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Abstract

Architects rely on simulation in their exploration of the

design space. However, slow simulation speed caps their

productivity and limits the depth of their exploration. Sam-

pling has been a commonly used remedy. While sampling

is shown to be an effective technique for single core proces-

sors, its application has been limited to simulation of multi-

program, throughput applications only. This work presents

Time-Based Sampling (TBS), a framework that is the first to

enable sampling in simulation of multicore processors with

virtually no limitation in terms of application type (multipro-

grammed or multithreaded), number of cores, homogeneity

or heterogeneity of the simulated configuration (4.99% error

averaged across all the evaluated configurations). TBS also

is the first to enable integrated power and temperature evalu-

ation in statistically sampled simulation of multicore systems

(with 5.5% and 2.4% error on average, respectively). We

implement an architectural simulator based on TBS, called

ESESC, that provides a holistic set of tools for a fair evalua-

tion of different architectures.

1. Introduction

Exploration of the design space in computer architecture
heavily relies upon simulation. Prohibitively slow timing
simulation has motivated emergence of various techniques
to speed up the exploration process. Sampling is among the
most effective techniques adopted to mitigate the problem.
It is a rigorous methodology which reduces the simulation
time by selecting a small, yet representative subset of the ex-
ecution trace for detailed timing simulation.

While sampling has shown a great potential for sin-
gle threaded or multiprogrammed applications, there are no
sampling models for multithreaded application 1 simulations
nor for multicore temperature simulations. The goal of this
work is to provide a sampling framework to quickly explore
architectural performance, power, and temperature trade-offs
in multicore homo- and heterogeneous configurations run-
ning multithreaded applications.

1Throughout this paper, we use the term multiprogram to refer to mul-
tithreaded applications that do not use shared memory to communicate and
synchronize, such as SPEC-rate, while multithreaded term is used for appli-
cations that use shared memory for communication such as PARSEC.

For single core systems, Wunderlich et al. [31] apply
the statistical sampling theory to architectural simulation
(SMARTS). Sampling becomes more challenging for mul-
ticore configurations due to the following related reasons:
IPC is no longer a valid metric to evaluate the results [3],
the execution exhibits variations in the dynamic stream of
instructions compared to single threaded execution [2], it
could simulate a non-representative overlap of the thread’s
execution, and the progress of temperature and therefore, its
performance implications are unclear.

The first challenge in simulation of multicore systems
running multithreaded applications is the evaluation of re-
sults. After varying different architectural parameters, a pre-
cise comparison should enable a fair evaluation of architec-
tural trade-offs. The performance of a single threaded ap-
plication can be compared across different architectures us-
ing IPC. The same metric also can be used to evaluate the
speedup in a multicore system running multiprogram appli-
cations (e.g., running gzip and cra f ty together). This is be-
cause the assumption of constant instructions per program
could remain valid for these type of applications (e.g., by
excluding system instructions). However, IPC falls short to
faithfully compare multicore configurations running multi-
threaded applications [3].

In multithreaded applications, threads can be executing
instructions that do not contribute to progress of the pro-
gram. Nonetheless, these instructions count toward the over-
all IPC (e.g., polling to acquire a lock, but a higher IPC be-
cause of that does not mean speedup!). A more fundamental
and problematic issue is that an increased performance for
one thread does not necessarily contribute to shortening the
execution time of the program’s critical path. Instead of IPC,
execution time 2 is the ultimate metric to compare different
configurations’ relative speed [3, 7, 8, 18].

In a sampled simulation, timing is only modeled within
the samples, while the intervals between samples are fast-
forwarded with functional emulation or warmup that lacks
any timing information. It results in the collapse of the pro-
gram execution time. Hence, the application of sampling has
been limited to single thread or multiprogram applications,
which can rely on the IPC for the evaluation.

Sampling could also distort the overlap of threads and
their interference. The consistency of progressed time is not

2We use the term progressed time as well to refer to the execution time
of a program while it is making progress.



maintained in fast-forwarded intervals, and the progress of
threads could start diverging with regard to the un-sampled
simulation. This could potentially result in simulating non-
representative overlaps of the execution, which elevates non-
deterministic and non-representative utilization of the shared
resources. These effects are exacerbated in a heterogeneous
configuration.

Wenisch et al. [28] extend SMARTS to multicore simu-
lation for throughput applications. However, the sampling
for multithreaded applications in a shared memory model re-
mains an open problem [29].

Modern processors adapt to temperature responses.
Equally important, temperature has an exponential impact
on leakage power. Hence, simulation of power and tem-
perature effects, as pertinent design parameters, are desired.
Since the overall IPC does not reflect the execution time in
multithreaded programs, Energy Per Instruction (EPI) can no
longer be used to compare energy efficiency in sampled mul-
ticore simulation. To the best of our knowledge, there is no
work proposed to enable energy comparison and simulation
of temperature in a statistically sampled multicore simula-
tion.

This paper is the first to introduce a sampling-based sim-
ulation methodology that enables rapid evaluation of vir-
tually any multicore configuration, independent of applica-
tion’s type (multithreaded, multiprogram or a mixture of
both), core count, and heterogeneity of the configuration.
The proposed sampling framework, called Time-Based Sam-
pling (TBS), samples the execution regarding progressed
time rather than instruction count. All the aforementioned
challenges are addressed, and the accuracy of the proposed
method is evaluated by running a combination of SPEC
CPU2000 [14], CPU 2006 [13], Parsec [6] and SPLASH-
2 [30] benchmarks on different homo- and heterogeneous
configurations.

Our open source implementation of TBS, called enhanced
SESC [21] or ESESC, shows that the proposed method pro-
vides robust estimation of the speedup for multithreaded ap-
plications with average error of 4.99% across all the evalu-
ated multicore configurations, compared against full timing
simulations (maximum error 10.6% for radix on a 4-core het-
erogeneous processor). This paper is also the first to propose
a framework that enables thermal simulation for such con-
figurations as well (with 5.5% and 2.4% error on average for
power and maximum temperature respectively).

2. Related Work

Sampling for single core: Sampling in architectural sim-
ulation has been studied in different works [31, 22]. Wun-
derlich et al. [31] apply the statistical sampling theory to
architectural simulation (SMARTS). During the program ex-
ecution, a small set of instructions are periodically sampled
for simulation to capture the accumulative statistics. Each
sample is thousands of instructions long. Hence, a warm up
period is needed to populate the microarchitectural states and

avoid measurement errors due to cold start. In our work, we
categorize SMARTS as Instruction-Based Sampling (IBS).
Sherwood et al. [22] propose a phase-based sampling based
on Basic Block Vectors (BBV). In this work, our focus is on
the statistically sampled simulation.

Temperature simulation with sampling: Extra consid-
eration needs to be taken into account for thermal evaluation
in a sampled simulation. Coskun et al. [10] use SimPoint
to sample performance and power phases, and reuse them to
reconstruct the whole power trace on which thermal compu-
tation is performed. Ardestani et al. [4] extend the sampling
to the thermal domain by reconstructing a power-time trace
as the simulation progresses. To the best of our knowledge,
TBS is the first to enable thermal evaluation for statistically
sampled simulation of shared memory systems running mul-
tithreaded applications.

Accelerating sampling: Different techniques are pro-
posed to accelerate a sampling-based simulation such as na-
tive or hardware-accelerated methods(e.g., [9]), checkpoint
based methods (e.g., [27]), or limited warmup (e.g., [11]).
We implemented BLRL [11] but it did not reduce the simu-
lation time in our setup (memory warmup is very fast in our
setup, and smaller intervals reduce the speed of functional
emulation, thereby diminishing the benefit). Ekman et al.

[12] use a matched-pair technique to reduce the number of
samples comparing different architectures running multipro-
gram applications. Our proposed sampling framework pro-
vides accurate results independent of the application type.

Sampling for multicore: Wenisch et al. [28] developed
SimFlex for multicore throughput applications based on sta-
tistical sampling. The main consideration in multicore do-
main is to increase the sample length. SMARTS specifies the
sample length regarding the number of instructions, while in
SimFlex it is recognized that cycle-based samples provide
more stable results. However, the samples are distributed
based on the instruction count. Van Biesbrouck et al. [25]
introduce Co-Phase matrix to enable multicore evaluation
for multiprogram applications using phase-based sampling
(SimPoint). This method does not scale well, because the co-
phase matrix dimensions grow by number of cores and dy-
namic architectural states of them (e.g., DVFS states). TBS

is the first to propose a statistical sampling framework for
multithreaded applications.

Complementary techniques: Parallelization of timing
simulation provides an opportunity to trade accuracy for sim-
ulation speed by breaking the cycle-by-cycle synchroniza-
tion among the threads [8, 18, 7]. As a result, the simulation
speed could potentially scale with the number of cores in the
simulated configuration. These techniques are orthogonal to
the effect of sampling in reducing simulation time.

3. Sampling Methodology

The collapse of progressed time in a sampled simula-
tion brings up two issues: 1) the evaluation relies on IPC
rather than execution time; 2) it leads to inconsistency in



progress among threads, which could in turn result in sim-
ulation of non-representative overlap of threads’ execution.
These two challenges limit the application of sampling to
single threaded or multiprogram applications. For a sam-
pling framework to support multithreaded applications, these
two challenges need to be overcome.

3.1. Sampling: Time vs. Instructions

Existing statistical sampling methods (e.g.,
SMARTS [31]) specify the sampling parameters, such
as the sample length and/or the interval between sam-
ples, in terms of the number of instructions. We call the
SMARTS-like sampling Instruction-Based Sampling or IBS

for short.
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Figure 1: Progress regarding the number of executed instruc-
tions (left) and time (right). The y-axis is an arbitrary exe-
cution metric such as bandwidth demanded by each thread.

Figure 1 shows the execution of k instructions for two
sample threads, T0 and T 1, with average IPC of X and Y re-
spectively, where X < Y . The figure on the left shows the
progress with respect to the instructions. The plot shows
how different phases of threads overlap one another. The
figure on the right, on the other hand, shows the progress
with respect to time. It shows the actual overlap of these two
threads, which is different from the one observed through
progress of instructions. Even in a homogeneous system, not
all the threads run at the same IPC rate, and as a result the
actual overlap is different from the overlap observed through
instruction progress. This non-representative overlap can re-
sult in significant differences in the reported metrics.

IBS has no mechanism to avoid divergence of progress
among threads (except for synchronizations in the applica-
tion, which we will explain in Section 3.1.1). Threads with
different IPC could quickly diverge in their progress. This
could create an unrealistic interference among threads that
introduces variation in the execution due to sampling that
does not exist in the original execution.

To illustrate this effect, we simulate a synthetic multi-
threaded kernel. Figure 2 shows its functional diagram. It
has a worker thread that cycles through two phases. Phase A,
which is a bandwidth-bound phase that copies a buffer into
thread’s local buffer. Phase B is a high IPC and compute-
bound phase. Performance of the kernel is sensitive to the
overlap of the phases. Phase A pressures the memory sub-
system, and demands higher bandwidth, and the overlap of

Filler thread
Shared buffer

} Phase A 
memcpy

} Phase B 
compute

Sync barrier

Worker thread 1 Worker thread 2

Local buffer Local buffer

Figure 2: Functional diagram of a synthetic kernel with two
distinctive phases.

two Phase As could degrade the performance. There is a
barrier at the end of Phase A to synchronize the threads.

We run IBS and an un-sampled full simulation for a het-
erogeneous processor. As expected, the sampled and full
simulation match for a single worker thread. However, the
sampled simulation shows higher error for the configuration
with two worker threads. In particular, the memory system
statistics, such as cache miss rates on different levels, shows
up to 100% error due to non-representative overlap of the
threads. Another observation is that the sampled simulation
shows much higher variations across the runs (2.5X standard
deviation of the full simulation). This is because the over-
lap observed by IBS is not deterministic, and could change
across simulation runs. This adds to the actual variation ob-
served by the full simulation. If we define the sampling pa-
rameters regarding time (TBS, explained in Section 3.2), the
error in the memory statistics and variation drop to 17% and
0.2X respectively.

3.1.1 Synchronization:

Multithreaded applications use synchronization to provide
safe communication and maintain control among threads.
Different synchronization primitives (e.g., locks, barriers,
and conditions) can be divided into primitives that either spin

or sleep while trying to meet a condition.
In spin primitives, a thread actively executes instructions

while waiting to acquire the lock or associated condition.
The spinning generates a nondeterministic stream of instruc-
tions that causes variations across runs. In sleep primitives,
the waiting thread is unscheduled by the OS. We observe that
this results in a more stable dynamic stream of instructions,
and less variations of the dynamic program behavior across
the runs in the user mode.

The divergence increases even further in a heterogeneous
system. Figure 3 shows a histogram of divergence. The
y-axis shows how frequent threads in an IBS multithreaded
simulation diverge in their progressed time The x-axis indi-
cates the magnitude of divergence that has happened. We
run a number of Parsec benchmarks, and reconstruct and
record the divergence of progressed time among threads at
each sample (experiments ran on a 4-core heterogeneous
processor. See Table 6). We use the same reconstruction
proposed by [4] for single core configurations. In some ap-
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Figure 3: Histogram of divergence of execution time in a
sampled simulation.

plications, the threads are almost identical; perform around
the same amount of work without contention over the shared
resources; and use barriers to synchronize. Blackscholes

is an example of such applications. In blackscholes, the
threads progress with the same rate and the divergence is lim-
ited. Other applications such as f erret and f luidanimnate

do not use global barriers (locks and condition synchroniza-
tion primitives are used though), and provide higher proba-
bility of divergence in the progress of different threads. This
divergence is not part of the program behavior, rather a side
effect of the sampling. In this figure, 27% of the samples
have a divergence greater than 10ms. The divergence also
happens in a homogeneous processor (22% in the baseline
configuration, Table 6).

While we do not observe an adverse effect on the result of
running multiworkload applications, for multithreaded con-
figurations with applications exhibiting significant sharing
and contention patterns, it seems necessary to define the
sampling parameters with respect to progress in time rather
than the number of instructions to avoid divergence of the
progress among threads. In Section 3.3 we will explain that
this is also necessary to enable temperature simulation across
a chip.

3.2. TBS: A Time-Based Sampling

To maintain the progressed time, and avoid divergence
of progress among threads and preserve the overlap of exe-
cution among them in a sampled simulation, we introduce
Time-Based Sampling(TBS). Similar to IBS, TBS breaks
the sampling intervals into 3 subintervals: Functional fast
forwarding that performs Memory system Warmpup (MW );
Detailed Warmup (DW ) that performs detailed timing to
warm up the pipeline, but discards the statistics; and De-
tailed Timing (DT ). The samples are gathered during DT .
However, in TBS sampling subintervals are defined to have
a fixed length in number of cycles 3, as shown in Figure 4.
In contrast, subintervals have fixed number of instructions in
IBS. Unlike IBS, as TBS progresses by executing through the
sampling subintervals, the execution time of the application
is available by adding up the predefined length of subinter-
vals.

3We use time and cycles interchangeably in this context, Time = Cycles
f req

.

Time

Figure 4: Periodic TBS Sampling. Sampling intervals have
fixed length in terms of number of cycles.

Let insts be the length of subintervals at runtime in terms
of instructions, and cycs be the length in terms of number of
cycles. Table 1 shows the property of each interval for TBS

and IBS.

Method insts cycs Description

IBS Constant Variable
Progressed time diverges

among threads

T BS Variable Constant
Threads’ progressed time

advances synchronized as it
would in full simulation

Table 1: Different properties for each sampling method.

Simulation eventually comes down to the execution of in-
structions. TBS adjusts the number of instructions at runtime
to keep the length for each subinterval, in terms of time, con-
stant. Therefore, the length is converted at runtime, from
number of cycles to the number of instructions based on the
observed performance. This is done independently for each
thread. Equation 1 is the conversion formula.

#inst(i,s) = #cycs × IPCi, i = (1..n), s : (MW,DW,DT ) (1)

#inst(i,s) is the number of instructions for subinterval s of

the ith sampling interval. #cycs is the length of subinterval s

in terms of number of cycles. It is a sampling parameter and
is predefined for each subinterval type (See Section 3.2.2,
and Table 4). IPCi is the runtime performance of interval i.
n is the total number of samples.

As an example, for a fast-forward subinterval MWi, the
IPCi is predicted at runtime. The length of the subinterval
has been predefined as a fixed number of cycles. So, the
conversion simply lets us know how many instructions need
to be fast-forwarded for that particular interval to make up
for the predefined length in terms of time.

3.2.1 IPC Prediction:

Now the main question is how the performance of each
subinterval (IPCi) is obtained. For the DT subinterval the
answer is simply available, because detailed timing simula-
tion is performed. Other subintervals, however, by design do
not perform detailed timing modeling nor do they maintain
the statistics. For such cases, we predict the IPC to figure out
the number of instructions to be executed (as an example of
related work predicting IPC see [4]).



The statistical variations among consecutive samples are
bounded by the sampling parameters selected, which is done
based on the observed variation in the program (Discussed
more in Section 3.2.2). This makes the accurate prediction
of IPC based on previously observed intervals possible.

We evaluate 3 different prediction methods. For refer-
ence, the Naive method assumes IPC of 1 for all the subin-
tervals between samples. Last method uses the last measured
IPC. Inspired by the effects in thermal stage (e.g., exponen-
tial decay of thermal effects), WMA method uses a weighted
average of last h (3 to 5) samples. The most recent sample
has the highest weight, and the last hth sample has the lowest.
Table 2 summarizes these methods.

Method Description

Naive Assumes IPC=1
Last IPC of the last sample

WMA

Weighted Moving Average of last 3-5 samples:

EIPCi =

h−1
∑

k=0

1

2k
×IPCi−k

h−1
∑

k=0

1

2k

Table 2: IPC prediction methods for fast-forwarded inter-
vals.

We run a set of benchmarks in full, and compare the
predicted IPC against the observed IPC, for all the fast-
forwarded subintervals (We used parameters presented in Ta-
ble 4 for the size of subintervals). Figure 5 summarizes the
accuracy of each prediction method. The Naive prediction
performs worst with average error of 17%. The deviation of
errors is also very high (Min and Max error of 5% and 37%
respectively). The Last and WMA predictions perform best
with average error of around 8%. The deviation of errors
is much less, which means the prediction also captures the
transients in the IPC (We tried WMA with no weighting but
it did not perform as well). While either of Last or WMA

methods can be used, we use the W MA as it provides more
stable predictions in terms of standard deviation, resulting in
more accurate reconstruction of performance trace for ther-
mal computation (Explained in Section 3.3). This confirms
that IPC of the fast-forwarded intervals can be predicted us-
ing previously observed samples. The overall IPC error for
the program is even less than the prediction error for the tran-
sient IPCs as the errors can cancel out each other through the
execution.
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Figure 5: Error in prediction of IPC.

3.2.2 Sampling Parameter Selection:

As evaluated in [31] and [28], selection of sampling pa-
rameters depends on the coefficient of variation of sam-
ples (V̂ = σ

µ
) in the execution, and the desired confidence

level (1−α). The number of samples can be obtained by
n ≥ [(z ·V̂ ).ε]2, where z = 100(1−α/2), and ε · X̄ is the con-
fidence interval. Also the impact of detailed warmup (DW )
has to be taken into account as an interdependent factor in
determining the length of samples in detailed timing (DT ).

This process is discussed in detail in SMARTS [31].
Hence we do not repeat the procedure, and refer to this re-
lated work for details ( [28] also follows the same proce-
dure). The only difference is that for TBS, IPC is the metric
for which the coefficient of variability is studied . This is be-
cause the number of cycles is the constant denominator. In
SMARTS (or IBS in general), the denominator is number of
instructions (CPI).
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Figure 6: Coefficient of variation (V̂ ) of IPC for different
sample length in multithreaded benchmarks.

Figure 6 shows the coefficient of variation in IPC over
different sampling sizes (DT ). Selecting a larger sampling
length results in smaller V̂ , and less number of samples.
However, based on Figure 6, sampling length of around 32K
is a point of diminishing return, as longer samples do not
reduce V̂ , but will keep reducing the simulation speed ([28]
reports the same trend for throughput applications).

For the best results, the parameters can be selected per
benchmark. We try to select a set of parameters that work
well with all the benchmarks. This comes at the cost of
slightly slower simulation. We select the sample length of
50K and the detailed warmup of 20K. Table 4 summarizes
the selected parameters.

3.2.3 Synchronization Among Samples:

TBS keeps the progress of samples synchronized. All threads
start a sampling interval by MW and finish by DT . Un-
like IBS, all thread should finish executing a sample around
the same time. Should a thread finish the simulation of the
current sample (DT ) faster due to IPC prediction error, it
will switch to DW , which is detailed timing without gath-
ering statistics. This ensures all the active threads maintain
their pressure on the shared resources as long as the current
sample is being processed. Once all threads have finished



DT , they start fast-forwarding to the next sample. The fast-
forward for threads executing instructions in DW waiting for
other threads will be adjusted based on how long each of
them has been waiting in DW .

While spin-lock loops do not contribute to the actual
progress of the application (which renders IPC metric mis-
leading), they do contribute to the progressed time, and thus
their appearance in any interval, including fast-forwarding,
will not result in inconsistency.

3.3. Multicore Thermal Simulation

Performing realtime performance, power, and temper-
ature simulation enables exploration of temperature- and
power-aware adaptations, which is an integrated feature of
modern processors. Modeling the thermal progression de-
pends on two run time factors: power and time. Sampling
introduces complexity in temperature simulation due to the
collapse of progressed time. Ardestani et al. [4] propose a
reconstruction-based method to model temperature in a sam-
pled simulation. However, as we discussed in Section 3.1,
the progressed time of the threads diverges in a sampled mul-
ticore simulation. Therefore, the reconstruction of progress
time for each thread would not suffice for multicore thermal
simulation.

If the consistency of the progressed time is lost, the re-
altime thermal computation becomes impossible. Thermal
computation can be performed with a lag compared to the
progress of performance domain in a checkpoint style. How-
ever, realtime interference of temperature and performance
would be compromised. As a result, IBS methods, includ-
ing [4], fail to simulate the progress of temperature in a mul-
ticore configuration.

TBS ensures the consistency of progressed time for all
threads in a sampled simulation. Therefore, all threads are
in the same progressed time at the end of each sample. This
makes a reconstruction-based thermal simulation for multi-
core possible. Similar to [4], we use a formulation similar
to the W MA in Table 2 (replace IPC for Power) to estimate
the power consumption of the fast-forwarded intervals based
on the measured powers of last h samples (error within 6%).
The weighting resembles the exponential decay of thermal
effects due to thermal time constant. While both Last and
WMA provide accurate predictions, we observe that WMA

results in a slightly more accurate thermal trace. Knowing
the length of the last interval, and its power consumption,
the power-time trace is reconstructed, and the temperature
progress of the chip is computed for that interval. This is the
first time that a statistically sampled simulation can also sim-
ulate temperature transients for a multicore configuration.

3.4. Evaluation Methodology

In the case benchmarks are run to completion, the evalua-
tion of the results is fairly simple and feasible by comparing
the execution times. However, unlike multithreaded appli-
cations, multiprogram applications finish at different times,

which makes it harder to mark a fair end to terminate the
simulation. The same is true for partially simulating these
applications. Vera et al. [26] discuss fairness in the evalu-
ation of multicore systems, and similar to Tuck et al. [24]
propose a re-execution based evaluation.

To have a fair evaluation, we propose that the user 1) se-
lect a stable region of interest (ROI); 2) apply TBS over the
selected region; 3) use execution time to evaluate the results.
Marking ROI for multithreaded applications is a common
practice. For single thread or multiprogram applications,
ROI can be defined as a constant number of instructions, and
observed by counting instructions during the emulation or
sampling, or by marking the binary.

The re-execution mechanism is necessary to maintain
fairness in evaluation of multiprogram applications [26].
Should any of SPEC threads in the multiprogram applica-
tions finish the ROI (or reach program finish before others)
it will continue execution (or will rerun), but the statistics
outside of the ROI (or after rerun) will be discarded for that
particular thread. This is to keep the pressure on the shared
resources, until all the threads finish the ROI.

We run all multithreaded applications to completion.
Hence the evaluation is simply carried out by comparing the
execution times.

One possible problem with TBS however, is that if the
number of instructions in a sample becomes very small, it
could introduce extra error due to the limitations of the tim-
ing simulation. This situation could happen for example in
case of a sample with catastrophic slow performance. Note
that if these slow regions are frequent, thus statistically im-
portant, the sampling parameter selection procedure should
capture the effect accordingly.

There are different metrics proposed to report the speedup
running multiprogram applications, compared to a single
program execution. [23] used weighted speedup, and a
harmonic mean is used in [16]. This work, however, does
not study the speedup of an isolated run of a single appli-
cation against a multiprogram run. We compare across dif-
ferent multicore configurations, and we compute the aggre-

gated IPC of cores (IPC =
n

∑#Inst/
n

∑#Cycles,n = #cores)
and scale it by the number of active cores to get the speedup.

4. Experiment Setup

We modify SESC [21], and use QEMU [5] as the func-
tional emulator executing ARM instructions. The simulator
offers 4 different execution modes: R for functional emula-
tion only (Rabbit), MW warms up memory subsystem, DW

performs detailed warmup through timing simulation, but the
statistics are discarded, and finally DT in which the detailed
timing simulation is performed. We use a modified version
of McPAT [15] for power. A modified version of SESC-
Therm [19] is used to compute temperature and scale leak-
age power consumption accordingly. We use a model similar
to [17] to scale leakage based on temperature. The resulting



simulator is called Enhanced SESC (ESESC). Table 3 and
Table 4 show the sampling methods and parameters.

Method Description

Full Full timing simulation
IBS SMARTS-like simulation
TBS Time-based sampling simulation

Table 3: Simulation methods.

Parameter IBS TBS

MW 496e4 493e4
DW 1e4 2e4
DT 3e4 5e4

History Size (in WMA) - 5

Table 4: Sampling parameters. The unit for the sampling
modes is instructions for IBS and cycles for TBS. The unit
for History Size is the number of samples.

4.1. Evaluated Architectures

We configure 4 different CMP systems to evaluate the
proposed framework. To run the experiments for different
core counts as well as different core configurations, we use a
fast (F) and a slow (S) configuration to build up the CMPs.
Table 5 lists the architectural parameters. Configurations are
labeled with a /(CT )+ / format to specify their core count
followed by the core type. For example 4F is a 4-core CMP
configured with the fast cores, and 2F2S is a 4-core hetero-
geneous configuration with 2 fast and 2 slow cores. Table 6
summarizes the configurations.

Parameter Fast (F) Slow (S)

Freq 3.0 GHz
I$ 32KB 2w (2c hit) private
D$ 32KB 8w (3c hit) private
L2 256KB 16w (12c hit) private
L3 4MB 16w (12c hit) shared

Coherence MESI
Mem. 180 cyc
BPred. 10 tab. ogehl 76Kb Hybrid 38Kb
Issue 4 2
ROB 256 56
IWin. 32 16

Load/StoreQ 48/32 16/8
Reg(I/F) 128/128 80/64

Table 5: Architectural parameters

Config Description

Homogeneous 4F (baseline), 8S
Heterogeneous 2F2S , 4S4F

Table 6: Different configurations used in the experiments.
See Table 5 for more detail on F and S cores.

4.2. Applications

Throughout this paper, we use the term multiprogram
to refer to the multithreaded applications that do not use
shared memory to communicate, while the multithreaded

Suite Applications

SPEC

equake, gcc, mgrid, mesa, art,
vpr, applu, soplex, twolf, wupwise,

perlbench, swim, crafty, povray, milc,
vortex, libquantum, mcf, gap, leslied,

bwaves, lbm astar, sphinx, dealII

Parsec
blackscholes, bodytrack, canneal, facesim,

ferret,fluidanimate, swaptions, x264
SPLASH-2 ocean, fft, fmm, radix

Table 7: Benchmarks

term is used for applications that communicate through the
shared memory and use synchronization. We use appli-
cations from SPEC CPU 2000 [14], CPU 2006 [13], Par-
sec [6] and SPLASH-2 [30] benchmarks suits. A random
combination of SPEC applications represents the multipro-
gram category of applications. The pool contains 29 sin-
gle threaded applications. 8 Parsec (the simlarge input set)
and 4 SPLASH-2 applications represent the multithreaded
class of applications. The multithreaded applications in Par-
sec suite demonstrate different rate of sharing and data con-
tention from low (e.g., blackscholes) to high (e.g., f erret).
Table 7 lists these applications. To save space, we use two
characters to identify each application. All the multithreaded
benchmarks are run to completion.

Category Benchmark

MultiProgram combination of SPEC applications
MiltiThreaded Parsec or SPLASH-2

Mix
combination of MultiProgram

and Multithreaded

Table 8: Evaluated application categories.

For the 8-core configurations, we also run a mixture of
both multi-workload and multithreaded applications. While
in the 4-core configurations the cores are fully loaded, the
8-core configuration includes benchmark combinations that
load a subset of available cores. Table 8 shows the categories
of applications we evaluate.

For all the experiments, we run the multithreaded ap-
plications within their scalable region. We ensure that the
working set of the applications are the same, and applica-
tions themselves do not change the working set or number of
threads. This is to carry out a fair comparison between dif-
ferent CMP configurations with different number of cores.

5. Evaluation

This Section presents evaluation results. The accuracy
of performance estimation is discussed in Section 5.1. Sec-
tion 5.2 evaluates the power and temperature estimations,
and Section 5.3 and Section 5.4 discuss the simulation speed
and scalability of the framework respectively.

5.1. Accuracy

Figure 7 presents the overall error in the reported speedup
when comparing different configurations. It compares 3 ap-



plication categories and 2 sampling methods, running a 4-
core homogeneous as the baseline and 3 other CMP config-
urations (see Table 6). The error is computed comparing the
reported speedup of each method to the speedup reported by
execution time in the full simulation. The execution time is
used for TBS, while IBS uses IPC to compute the speedup,
as it lacks the progressed time information.
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Figure 7: Error in the speedup estimation. The errors of all
the configurations are grouped together.

Multiprogram workloads are deterministic without con-
tention between threads. As a result, both IPC and execution
time agree and are acceptable to estimate speedup. As ex-
pected, the multiprogram category demonstrates a low error
for both IBS and TBS. In both cases, the error is within 10%.

A more challenging case is the multithreaded category.
The error in the reported speedup by IBS increases to up to
30% and 50% for mix and multithreaded categories respec-
tively. TBS, on the other hand, still provides stable accurate
results across all the application categories. While we only
report detailed relative speedup error, the absolute error in
the execution time remains within 7%.
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Figure 8: Error in IPC estimation. Both IBS and TBS esti-
mate IPC accurately.

As we discussed in Section 3, IPC is not a faithful met-
ric for comparing different configurations. For example, f f t

has accumulative IPC of 1.95 on the 4F homogeneous con-
figuration. The IPC increases to 2.14 on the 2F2S heteroge-
neous configuration! Comparing the IPCs, the speedup on
the 4-core heterogeneous configuration appears to be around
10% even though the latter configuration has replaced two
of the fast cores with slow ones. Comparing the execution
time of the benchmark on each configuration, the speedup
is proved to be around -9% (slowdown). In this case, IPC
would have predicted a 10% speedup, a faithful full time
simulation or TBS would have shown close to 10% slow-

down. In some other cases, the IPC increase is less than the
observed speedup.

Equally important, IBS fails to simulate a representative
overlap of the thread’s execution. For example, the amount
of invalidations on the caches increases by 92% on the 4-core
heterogeneous configuration, while IBS shows around 20%
increase. Also it is not clear how different threads contribute
in the critical path of the benchmark execution.

Nonetheless, we show the IPC results for each applica-
tion category. This is to show that IPC estimated by both
sampling methods is accurate across all the application cat-
egories and configuration, while it is not a fair metric to be
used for evaluation. To avoid clutter, we only show the box
plot for each application category. Figure 8, shows that both
IBS and TBS estimate the IPC within 5% of the full simula-
tion on average.
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Figure 10: Absolute error in execution time estimation .

For more detailed information, Figure 9 presents the
breakdown of speedup errors for multithreaded applications.
There are 3 configurations (4S, 8S, 4S4F) compared against
the baseline configuration (4F). The results are shown for
both TBS and IBS. Therefore, there are 6 bars for each appli-
cation to show the error in each configuration for each sam-
pling method.

For some applications such as bodytrack, both IBS and
TBS estimate an accurate speedup. The reason is that



bodytrack implements an abundance of synchronizations
that maintains the relative progress of the threads even in
IBS. The sleep-based synchronization also limits the number
of synchronization instructions in user mode execution. As a
result, IPC correlates well with the execution time. However,
IBS fails to consistently provide accurate estimation of speed
up for all the applications due to the lack of progressed time
information, and non-representative overlap of the threads.

The accuracy reported by TBS is consistently within 11%
of the speedup reported by full simulation. Figure 10 shows
the absolute error in the estimation of execution time for
each benchmark across different configuration. For exam-
ple, f mm has the highest error, which is partially due to its
small execution time. As discussed in [31, 28], longer sam-
pling units can be gathered to achieve higher accuracy based
on the observed variability in the samples. While Figure 6
shows the trend in the coefficient of variation in IPC, we do
not report confidence intervals for the progressed time.

5.2. Power and Temperature

Wunderlich et al. [31] report EPI in evaluation of sin-
gle core configuration. Like IPC, EPI does not provide an
accurate metric to compare multicore configurations in IBS.
TBS, on the other hand, maintains the progressed time, and
provides the necessary means to compare different multicore
configurations for their power and energy efficiency.

While dynamic power depends on the utilization of re-
sources, leakage is temperature dependent. Hence we report
the estimation error for both dynamic and leakage power.
The temperature of the processor is also evaluated for both
maximum and transient values.
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Figure 11: Error in estimated dynamic and leakage power.

Figure 11 shows the error in estimated power on aver-
age for the experiments. It also shows the breakdown of
error for dynamic and leakage power consumption. Note
that even though the error in dynamic power can be can-
celed out by the error in the leakage estimation, we com-
pute each error separately and add them together. Appli-
cation categories (i.e., multiprogram vs. multithreaded) are
grouped separately. Nevertheless, there is no meaningful dif-
ference between them in terms of accuracy of the estimated
power. bodytrack has the highest error percentage among
the benchmarks. The main reason is that this application has

(a) Full (b) TBS

Figure 12: Breakdown of dynamic (outer ring) and leakage
(inner ring) power consumption is preserved by TBS.

a much lower power consumption range (around a half of
the f luidanimate), and as a result the reported percentage in
higher. The average error is less then 1 Watt.

The results in Figure 12 show that the sampling preserves
the breakdown of power consumption for each functional
block. Figure 12a shows the breakdown for full simula-
tion on the 4F configuration. The outer donut chart shows
the dynamic power breakdown for 9 functional blocks in the
f ast cores (See Table 5). The inner ring shows the leakage
breakdown. Figure 12b shows the breakdown for the sam-
pled simulation. The results are gathered by averaging the
power consumption of all the benchmarks.

 0

 2

 4

 6

 8

 10

cr-na-po-tw

m
c-ar-so-pe

le-gc-pe-w
u

sw
-po-as-gc

m
i-so-w

u-li

ga-li-ar-na

de-w
u-li-so

vo-pe-gc-m
e

ap-bw
-de-po

fluidanim
ate

bodytrack

sw
aptions

x264
facesim

blackscholes

ferret

%
 M

a
x
 T

e
m

p
e
ra

tu
re

 E
rr

o
r

(a) Max Temperature Error

 0

 0.5

 1

 1.5

 2

 2.5

 3

cr-na-po-tw

m
c-ar-so-pe

le-gc-pe-w
u

sw
-po-as-gc

m
i-so-w

u-li

ga-li-ar-na

de-w
u-li-so

vo-pe-gc-m
e

ap-bw
-de-po

fluidanim
ate

bodytrack

sw
aptions

x264
facesim

blackscholes

ferret

%
 R

M
S

 E
rr

o
r

(b) RMS Error

Figure 13: Percentage of maximum temperature error in ◦C
range (a), and the RMS error (b).

We evaluate the accuracy of temperature estimation by
two metrics; Maximum temperature, and RMS error. The
average temperature error across the chip for all the con-
figurations falls under 1% compared to the full simulation.
However, the temperature of the hottest blocks are critical to



performance and reliability. Figure 13a shows the error in es-
timation of maximum temperature. The sampling results in
accurate maximum temperature for both multiprogram and
multithreaded applications. The absolute value of the error
is within 4◦C.

RMSE =

2

√

n

∑
i=1

Areai×[
m

∑
j=1

(TempFulli, j−TempSmpli, j)2 ]

m×totArea

Tempmax −Tempmin

(2)

In addition to average results, we also report the RMS
error for temperature traces. RMS error quantifies how ac-
curately the sampled temperature trace follows the trace of
the full simulation. Equation 2 formulates how we compute
RMS error. We match point to point and compute the error
for each block during the execution, and scale the error by
area of each block. Functional blocks are indexed from 1
to n, and the temperature samples from 1 to m. The result
is normalized by the dynamic range of temperature in each
application (Tempmax −Tempmin). Figure 13b shows the re-
sults. For example, the figure indicates that the temperature
trace of the sampled simulation for bodytrack follows the
full simulation trace with 2.64% error through the execution.
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Figure 14: Temperature and power traces for some selected
applications.

To gain a visual understanding of the temperature and
power traces, Figure 14 shows the temperature and power
traces for 6 applications during 1 second of execution. Fig-
ure 14a shows the temperature trace for two PARSEC bench-
marks, blackscholes and f luidanimate along with multipro-
gram execution of swim, povray, astar and gcc. Temper-
ature traces are captured from around the center of the die

(happen to be a ROB block). Figure 14b shows traces for the
total power for these applications .

5.3. Simulation Speed

The simulation infrastructure in our experiments is com-
posed of 4 stages summarized in Table 9. QEMU user mode
executes multithreaded applications with many threads, but
it serializes the execution with a central spinlock. While this
limits the speedup, native or distributed emulation could help
the scalability of the simulation. Nevertheless, this is orthog-
onal to the sampling, and is not the focus of this paper.

The dynamic streams of instructions for threads are
passed onto a multithreaded sampling stage. The instruction
stream is cracked into micro operations for the timing model
in parallel for each thread. Also the memory warmup is per-
formed in a multithreaded way. Those instructions selected
for detailed timing simulation are passed to a cycle-accurate
timing model. The timing model for the whole system is
performed within a single thread. The sampling is basically
intended to decrease the load on this stage. If the thermal
simulation is enabled, a single threaded thermal solver will
perform the computation to estimate the temperature across
the chip. The execution time of the thermal model depends
on the size of the chip, cooling and package specification, as
well as the granularity. Table 9 summarizes each stage and
its functionality.

Stage MultiThreaded Description

S1 No QEMU running ARM.

S2 Yes
Instruction Crack, Sampler,
Memory system Warmup.

S3 No Cycle-accurate Timing model
S4 No Thermal computation

Table 9: Different stages in the simulation infrastructure.

The average simulation speed for the configurations eval-
uated in this work is over 9 million simulated instructions
per second (MIPS) 4. The thermal simulation takes around
25% of the simulation time. Consequently, the speed with
thermal simulation reaches 6.5 MIPS on average. This is an
order of magnitude faster than full simulation, or even dis-
tributed timing simulation. The emulation itself on average
reaches the speed of 90 MIPS, while the timing simulation is
around 500 KIPS on average.

5.4. Parallelization and Future Work

A distributed emulation and timing simulation such as the
one performed in [18] or [7] could help scalability and in-
crease the simulation speed. Also faster thermal simulation,
for example GPGPU accelerated thermal computation, could
increase the simulation speed. Nonetheless, the speedup and
scalability provided by these methods is orthogonal to the
speedup provided by sampling.

4Experiments ran on AMD Opteron(tm) Processor 6172



Performing full timing simulation even in a parallel way
has limitations in speeding up the simulation. For example
the average simulation speed for Sniper [7] is around 1 MIPS
for an 8-core simulated configuration. This is much less than
the 9 MIPS speed achieved by ESESC. The benefit of those
techniques though is in their scalability.

To understand the scalability of available simulation
frameworks, we run different available state of the art sim-
ulators. Marss [20] and SESC [21] implement timing sim-
ulation in a single thread. Sniper [7] and SlackSim [8]
implement a multithreaded timing simulation. We deliber-
ately ignore the fact that these simulators model the core
with different levels of detail (For example, Sniper mod-
els the cores in higher level of abstraction, while Slack-
sim and ESESC model the core in more detail). We run
each simulator with a different number of simulated cores
on an AMD Opteron(tm) Processor 6172 (48 cores) with
128 GB memory. For those that we cannot run, we ap-
proximate the speed by scaling the reported speedup for the
simulator based on the SPEC results [1] published for the
host machine they have used for the experiments (MIPS =

reportedMIPS×
SPECRes(Opteron6172)
SPECRes(reportedHost)

).
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Figure 15: Simulation speed for different simulators.

Figure 15 shows the results comparing single threaded
without sampling simulators (Marss, SESC) and multi-
threaded simulators (Slacksim and Snipper), against ESESC.
Single threaded simulators and ESESC slightly decrease per-
formance as more cores are simulated. The reason is lower
cache locality and more messages in the memory hierar-
chy. Multithreaded simulators have nearly linear speedup
for highly scalable applications. As a result, even fast sim-
ulators like SESC become slower than multithreaded when
more than 3 cores are modeled.

ESESC is much faster because in the S1 stage QEMU JIT
allows emulation acceleration, reaching 100 MIPS in many
applications. The result is a over 9 MIPS simulation speed.
Extrapolating the trend for scalability of each thread indi-
cates that for configurations with less than 100-128 cores,
ESESC, provides faster simulation. Note that for the extrap-
olation, we assume that the number of cores on the host ma-
chine scales as well, i.e., a 64-core target system is being
simulated on a 64-core host machine.

This indicates that ESESC provides faster simulation
speed, up to high numbers of simulated cores even with a

single threaded timing simulation. Nevertheless, sampling
could be used with a multithreaded execution of the timing
simulation as well, potentially delivering even higher simu-
lation speed. We do not evaluate this idea in this paper, and
it is part of future work.

6. Conclusions

This work presents Time-Based Sampling (TBS) frame-
work to address challenges of sampled simulation of multi-
threaded applications. TBS reconstructs the progressed time
in a sampled simulation, and specifies the sampling parame-
ters over time instead of the instruction count. This ensures
the same amount of relative progress among threads, similar
to what would occur in a full simulation, which maintains the
overlap of the threads. Also it enables the comparison be-
tween different architectures running multithreaded bench-
marks using the execution time metric. Evaluations on a
range of multithreaded applications shows that TBS provides
an accurate estimation of the execution time while compar-
ing different processors with varying core count, architec-
ture, and heterogeneity. The average error across the config-
urations and applications is within 4.99% compared to full
simulation. In addition, TBS is the first to enable power and
temperature evaluation in a statistically sampled simulation
of multicore configurations. This is done by reconstruction
of power traces in addition to the progressed time. The eval-
uation shows an average error of 5.5% and 2.4% for power
and maximum temperature respectively. Our open source
simulator based on TBS, called ESESC, reaches to up to 9
MIPS of simulation speed.
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