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Abstract quentially. While exploiting only these task structures may

Chip Multiprocessors (CMPs) are flexible, high-frequency platforms Simplify the CMP hardware, it cripples its potential.
on which to support Thread-Level Speculation (TLS). However, for ~ High-level performance evaluation studies have pointed out
TLS to deliver on its promise, CMPs must exploit multiple sources of that there is a sizable amount of other parallelism avail-
speculative task-level parallelism, including any nesting levels of bothable [15, 16, 26, 27]. One could execute in parallel all sub-
subroutines and |00p iterations.. Unfortunately, these .enVil’Ol’lmentS'outines and their continuations irrespective of their nesting,
are hard to support in decentralized CMP hardware: since tasks argnd jterations from multiple loop levels in a nest. If this addi-
spawned out-of-order and unpredictably, maintaining key TLS basicstjona| parallelism is harvested, the speedups are predicted to be
such as task ordering and efficient resource allocation is Cha"engi”g'significantly higher.
_ While the concept of out-of-order spawning is not new, this paper |, practice, exploiting these additional sources of parallelism
is thehflrstfto gropose ﬁl set otf)lmlfcroarcglte_ct#ral m?chgnlsms that, al'requires supportingut-of-ordertask spawning. For example
together, fundamentally enable fast TLS with out-of-order spawn in a . . . -
consider nested subroutines. When a task finds a subroutine

CMP. Moreover, we develop a fully-automated TLS compiler for ag- . . .
gressive out-of-order spawn. With our mechanisms, a TLS CMP with €&l it spawns a more speculative task to execute the continu-

2000 applications; the corresponding speedup for in-order-only spawrSubroutine, the task can then find other subroutine calls, there-

is 1.04. Overall, our mechanisms unlock the potential of TLS for the fore spawning speculative tasks that are less speculative (i.e.,

toughest applications. less ahead in a sequential execution) than the one spawned first.
The same occurs for nested loops, and for combinations of loop
1 Introduction and subroutine nesting.

. . . ) With out-of-order spawning, the application offers unpre-
Chip Multiprocessors (CMPs) with Thread-Level Speculation gjictaple shapes of parallelism that are hard to manage by TLS
(TLS) are being proposed as flexible, high-frequency engines,i ryn time. Specifically, how do we manage task ordering,
to extract the next level of parallelism from hard-to-analyze \yhich is required to identify violations and to ensure correct
programs (e.g. [10, 11, 12, 14, 20, 21, 22, 23, 29]). Undercommit and squash? How do we balance resource alloca-
TLS, irregular sequential codes are divided into tasks that argjon petween highly-speculative tasks that have been running
executed in parallel, optimistically assuming that sequentialfor 4 |ong time, and less speculative tasks that have just been
semantics will not be violated. As the tasks run, the archi- spawned? To address these challenges mitiimal overhead
tecture tracks their control flow and data accesses. If a cross;, 5 CMP, we need special microarchitecture.
task dependence is violated, the offending tasks are destroyed 1,4 concept of out-of-order spawn is not new. In fact, there
(squasheyl Then, a repair action is initiated and the offending ig 5 |ot of related work in this area, which we detail in Sec-
tasks are re-executed. _ tion 9. However, no previous work has proposed a set of imple-

While these architectures have shown good potential, oftermentable microarchitectural mechanisms that, altogether, fun-
due to sophisticated compiler support [2, 5, 13, 24, 25, 28], thedamentally enable high-speed tasking with out-of-order spawn
speedups obtained for non-numerical applications have typiin a TLS CMP. This paper is the first to do it. We view it as our
cally been modest. For example, for full Specint 2000 appli- main contribution.
cations, the geometric mean speedups are 1.05 [28]. Part of oyr simple mechanisms address the two main challenges
the reason is that most designs have typically focused (oftemosed by out-of-order spawning: correct and efficient task or-
implicitly) on limited types of task structures: iterations from dering and resource allocation. Task ordering is enabled with
a single loop level (e.g. [4, 12, 28]); the code that follows (i.e., Spiitting Timestamp Intervafsr low-overhead order manage-
the continuation of) calls to subroutines that do not spawn othefment, and thémmediate Successor Litr efficient task com-
tasks (e.g. [3]); or some execution paths out of the current tasknjt and squash. Efficient resource allocation is enabled with

(e.g. [25]). In the cases mentionemhrrecttasks are spawned  pynamic Task Mergingwhich directs speculative parallelism
in-order, namely in the same order as they would execute se+1g the most beneficial code sections.

Permission to make digital or hard copies of all or part of this work for ~ We have deV9|0ped a complete, fU”y'aUtomated TLS com-
personal or classroom use is granted without fee provided that copies are piler for aggressive out-of-order spawn. With our mechanisms,
not made or distributed for profit or commercial advantage and that copies g TLS CMP with 4 4-issue cores delivers an average speedup
bear this notice and the full citation on the first page. To copy otherwise, or o 1 30 forfull Specint 2000 applications; without out-of-order

republish, to post on servers or to redistribute to lists, requires prior specific - -~ -
permission and/or a fee. ICS’05, June 20-22, Boston, MA, USA. Copyright spawn, we obtain an average speedup of 1.04, in line with past
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1Correct tasks do not include those that are in wrong branch paths.
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Figure 1:Example task trees. In the figure, Cont and Iter denote continuation and iteration.

TLS CMP work on the same codes (e.g., 1.05 in [28]). Overall, a more complex example: the time-line for task creation pro-
our mechanisms unlock the potential of TLS for the toughestceeds from top to bottorm{2-3-4-5-6-7), while sequential or-
applications, namely irregular integer codes. der is from left to right {-6-7-4-3-5-2).

This paper is organized as follows: Section 2 gives back- In this paper, to discuss out-of-order spawning, we give ex-
ground on out-of-order spawning and why is needed; Sec-amples of tasks built out of any nesting of subroutines and loop
tions 3 and 4 present our microarchitecture; Section 5 de-terations, as they are an obvious source of TLS parallelism.
scribes our compiler; Section 6 addresses complexity issuesQur analysis also applies to any other task structure that main-
Sections 7 and 8 present our evaluation; and Section 9 distains two conventions. First, if a task spawns multiple tasks,

cusses related work. the compiler inserts the spawns in strict reverse task order (last
task is spawned first, etc). Second, the spawned tasks are less
2 Background: Out-of-Order Spawn speculative than any task that was more speculative than their

In most proposed TLS systems, tasks are formed with iteraPar€nt. These conventions are followed to make the spawn
tions from a single loop level (e.g., [4, 12, 28]), the contin- structure like that of nested loops and subroutines. Intuitively,
uation of calls to subroutines that do not spawn other tasks€Se conventions are unlikely to affect task selection much,
(e.g., [3]), or some execution paths out of the current taskWhile they simplify the microarchitecture. _

(e.g., [25]). In these proposals, an individual task can at most Out-of-order spawning enables more task parallelism: two
spawn one correct task in its lifetime. A correct task is one thatcode sections that are far-off in sequential execution can be
is in the sequential execution of the program, rather than in theexecuted in paralléteforesome of their intervening code sec-
wrong path of a branch. As a resudrrecttasks are spawned tions haveeven been spawned

in-order, namely, in the same order as in sequential execution.

Figures 1-(a) and (b) show examples. Figure 1-(a) shows3 Novel Microarchitectural Mechanisms

the task tree when parallelizing a loop. Each task spawns thgye propose three novel and simple microarchitectural mech-
next iteration. In the figure, the leftmost task is safe (or non- gnisms 1o enable high-speed tasking with out-of-order spawn
speculative); the more a task is to the right, the more specula;, 53 TLs CMP. These mechanisms support task ordering and

tive itis. Figure 1-(b) shows the tree when a task finds a leafgfricient resource allocation in an environment that is statically
subroutine. The original task continues execution into the S“b'unpredictable(due to out-of-order spawn) argecentralized
routine, while a more speculative task is spawned to execut

. ; Qdue to the CMP architecture). We enable task order manage-
the continuation. , , _ment with Splitting Timestamp IntervaiSection 3.1) and the
_ There is consensus that for TLS to deliver on its promise, |ymediate Successor LiGection 3.2). We enable efficient re-
it has to explo[t more parallehsm. Several h|gh-levgl perfpr- source allocation witynamic Task MergingSection 3.3). In
mance evaluation studies [15, 16, 26, 27], typically simulating the following, when we use the terms successor and predeces-

simplified architectures, have pointed to the need to suUppOrey task, we refer to sequential execution order.
nested subroutines and loop iterations.

Figures 1-(c) and (d) show the two cases. In Figure 1-(c), the3-1  Splitting Timestamp Intervals for Task Order
safe task first spawns a task for the continuation of subroutine Management
S1 Then, it enter$S1, spawns a new task for the continuation In any TLS system, tasks have a relative order, which they ex-
of S2 and executeS2until its end. In Figure 1-(d), the safe plicitly or implicitly embed in the CMP protocol messages they
task executes outer iteration 0. As it executes, it spawns outeissue and the cached data they own. Such order is most ob-
iteration 1, enters the inner loop to execute inner iteration 0,viously needed when two tasks communicate. For example,
and spawns inner iteration 1. When it completes inner iterationconsider a task reading cached data produced by a second task.
0, it ends. The relative order of the tasks is assessed, and the data is pro-
With these two task choices, an individual task can spawnvided only if the former task is a successor of the latter. Simi-
multiple correct tasks. If so, correct tasks are spawned in strictarly, consider an invalidation message from a task to data read
reverse order compared to sequential execution. For exampld}y a second task. The task order is considered and, if the reader
in Figures 1-(c) and (d), the safe task spawns two correct tasks$ @ successor, a dependence violation is triggered.
and does so out of order, most speculative first. Figure 1-(e) is Under in-order task spawn, recording task order is easy:



since tasks are created in order, it suffices to assign monotoni3.2 Immediate Successor List for Task Squash and
cally increasing timestamps to newer tasks. A parent gives to Commit

its child its timestamp plus one. With this support, tasks with |n TS, a task must be able to find its immediate successor very
higher timestamps are successors of those with lower ones.  quickly, to perform the time-critical operations of commit and
Such an approach does not work when tasks are created 0'gquash. Specifically, when the safe task commits, it passes the
of order. Consequently, we propose to represent a task with ommit token to its immediate successor, which may be wait-
Timestamp Intervalgiven by aBaseand aRangetimestamp  ing for it to commit. As for squash, a task is squashed when
({B,R}). On a task spawn, the parent splits its timestamp in-jt js found that it read data prematurely (data violation) or was
terval in two pieces: the higher-range subinterval is given to spawned in the wrong branch path (control violation). In ei-
the child (since it is more speculative), while the lower-range ther case, the squashed task sends a kill signal to its immediate
subinterval is kept by the parent. With this support, protocol syccessor, which is propagated up to the most speculative task.
messages and cached data are directly (or indirectly) associthis ensures that all possible side effects of the squashed task

ated with the base timestamp. Specifically, when tasks comyqre erased.
municate, the base timestamps of the two tasks are compared ynder in-order task spawn, it is easy for a task to find its im-

exactlyas in the in-order case.

As an example, Figure 2-(a) shows a program with a call to
subroutineS], which in turn callsS2 Assume that we use three
tasks: task executes the non-speculative coflexecutes the
continuation ofS], andk executes the continuation 82 The
resulting task tree is shown in Figure 2-(b), while Figure 2-(c)
shows the timestamp intervals of each task.

More Speculative Task

Task i before

Spawn S1Cont spawn # 1

0
SlC«)nL.[
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Taski after
spawn #1

Taskj
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Figure 2: Changes in the base and range timestamps when

tasks are spawned.

The example assumes that the initial interval for task
{B,R}, and that intervals are partitioned in half. Wheapawns
j.i keeps{B,£} andj obtains{B+%£,Z}. Wheni later spawns
k, i retains{B, %} andk obtains{B+,£}. With this scheme,
as we move from safe to most speculative task following se-
guential orderi( k, andj), we encounter increasing base times-
tamps (B, B+, B+%).

In general, a simple approach is to gi%{&)f the current in-

mediate successor: the task spawned its immediate successor
and it only needs to remember it. Alternatively, consecutively
spawned tasks are often allocated on contiguous processors,
making it trivial to identify the immediate successor. In other
designs, a table with immediate successor information is used,
which is easy to maintain because only one task can spawn at
atime [6]. Overall, any scheme used is likely to be largely free
of protocol races, as only one task spawns at a time.

Under out-of-order task spawn, identifying the immediate
successor and all the more speculative tasks is not straightfor-
ward. For example, in Figure 1-(e), if tagkis killed, it is
not trivial for it to identify and kill tasks4, 3, 5, and2, which
were created before and independently.dfloreover, any so-
lution has to be carefully crafted to avoid inducing races in
the TLS protocol of the distributed CMP if multiple opera-
tions happen concurrently. Finally, since commit and squash
are time-critical, we cannot use a solution based on repeated
comparison of timestamps.

To support efficient and race-free commit and squash, we
propose that the tasks dynamically link themselves in hard-
ware in a list according to their sequential order. We call this
list the Immediate Success@IS) list. To build the IS list, we
add a hardware pointer called the IS pointer to each task struc-
ture. We leverage the fact that, at the time of the spawn, (i)
the child becomes the immediate successor of its parent, and
(ii) the child inherits the parent’s previous immediate succes-

terval to the child. However, since a task rarely spawns moresor, Consequently, on a spawn, the child receives the parent's
than a few other tasks, it makes sense to give a larger fractiong pointer, and the parent sets its IS pointer to point to the child.

of the interval to the child. In addition, there are two cases

In the example of Figure 1-(e), the IS list link40 6, 6to 7, 7

where we can be more efficient. The first one is when the paryg 4, and so on.

ent knows that the child will not spawn any task; in this case,
the parent can give it a single timestamp. The second case i
when the parent knows that this is its last child; in this case, th

obtainable with information gathered by the compiler or hard-
ware predictors.

Our scheme assigns no R to the most speculative task, whiclw
implicitly takes the maximum possible value representable bye

the R range R,...). This allows the system to automatically
anddynamically expanthe range of used timestamps. Indeed,
when the most speculative task spawns a child, it keeps th
range{B,R,....} for itself, and sets the base of the child to
B+R,,... The child is now the new most speculative task, and
implicitly takes the rangéB+R,,,q., Rmaz |-

Note that, it is possible that a program causes the timestamp

to wrap around. In addition, in rare cases, a task may reach a

e
parent can keep a single timestamp. These efficiencies may bﬁ

When a task kills all its successors, its IS is set to nil. Con-
Sequently, TasR’s IS pointer in Figure 1-(e) is nil.
With this support, when a task needs to pass the commit to-
en, it uses the IS list. Moreover, when a squashed task needs
to kill all its successors, it sends a kill signal with its own iden-
tity downstream the IS list. All successors are killed in turn.
hen the kill signal reaches a task with a nil IS, an acknowl-
dgment is sent to the originating task, which sets its IS to
nil. The result is very fast commit and squash. In addition,
the TLS protocol implementation is simplified in a major way:

%ven when multiple kill signals occur concurrently, since all

signals are serialized along the same path, protocol races are
minimized.

3.3 Dynamic Task Merging for Efficient Resource

Allocation

point where it needs to spawn a child and its interval has sizeln TLS systems, tasks compete for CMP resources such as

1. These cases are discussed in Section 4.1.
Our scheme resembles Cleatyal’s virtual sequences [7]
without the implementation limitations (Section 9).

CPUs or cache space. Under out-of-order task spawn, such
competition is harder to manage. The reason is that highly-
speculative tasks may hog resources and starve more critical



(less speculative or even safe) tasks that are spawned later. Fany task-end instruction that it finds. This is the appropriate
example, in Figure 1-(e), when safe takks about to spawn  behavior for the most speculative task, which should not be
6, all the CPUs in the CMP may be in use by more speculativestopped by end instructions. Indeed, the most speculative task
tasks4, 3, 5, and2. may be the only task in the system, possibly the result of a task
To allocate chip resources efficiently, we propose a newkilling all its successors on a violation; if it were allowed to
CMP microarchitectural technique that we danamic Task  end on a task-end instruction, progress would stop. Aside from
Merging It consists of transparent, hardware-driven merging this case, the most speculative task handles the NES as usual.
of two or more consecutive tasks at run time. In effect, it en- In particular, it sets its NES to zero on child spawn.
ables the CMP to prune some branches of the task tree based To reduce overhead, the NES is checked and modified in
on dynamic load conditions. hardware. A software implementation is also feasible, al-
Task merging increases execution efficiency in several waysthough it can be shown to need 5-7 instructions on task spawn
First, highly-speculative tasks can be merged, therefore freeingnd end.
resources for more critical tasks. Second, with large, merged3.3.2 Heuristics
tasks, the spawn overhead is less noticeable, and both cachg$ understand our merge heuristics, note that we rely on squash
and branch predictors work better. Finally, given that the hard-information to reduce useless work. Specifically, if a given task
ware can adjust the number of tasks at run time, the TLS com+as been squashed and restarted repeatedly due to violations,
piler can be more aggressive at creating tasks, which may ultiit js preempted and not allowed to get a CPU anymore. It re-
mately lead to higher performance. mains stalled in one of the several on-chip task containers (Sec-
Under task merging, a task skips the spawn instruction for ation 4.3) until it becomes safe. This policy prevents highly-
child, and its own task-end instruction. Figure 3 illustrates it. speculative, frequently-squashed tasks from clogging CPUs.
When taskl finds the spawn fo8 (Chart a), it can either spawn  On the other hand, if a CPU is running, we will assume that
(Chart b) or merge (Chart c). In the rest of this section, we it is doing useful work.
discuss the microarchitecture support and the heuristics used With this support, we use CPU usage to decide whether or
for task merging. Some compiler issues are discussed in Semot to perform task merge. Specifically, every time that a task
tion 5.2. Some related, but less flexible proposals are discussefinds a spawn instruction, it performs a merge if all CPUs are

in Section 9. busy. In addition, everfNumMNextmerges, we skip one to
prevent tasks from becoming so large that a squash would dis-
A o o card a lot of work.
- ‘@ - ‘@ o ‘@
. ® SN = .
3 o o f@ 4 Implementation Issues
' e This section discusses some related implementation aspects.

Of those, only the first two are specific to out-of-order spawn-
Figure 3:Examples of task merging. ing.
331 Microarchitecture 4.1 Special Casefs in Timestamp Inter_vals_ '
_— I . . There are two special cases when handling timestamp intervals.
A task initiates a merge by skipping a spawn instruction. After g firt one is when the timestamps are about to wrap around.
that, in the simplest case, the task will also have to skip the firsty . <o ution is to recycle old timestamps in chunks. For that
task-end instruction that it finds, and finish only when it finds \ o givide the whole representable timestamp range into four
the second task-end. In general, if a task initidiemerge o, nis ‘hased on the two most significant bits of B. When all
operations by skipping\ spawns, it will have to also skiNl ¢ tasks with intervals in the lowest chunk (e.g., the 00 chunk)
task-ends and finish only when it finds the-1 one. have committed, we recycle that chunk. This involves sending
Consider now a task that skipped a spawn and later, becausg yeprogramming signal to the logic of the timestamp compara-
load conditions have changetiwants to spawn a child. Since  tors'so that timestamps in the recycled chunk are now the high-
the child is more speculative than the parent, the pgrasses  agt (j.e. 00, is more speculative than 11). Then, timestamps
the responsibilitto complete the task merge to the child: the from that chunk become available for reassignment to newer
child will skip the first task-end that it finds and finish only at 55ks.
the second one. As for the parent, it simply finishes at the first e reprogramming signal is automatically triggered when a
task-end thatitfinds. _ _ task with an interval that straddles two chunks commits. With
As an example, consider Figure 3-(d), which shows a newthis approach, the tasks in the CMP can at mostisé the
task tree without merging. In Figure 3-(e), we show the samewhole timestamp range at a time. To see how many tasks can
tree except that taskmerged with3 and then spawnedl We  pe concurrently supported, assume that B and R baaedr
see that taskt is given the responsibility of completing the pjts, respectively. If, in the worst case, each task has a single
merge. child, and the child is given the maximum timestamp range
The microarchitecture needed to support task merge is gossible 2"), the maximum number of tasks is thénx 2°-".
counter in each task structure callddmber of Ends to Skip  Consequently, if we want to support about 20 concurrent tasks,
(NES). When a task skips a spawn, its NES is incrementeds — r should be at least 5.
When a task finds a task-end instruction, its NES is checked. The second, infrequent case, is when a task wants to spawn
If it is non-zero, it is decremented and the end instruction isa child and has no interval to assign. In this case, the task
skipped. Otherwise, the task ends. Moreover, when a tasksimply sends a kill signal down the IS list, as in a task squash
spawns a child, the parent’s NES is copied to the child’s and is(Section 3.2). This operation kills all successors, making the
then cleared. The child now owns the merges. task the most speculative one. At that point, the task obtains
When a task becomes the most speculative one (its IS pointeR,,,.,. timestamps (Section 3.1). This operation, however, is
becomes nil), its NES ceases to matter — the task always skipsery rare, thanks to our support for automatic dynamic times-



tamp expansion (Section 3.1) and timestamp wrap around. Irdren per task. The in-order pass has to be more careful, since
our experiments, it rarely occurs at all. a task can only have a single child. Consequently, the in-order
4.2 Scheduling Tasks to CPUs pass has an initial step where it analyzes all the files in the

. . rogram and generates a complete task call graph. Then, us-
While all the tasks that have been spawned have their Stat%g heuristics about task size and overheads, it eliminates tasks

ltgzggisrcl:grl]JgZlgnt&é)sekrﬁﬁmﬁgzrtsa(ﬁﬁ?OI?\ g}iét%gﬁyajlln'}ig#rom the_ graph until eaph task only has a single child. We trust

: the quality of our heuristics based on the fact that the resulting
F-order TLS code obtains speedups comparable to previous
work [28].

Once the tasks and their parents are selected, the compiler
inserts spawn instructions, and tries to hoist them to boost par-
allelism. A spawn is hoisted as far up as we can, as long as the
new position is execution equivalent with the start of the task
to spawn. We do not hoist above statements that can cause data
4.3 Other Aspects or control dependence violations. Under out-of-order spawn,
All the other aspects of a TLS CMP largely remain the same aswe make sure that the tasks are spawned in reverse order. Un-
we move from an in-order to an out-of-order spawning frame- der in-order spawn, a spawn cannot be hoisted above the caller
work. Each processor has a table of task containers, whicHask.
keeps state for the tasks that are loaded on the processor. Of A final task clean-up pass looks for spawns that were hoisted
these tasks, only one is running at a time. Each containeonly a handful of instructions. In this case, the spawn is elim-
stores the start PC of the task, a pointer to a stack location withinated, and the two corresponding tasks integrated into one.
saved-register state, and a local ID associated to the task. Th&his reduces overheads.
state saved in the stack is not read at the beginning of the task. As an example, Figure 4 shows how the compiler gener-
Rather, it is read as registers are needed. As in many TLS sysates out-of-order tasks out of a subroutine and its continuation.
tems, the ID is a short ID used to tag the cache lines accesseGhart (a) shows the dynamic execution in and out of the sub-
by the task. It acts as a form of indirection [21] that avoids the routine. The compiler marks the subroutine and continuation
need to tag the cache lines with the B timestamp of the taskas tasks, and inserts two spawn instructions in the caller (Chart
For the out-of-order spawn framework, a task container also(b)). Then, it hoists the spawn for the continuation (Chart (c))
contains the B, R, IS pointer and NES. and subroutine (Chart (d)). In Chart (), the clean-up pass elim-

Our CMP uses a TLS coherence protocol with lazy com- inates the subroutine spawn because it had little hoisting.
mit inspired in [18] to detect memory-based data dependence .
violations. No special support for register communication be- £/ | |ca« oo B S = s ' B
tween CMP cores is present. Cache lines with speculative state| [ ... & ) - | | ﬁjﬂ JHH
cannot be evicted. If the space taken by one such line is needed; g oo, " S e ——
the owner speculative task is squashed. Context switches and ™ o © 0 "
exceptions also cause squashes.

tive they are. Specifically, a less speculative task always pre
empts more speculative ones.

In practice, our experiments show that such a policy is an
overkill, given our new task merging support. Consequently,
we use a simpler policy: we assign a high priority to the safe
task, and a fixed, low priority to all speculative tasks.

r
Subr

Fig.ure 4:Generating tasks out of a subroutine and its contin-
5 Compilation for Out-of-Order Spawn uation.

We have developed a fully automated TLS compiler that gen-5-2 Task Merging

erates in-order and out-of-order tasking out of sequential, in-With task merging, as a task completes its code, it goes on exe-
teger applications. The compiler adds several passes to a deuting the code of its immediate successor. This means that the
velopment branch of gcc 3.5. The branch uses a static sintask must have a way of obtaining the live-in register values for
gle assignment tree as the high-level intermediate representats continuation code. With our compiler, this is possible: all
tion [9]. Building on this software allows us to leverage a com- register values changed by a task that may be used by succes-
plete compiler infrastructure. Also, working at this high level sors are stored in memory when the task finishes. Moreover,
is better than using a low-level representation such as RTL:all the live-ins of a task are read from memory. Consequently,
we have better information and it is easier to perform pointer as a task merges with its successor, it automatically reads from
and dataflow analysis. At the same time, our transformationsmemory the live-ins of the successor.

are much less likely to be affected by unwanted compiler opti-5 3 offline Profiling Support

mizations than if we were working at the source-code level. The compilation process for in- and out-of-order tasking in-

5.1 Task Generation and Hoisting cludes running a simple profiler. The profiler takes the TLS
Our compiler uses the following modules as potential tasks forexecutable and identifies those task spawn points that should
both the in-order and out-of-order environments: subroutinesbe removed because they are likely to induce harmful squashes
from any nesting level, their continuations, and loop iterations according to our models. The profiler returns the list of such
from multiple loops in a nest. All subroutines are potentially spawns to the compiler. Then, the compiler generates the final
chosen unless they are very small. Recursion is handled sean¥LS executable by removing these spawns
lessly. In loop nests, the compiler makes decisions based on The profiler takes a few minutes to run. It executes the bina-
loop iteration size, which has to be larger than a certain mini-ries sequentially, using the Train data set of the Specint codes.
mum. As the profiler executes a task, it records the variables written.
The actual tasks that make it to the final binary are differ- As it executes tasks that would be spawned eatrlier, it compares
ent in the in-order and out-of-order environments. The out-of- the addresses read against those written by predecessor tasks.
order pass can select all the tasks mentioned, subject to som@/ith this, it estimates potential violations. The profiler also
pruning heuristics, without worrying about the number of chil- models a cache to estimate the number of misses in the ma-



chine’s L2. For speed, the cache model is timeless. Dynamic Task Merging.

The profiler identifies those spawns where the ratio of The NES register is potentially read and written at task-
squashes per task commit is higher th&y...». For each of  spawn and task-end instructions. These are simple operations
those spawns, it estimates the performance benefit that a tastat are performed locally in each processor. We support them
squash brings. Some benefit comes from the data prefetchingn hardware, as shown in Figure 5(d), although they can be
provided by cache misses recorded before the task is squasheglipported with 5-7 instructions.

(Msquashea)- Other benefit comes from true overlap of the in- To decide on task merging at a spawn instruction, a CPU
structions in the task with other tasks, as the task is re-execute@ises information about the state of the other CPUs (busy or
after the squashl{,criqp). With these measurements, the pro- not). This information does not need to be cycle accurate, since
filer requests spawn removally x Ioveriap +To X Msquashed it is only used as a heuristic. Consequently, CPUs use normal
is less than a thresholf,.;. In the formula,T; is the esti-  |inks to regularly inform other CPUs of their busy or idle state.
mated stall per L2 miss, ar} is the estimated execution time  oyt-of-Order Spawn Simplifies our TLS Compiler.

per instruction. Hardware support for out-of-order spawn simplifies our TLS
) . compiler because it eliminates the checks necessary to ensure
6 Complexity of Supporting Out-of-Order that tasks are only spawned in order. To guarantee the latter,
Spawn our in-order-spawn pass has to identify the tasks that may be

Adding support for out-of-order spawn to a TLS CMP that al- spawned at run time, and ensure that each task has at most one
ready supports in-order spawn does not introduce much hardChl'd. It does so with Inter-procedural anaIySIS. In contrast,
ware complexity. The reason is that our mechanisms only addPur out-of-order spawn pass has many fewer checks to make.
modest-sized, decentralized logic structures. No core-to-cordn particular, it just performs intra-procedural analysis.
interconnections are added. Finally, out-of-order spawn sim- Finally, with our dynamic task merging, a TLS compiler
plifies our TLS compiler. In the following, we discuss these does not need to be as careful in creating load-balanced tasks;
issues. the hardware will prune the excess of tasks through merging.
Splitting Timestamp Intervals.

The memory hierarchy and protocol of the TLS CMP is 7 Evaluation Methodology
oblivious to the fact that tasks use timestamp intervals rather'ro evaluate TLS with out-of-order spawn, we use execution-
than single timestamps. The reason is that all operations Us@riven simulations with detailed models of out-of-order super-
B (the base timestamp), which remains unchanged for a task'scalars and memory systems. The proposed architecture is a
lifetime, exactly like under in-order spawn. Intervals are only four-core CMP with TLS support calleLS4 Each proces-
operated on at a task spawn, where they are split in hardwaresor in TLS4is 4 issue and has a private L1 cache that can hold
This operation is very simple, as it involves one shift, two in- speculative state. The chip also has a shared L2 that only holds
teger additions and two selection operations (multiplexers), asafe data. The 4 L1 caches and the L2 are connected through
shown in Figure 5(a). Moreover, itis performiedallyineach 3 switch that can support up to 2 concurrent connections. The
processor. CMP uses a TLS coherence protocol with lazy commit inspired

The case of comparator reprogramming because of timesin [18] to detect memory-based data dependence violations. To
tamp wrap around is too infrequent to deserve any complicatedkeep the hardware simple, there is no special support for regis-
implementation. The comparator in each cache is prompteder communication between CMP cores. For a similar reason,
to change how it orders the values of the two most-significantthere is no dependence predictor to alleviate the impact of de-
bits of timestamps, illustrated in Figure 5(b). When the com- pendence violations.
parators are being reprogrammed, tasks temporarily use merge |n our experiments, we also model three other chips. Two
rather than spawn. of them are architectures built out of the 4-issue cor&d 84

Finally, if a task wants to spawn and has no interval to assign,4issueand TLS2 4issueis a chip with a single core, one L1,
it squashes its successors. This operation is already present #ind one L2.TLS2is like TLS4but with only 2 cores; for sim-
in-order spawn systems. plicity, all other parameters are the same a§li$4 TLS4and

1 TLS2use the microarchitecture introduced in Sections 3 and 4.

Finally, we also model a chip with a single 6-issue processor,
one L1, and one L2. We call this architectilissue The pa-
rameters used for the architectures are shown in Table 1.

To compare the TLS chip§ (S4andTLS2 to the non-TLS
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ones dissueand6issug, we make the following assumptions.
First, we increase the L1 access time in the TLS chips one ex-
tra cycle to 3 cycles. We do it to account for any time overhead

that TLS may add. We think that such overhead is correctly
_ modeled with 1 cycle. To see why, recall that TLS extends a
Figure 5: Possible implementation of out-of-order mecha-  line’s tag with (i) a small task ID (6 bits in our case) and (i)
nisms. two read/write access bits per word in the line. The task ID bits
Immediate Successor List. can be considered part of the address tag, as a hit requires ad-
The IS listis a decentralized structure that is maintained withdress and ID match. When a processor accesses its L1, it sends
simple hardware operations performed locally in each procesthe address plus the ID of the running task. ID comparison oc-
sor. Specifically, on task spawn, the parent’s IS pointer registercurs in parallel with tag comparison, and adds no extra delay.
is read and written, while the child’s is written. On a task com- Moreover, in our protocol, the read/write access bits are not
mit or kill, the IS pointer is read and maybe cleared. There is checked before providing the data to the processor; they may
no global, centralized operation, as shown in Figure 5(c). be updated after that. Consequently, the time overhead added




[ ProcessorParameters | TLS4[TLS2] [ 4issue [6issue] | ries, we cannot simply time a fixed number of instructions. In-

gg;isiéchigsks/core 4£21 i stead, we insert “simulation markers” in the code, and simulate
LS o Yes NO for a given number of them. After skipping the initialization
Frequency, technologgh 5 GHz, 70 m ESH}[ 6705“2] (several billion instructions), we execute up to a certain num-
etch, issue, retire widtl , 4, , 4, , 0, I i
ROB. l-window size 182 80 153, 80 [204, 104] ber of markers for all binaries, so thaaseApmraduates more
LD, ST queue 54, 46 54, 46 [66, 54] than 750 million instructions.
Mem, int, fp units 2,31 2,3,1[2,5,2]
Br;mchhpredictor: 14 ovel 14 ovel 8 Eva|uati0n
enalty cycles cycles
BTB 2K, 2 way 2K, 2 way .
global gshare(11) entries 16 K 16 K 8.1 Overall Execution Speedups
| Jocal 2 bit entries 16K 16K To evaluate out-of-order spawn for TLS, we compare the exe-
size, assoc, line 16KB,4,64B | 16KB,4,64B cution time of thelnOrder and OutOrderbinaries running on
OC.RT 1.3 1,2 the TLS4architecture. For comparison purposes, we also mea-
[[ Tasking Parameters [ Common Memory System I syre the eX_ECUtIOI’] tlmes of tiﬁseApmlnary runnl_ng on the
Task containers/processor: 8 [2cache 4dissueand6issuearchitectures. The comparisonstissueand
E‘, R %estta_nép size: 32, 22 bits gf;e'ﬁﬁof’lhlne :1MB,8,64B 6issueshow the speedup of TLS relative to a single processor
Latencies in cycles (min): REES of the same width and a wider one, respectively, always under
From spawin to n?vv"trlzrﬁead: f14 Mgm%ry " ) the same frequency. Finally, we also 1@ntOrderon TLS2 to
From violation to full kill notification: 20 andwidth : 10 GB/s H
Drain proc pipeline: 14 RT : 500 cycles assess the effect of the number of processors in the CM.P.
Fraction of interval given to child: 3/4 Figure 6 shows the speedups of the different binary-
Rsquasn: 0.8, To: 200 cycles, RTto neighbor's L1 (min) : 8 cycles | architecture combinations relative BaseAppunning ondis-
Tr: 1cycle, Tpers: 100 cycles

sue The figure shows speedups for each application and the
Table 1: Architectures considered. In the table, OC and RT ~ geometricmean. On top of some bars, we show the speedups.
stand for occupancy and minimum-latency round trip fromthe ~ The dots on some barS.W"' be discussed later. The average IPC
processor, respectively. All cycle counts are in processor cy-  Of each application fodlssueandTLSAOutOrdens shown in
cles. In our comparison, we use the same processor frequency Columns 2 and 3 of Table 3, respectively.
for all architectures. Compare firsTLS40utOrdeto 4issue For every single ap-
by TLS is very small. plication, TLS execution is faster. The s_,peedups are always
ySecondl v)\//e setall the L1 caches to the same size, to ensurg. 1.08, and reach about 2.4 foct We will see that thencf
that the a)lll’ have the same cycle time. Although as’ a result peedups are mostly due to prefetching. The geometric mean
the TLSychi S have 4 or 2 tir’r¥es as much L1 ags the non—TLS'iS 1.30 includingncf and 1.20 not includinghct For the two-
hips. incr P ina the size of the L1 in the non-TLS chi g core TLS CMP TLS20utOrde), the geometric mean of the
ﬁ rFt)?h irC eeﬁ r?n ne S be ot the th ? tci)m_ " CI q Pns fou speedup is 1.20. These results make TLS an attractive feature,
Inurealie ?r?e ?niss rgtee (;C:au;? Lleiﬁ){ﬁee TLSe Ch(i)us is rsi er?esreespecially given that these speedups are obtained witfiya
ality, , p 9 automatedr'LS compiler, on alecentralizedCMP architecture
than in the L1 of the non-TLS chips due to TLS effects. and, importantly, oriull Specint applications
Finally, we assume the same processor frequency in all Note that the IPC numbers in Table 3 do not exactly correlate
chips. In areal implementation, the frequencysisfsuewould  ith the relative height of thdissueand TLS40utOrdeibars
ﬁwrglkz:g Ii¥sb;0:ﬁ¥vv?/{t;1g%? égﬁg%frﬁl%ﬁfe?uoﬁi\;eéﬁtehétsspaper begguse tk?e binar!gs F“““"f‘ghf?” the two platforms Siffer. .
: ince the contribution of this paper is support for out-of-
We drive our simulated architectures with the Specint 2000 order spawning, we compafidS40utOrdetto TLS4InOrder
applications running the Reference data set. We run all theThe bars show thafLS4InOrderis much slower in all appli-
Specint 2000 codes excegbn (we cannot compile because cations.TLS4InOrderonly obtains a geometric mean speedup
it is in C++) andgcc and perlbmk (our compiler infrastruc- of_ 1.04 overdissue The .magnltude of th!s figure is in line
ture does not compile them). We compare the Specint binawith previous compiler-driven TLS evaluations of SpecInt2000
(rjltradse(r)fsgzblre] r%g I%rg)nr](;)grl)ﬂ%dn g?’irslegﬁeo“t)%fToLrieV:Ig:);n_n codes on CMES [28], if Wti V\{eight the sdpeedups reported by the
wni , with out-of- Wwn-  coverage of the regions that were sped up.
ing (OutOrde)). All the binaries in Table 2 are compiled with W conclude, therefore, that out-of-order spawn is a key en-
the same compiler optionBaseApps compiled with our TLS  abler to boost TLS speedups. The gains come from being able
passes disabled. to exploit the additional sources of parallelism.
Finally, we comparelLS40utOrderto 6issue The bars

N TLS? D ipti f Bi . . K
[_Name ] | CSUTIPRON & STAY | show that, except foibzip2 and gzip, the TLS architec-
BaseA N Out-of-the-box, sequential version compiled . .
aseApp with O2. No TLS instrumentation. ture outperforms the wider superscalar. Looking at the ge-
outorder || v Oug-of-?rder ta?k spt;awning- C?lpawn;s: SLt{broutines, ometric mean, we see that. S40utOrdes speedup is 20%
suproutine continuations, ana loop iterations H H _
Tn-order fask spawning. Same taskaREOTder FloWever higher. Therefore, a TLS CMP architecture compares favor
InOrder Y it uses interprocedural analysis pass to eliminate tasks ably against a wider superscalar for Specint, even assuming
that (may) violate the in-order spawning requirement. that the wider superscalar cycles at no lower frequency. This
_ o is significant, given that the CMP has a natural advantage on
Table 2:Versions of the Specint 2000 binaries executed. truly parallel codes, such as many numerical applications.

These binaries are different. The TLS passes re-arrange cod®.2 Understanding TLS Speedups
into tasks and add spawn and commit instructions. Such transTo understand the speedupslafS40utOrderwe break down
formations obfuscate some conventional compiler optimiza-the execution time ofissueand TLS40OutOrdeinto the prod-
tions, sometimes rendering them less effective. Consequentlyict of committed instructions times average CPI. In the for-
to accurately compare the performance of the different bina-mula, CPIrs corresponds to the combined CPI of all the
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Figure 6: Speedups of different binary-architecture combinations relati&ateApunning ondissue The figure also shows
the geometric mean. The TLS results are obtained with a fully-automated TLS compiler on full Specint applications.

cores in the chip. lower than the TLS bar (e.g. in parser), it me@hBly;ssye >

Tyissue — JaissueXCPlajssue isi i
Speeduprrs = plasue = 4ITLS§CP14TLS CPlIrrscore- This is largely due tqrefetchingeffects. In

As we go fromdissueto TLS40utOrderthe number of com-  Particular, tasks that eventually get squashed bring data and in-
mitted instructions in a program increases. The reasons arétructions into the caches, which are later reused by other tasks.
the additional spawn, commit and memory instructions, and!f. instead, the dot is higher than the TLS bar (evgrtey), it
the lower effectiveness of conventional compiler optimizations MeanNSCPlyissue < CPlIrpscore- IN this case, TLS execu-

(Section 7). Therefore, we define an instruction bloat factor tion is largely impaired by the higher average memory latency
Foroar = ALLI induced by cache-coherence invalidations, higher instruction

Laissue cache miss rate, and slower cache hierarchy speed. It is also

We can putCPI. as a function of the average CPI per ) >
core whichpwe calgljDSI g For that. we need t% measﬁre hurt by lower branch predictor accuracy due to code partition-
; I LScore: ’ ing. We call these effects TLS overheads.

the time each CPU is busy executing instructions&nd add

it up across all the CPUs in the TLS chip as follows: Figure 6 shows that iTLS20utOrder the prefetching ef-
I  Tppg  SSpumeoresy, fect typically dominates (most of the dots are lower than the
TLS = CPIrrs — CPlrLscore TLS bars). It often adds a net 5-10% to the potential speedup

_Intuitively, if no two CPUs are busy at the same time, there om parallelism, represented by the dots. However, as we add
is no parallelism, and the two CPIs are the same. If all 4 o6 cores to the chipT(S40utOrde), the TLS overheads
CPUs completely overlap their busy time, parallelism is 4, and gominate, and often the potential speedup from parallelism is

CPIrrscore 15 4 imesClTrLs. We express parallelism as: — higher than the real speedup by a net 10-30%. The obvious
i=1 CR— T LScore

Jparaner = =5 = " CPlrrs exceptions arencfandparser, where prefetching always dom-
Consequently, the TLS speedup above is: inates, andvortex where the TLS overheads dominatecf
Speeduprrg = LissueXCPliissne — fparaltetXCPliissue benefits significantly from prefetching into the L2. Its L2 miss

Iris xCPIrLs Foigat X OPITLscore ate decreases by 27% frofissueto TLS40OutOrder vortex

Table 3 shows the values of some of these parameters fo . ; : .
TLS40utOrderrunning each of the applications. Column 4 urts from higher data and instruction L1 miss rates.
shows the instruction bloat factqfi,q;. Its average value Overall, we conclude that our full Specint speedups are a
is 1.15, which indicates that TLS execution increases the dy-Combination of several factors. Our TLS machinery is fre-
namic instruction count significantly. This effect hurts TLS duently able to overlap execution of the CPUs (Column 6 of
speedups. Column 5 shows the parallelism fagQnqer, Table 3), although a non-trivial fraction of the work is use-
which helps TLS speedups. On average, its value is 1.53/€SS (Column 7). However, even after producing useful overlap
Fraranier is small because of the limited parallelism present in (Column 5), TLS needs to offset significant code bloat (Col-
Specint codes. Note thafl,eqner reports the average num- umn 4) to deliver speedups. Finally, while prefetching helps

ber of CPUs that are busy at a given time executing tasks thaf -S; Figure 6 shows that prefetching’s good effect can be over-
will not be squashed. In reality, a higher number of CPUs is Whelmed by the opposite effects of the TLS overheads.

busy, but some of them execute tasks that will eventually be8.3 Characterization of TLS4OutOrder
squashed. The true number of busy CPUs is shown in ColumPrpe remaining columns of Table 3 further characterize

6. Its average value is 1.96. We can see, therefore, that task| s4outOrdes execution. Column 8 shows the frequency of

squashing is not negligible. In fact, Column 7 shows the frac- 55k merges per task commit. We can see that task merge oc-
tion of busy cycles that corrtoaspond to squashed tasks. On avgyrs frequently in all codes. On average, there are 0.37 merges
erage, such number is 20.5%. OverdlLS40utOrdemastes o commit. This operation boosts TLS performance, as it in-

many cycles to squashed tasks, which also limits its speédups ¢reases task size and, as a result, reduces TLS overheads.

We can now go back to thepeeduprs equation and as- Column 9 shows the resulting average number of graduated

sume thatl'Plyjssue = CPITL%OITE' In this case, the TL,S instructions in the tasks that commit. On average, a task con-
speedups would be given bfyfb“— We have computed this  i5ins 541 instructions.

. . . loat
ratio and shown it as dots in Figure 6 foLS20utOrdemand Finally, the last column shows the percentage of commit-
TLS40utOrder . ted dynamic instructions from tasks spawned out of order. It
If these dots are not equal to the real speedups, it is beygaries noticeably across applications with all codes having a
causeC'Plyissue 7 CPlrLscore. I particular, if a dotis  |arge percentage of dynamic instructions in tasks spawned out-
2|n all this discussion, we have only counted graduated instructions. ThereOf_Order exceprIPZ and gzip Those with a Iarge percent-

is an additional waste in both TLS and non-TLS chips caused by misspeculated®d€ are the ones responsible for the speedups$4OutOrder
branches. over TLS4InOrderin Figure 6. Generally, the fraction of dy-




Busy | Squashed Tasks| # Merges | Task Out of Order

App IPCl4issue IPCrLs foloat fparaliel CPUs Total Tasks per Task Size Dyn. Inst.

(% Cycles) Commit (Instr) (%)
bzip2 171 2.01 1.06 1.25 1.35 7.4 0.42 744 5.6
crafty 1.50 191 1.06 1.45 1.95 255 0.28 931 38.6
gap 1.09 1.33 1.04 1.34 1.96 315 0.88 1249 88.1
gzip 1.08 1.28 1.07 1.26 1.47 14.1 0.02 626 0.3
mcf 0.04 0.14 1.47 1.69 2.42 30.1 0.20 50 26.3
parser 0.65 0.94 1.22 1.30 1.86 29.8 0.51 165 81.8
twolf 0.78 1.07 1.07 157 1.64 4.0 0.28 402 23.7
vortex 1.55 1.97 1.08 1.53 1.80 14.9 0.16 489 77.2
vpr 1.00 1.79 1.27 2.33 3.20 27.2 0.59 212 61.4
Avg 1.05 1.38 1.15 1.53 1.96 20.5 0.37 541 44.8

Table 3:Characterizing the run-time behavior Bt S40utOrder

namic instructions is correlated with the difference betweendesign of high-speed out-of-order tasking on a CMP.
TLS40utOrderand TLS4InOrderin Figure 6: crafty, gap, DMT is a centralized, SMT-like processor whose hardware
parser, twolf, vpr, andvortex have high fractions and large can extract out-of-order tasks from unmodified binaries [1].
differences, whilebzip2andgzip have a small fraction and a The design uses centralized structures thatuagsablein a
small difference.mcfis a special case with 26% of the com- CMP. Specifically, DMT has a centralized hardware tree that
mited dynamic instructions imcfspawned out-of-order and a records which tasks are successors of which. To determine the
very large difference. If we consider the dots focf we re-  order of two tasks, the hardware walks the tree when: (1) there
alize that the speed up is largely delivered by the prefetchingis a collision in the centralized LD/ST queue, or (i) a task com-
provided by squashed tasks that were spawned out-of-ordeimits and needs to verify the register predictions for successor
Overall, on average, 45% of the commited dynamic instruc-tasks. This centralization means that DMT does not need our
tions are in tasks spawned out-of-order. IS list and timestamp intervals. DMT kills the most speculative
8.4 Architecture Sensitivity Analysis task if there is no space in the processor, while we merge tasks

We have performed other architecture analyses that are not in{® dynamically manage the resources in the system.
cluded due to lack of space. Our experiments show that us- Dubeyet al's SPSM [8] is an architecture where tasks are
ing unlimited size timestamp intervals yields negligible perfor- sSPawned in order. Interestingly, a task can spawn multiple
mance gains. Our experiments also show that adding suppor@ther tasks, but these other tasks cannot further spawn, which
for dynamic task merging iTLS4InOrderbarely makes any ~ guarantees in-order spawn. Our proposed spawning model is
difference: the average speedup increases by 1%. Howevefnore flexible and enables more parallelism.
eliminating dynamic task merging frofLS40utOrdecauses Littin et al’s WarpEngine [19] is a compute engine where in-
the average speedup to fall by 29%. This suggests that the pgostructions are grouped into 16-instruction branch-less frames.
tential of our task merging is best exploited when there is moreFrames are fetched and executed out of order. The machine
task parallelism, such as in out-of-order spawn environments. appears closer to an aggressive dynamic superscalar that ex-
ploits control continuations. For example, it cannot be used as

9 Related Work a multiprocessor for parallel applications.

In Multiscalar [20], a task may have multiple exit points.
p However, only one is correct. Since a task can only spawn a

processor has a co-processor that controls TLS mechanisn@ngle othercorrecttask in its lifetime, Multiscalar supports
with software handlers. They support both subroutine and-orderspawnonly. , _
loop-iteration tasks and, therefore, out-of-order spawn. Co-Rélated Mechanisms: Timestamping and Merging.
processors are told what task is running where. They snoop Clearyet al.[7] propose several timestamp representations
on two broadcast buses and, based on message source, thégy virtual sequences organized in a tree. They bear some re-
can tell the relative ordering. Since caches contain state fromsemblance to our splitting timestamp interval. However, while
a single task, no task ID is necessary. Squash signals are alsspme of Clearet al's schemes are more efficient than others,
broadcast. Commits require access to a centralized softwaréhey all need periodice-scaling Re-scaling occurs when se-
data structure in shared memory. The most speculative taskuences run out of timestamps. In that case, new timestamps
is killed if there is no space in the CMP. Overall, this is a need to be reassignedad the taskson the fly. This is a very
broadcast-based, relatively centralized architecture. The aucostly operation, which would entail synchronizing the whole
thors conclude that their scheme has too much software overmachine, and walking all the cache tags, changing all the times-
head to support subroutine tasks. Their findings motivate outtamps. Our splitting timestamp interval scheme is designed
search for hardware-based mechanisms. for efficient hardware implementatio®@nce a base timestamp
There are several high-level performance-evaluation studieds assigned to a task, it never changes. The scheme does not
of environments that need out-of-order spawn [15, 16, 26, 27].need re-scaling. Thanks to the support for automatic dynamic
They often assume an ideal architectural feature, such as atimestamp expansion (Section 3.1) and timestamp wrap around
infinite number of processors or perfect value prediction, and(Section 4.1), we practically never have to kill a task.
compare the performance to more realistic environments. Of Dubeyet al’s SPSM [8] can perform conditional spawns.
those, [15, 16] examine a variety of sources of parallelism, in- This is somewhat similar to our dynamic task merging. A key
cluding iterations from multiple loop levels and nested sub- difference is that their mechanism does not allow a parent who
routines. [26, 27] examine subroutine-level nested parallelism.nitiated a merge to pass the responsibility of completing the
None of these papers describe microarchitectural structures tonerge to a child. Moreover, their mechanism works with in-
support the tasks used. Consequently, they have not addressedder spawn only, while ours is for out-of-order spawn, which
the problems we cover. Our paper is the first microarchitecturalincreases complexity. In addition, in SPSM only the safe task

Out-of-Order Spawning.
Hammondet al. [11] propose a TLS CMP where eac



can perform conditional spawn, while in our mechanism any Points-to Analysis. IiProceedings of the 2003 Symposium on Principles
task can perform task merging_ Overa”, our mechanism is and Practice of Parallel Programmingages 25-36, June 2003.

more flexible. However, it needs a NES counter per task, which [6] M. Cintra, J. F. Marinez, and J. Torrellas. Architectural Support for Scal-
b d betw ! task ! able Speculative Parallelization in Shared-Memory Multiprocessors. In
may be passed between tasks. Proceedings of the 27th Annual International Symposium on Computer

Multiscalar [20] introduces the concept of suppress register.  Architecture pages 13-24, June 2000.
When a task suppresses a section of code (typically a func-[7] J.G. Cleary, J.A.D. McWha, and M.W. Pearson. Timestamp representa-
tion) the task ignores all the Multiscalar instrumentation in the ~ tions for virtual sequences. lrith Workshop on Parallel and Distributed
‘s A . Simulation (PADS’97)1997.
code. In addition, it increments a counter. Suppressions can be

nested, in which case the counter keeps increasing. However o 7 Dubey. K. O'Brien, K. O'Brien, and C. Barton. Single-Program Spec-
) p g. »  ulative Multithreading (SPSM) Architecture. Rroceedings of the IFIP

the taskcannot spawra successor until all its (nested) sup- WG 10.3 Working Conference on Parallel Architectures and Compilation
pressed sections are completed and the counter reaches zero. Techniques, PACT '95.995. _
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CMP significantly outperforms a 6-issue superscalar, even at  tional Symposium on Computer Architectipages 1-12, June 2000.

the same clock frequency. [22] M. Tremblay. MAJC: Microprocessor Architecture for Java Computing.
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