to least efficient, accumulating
energy reduction (y-axis) and execution slowdown (x-axis). As an
example, Figure B shows the contribution of a pair (subroutinei,
LPTj) that saves ∆Eij and slows down the program ∆Dij.

We divide the curve into three main regions based on the
results for each pair: improving both performance and energy

(Always apply), saving energy at the cost of performance degra-
dation (E-D tradeoffs), and degrading both energy and perfor-
mance (Never apply). As the names suggest, we apply all the
pairs in the first region and no pairs in the third region. Given a
slack—or tolerable performance degradation—we start from
left to right in the E-D tradeoffs region and apply pairs until the
cumulative slowdown reaches the slack. In two experiments, the
positional schemes boosted the energy savings by an average of
84 percent and 50 percent over several temporal schemes.2
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