
LiveSynth: Towards an Interactive Synthesis Flow
Rafael Trapani Possignolo, Jose Renau

Dept. of Computer Engineering
University of California, Santa Cruz

http://masc.soe.ucsc.edu

Micro
Architecture
Santa
Cruz

HDL

Elaboration

Synthesis

Placement

Functional
Match

Initial Synthesis Setup Phase Incremental

∆HDL

∆Elaboration

∆Synthesis

Placement

Netlist Diff

Netlist Stitch

spec0

impl0

spec0 impl0

FIBs

time

changes synthesis

(a) regular

(b) LiveSynth way
time

background flow

iteration (hours/days)

analyze

iteration
(seconds)

References:
[1] D. Chen and D. Singh, “Line-level incremental resynthesis techniques for fpgas,” in FPGA’11.
[2] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/

Background:
➔ Synthesis is tedious and time consuming, especially during the timing/power closure cycle.
➔ This contrasts with rapid development techniques popular in software engineering.
➔ We expect designers productivity to improve with an interactive synthesis environment.

Model:
➔ LiveSynth targets interactive synthesis with feedback within a few seconds.
➔ LiveSynth allows designers to trigger synthesis more frequently and incrementally.
➔ LiveSynth flow is divided into two phases:
 ➔ Interactive step: gives feedback in under a few seconds, with high accuracy
 ➔ Background step: high effort optimization, when the designer is not making changes

Incremental Flow:
➔ LiveSynth automatically defines regions of a few thousand gates that are used as incremental grains.
➔ Invariant cones [1] are regions whose functionality do not change during synthesis and are used by
LiveSynth.
➔ During the incremental step, only cones that were changed are re-synthesized.
➔ To avoid impact on QoR, if the critical path is hit, the neighbor regions are also synthesized.

Fig 1. LiveSynth shifts the digital design paradigm
to incremental changes, allowing for

more interations per day.

Fig 3. The initial synthesis is performed as usual,
and the incremental step is performed when

the designer changes the RTL.

Fig 4. Invariant cone boundaries are present over
digital designs and provide

good granularity for incremental synthesis.

A

B
C

Y

(a) Specification

A

B
C

Y

(b) Implementation

Setup:
➔ We implemented the incremental step of LiveSynth in Ruby.
➔ We used an in-house FPU verilog code as benchmark.
➔ 32 changes were added in randomly choosen locations, activated through define statements.
➔ LiveSynth was run on-top of a commercial flow and YOSYS [2], an open-source synthesis tool.

Fig 6. LiveSynth reduces runtime by ~96% compared to a commercial flow.

Conclusion:
➔ The incremental step of LiveSynth reduces synthesis time by about 95% for incremental changes.
➔ LiveSynth shifts the paradigm to small, incremental changes and more iterations per day.
➔ We advocate for an interactive synthesis flow as a way to boost design productivity.

Future Work:
➔ Incremental back-end to further improve on feedback accuracy.
➔ Improve synthesis to reduce QoR impact.
➔ Further reduce synthesis area to reduce synthesis time in the outliers.
➔ FPGA target with further improvement on backend.

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30

F
M

ax
 (
M

H
z)

design

full Commercial synthesis
LiveSynth

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

F
M

ax
 (
M

H
z)

design

full Yosys synthesis
LiveSynth

Fig 2. Mockup concept for LiveSynth.
As the designer updates the code,

new results are displayed.

Results:
➔ The incremental step of LiveSynth achieves ~95% faster synthesis than a full run (Figures 5 and 6).
➔ There was no significant difference in Fmax between LiveSynth and full synthesis (Figures 7 and 8).

Fig 7. LiveSynth is able to deliver the same QoR as the full synthesis, with minor fluctuations.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// simple register

module ref #(parameter size=1) (clk, reset, d, q, qb);
 input clk;
 input reset;
 input [size-1:0] d;
 output [size-1:0] q;
 output [size-1:0] qb;

 reg q;
 assign qb = ~q;

 alway @(posedge clk or posedge reset)
 begin
 if(reset) begin
 //async reset
 q <= 1'b0;
 end else begin
 q <= d;
 end
 end
endmodule

adder.v div.v fpu.v reg.v

Project info:Project info:

Fig 5. LiveSynth is built on top of third-party tools and is able to reduce runtime by ~94% compared to YOSYS.

Project name: FPU

Top module: fpu.v

Target: 32nm

Messages:

Errors:

Warnings:

Information:

0

2

5

Timing information:

Worst negative slack:

Total negative slack:

Neumber of failing endpoints:

-0.1 ns

-0.5 ns

5

Setup Hold

Power information:

Clock

Sequential

Combinational

0.50

1.37

2.65

0.00

0.95

1.87

0.50

2.26

4.52

Switch Leakage Total

[2016-08-14:30:04 EDT] -- Running pass 'diff'
[2016-08-14:30:08 EDT] -- Running pass 'synth'
[2016-08-14:30:30 EDT] -- Running pass 'stitch'
[2016-08-14:30:32 EDT] -- Done

Acknowledgments:
This work was supported in part by the National Science Foundation under grants CNS-1059442-003,
CNS-1318943-001, CCF-1337278, and CCF-1514284. Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not necessarily reflect the views of the NSF.

Micro
Architecture
Santa
Cruz

