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ABSTRACT

To reduce the energy consumption of modern processors,
designers have proposed many energy-saving techniques.
In many cases, these techniques are dynamically activated
and deactivated. In systems that employ these techniques,
to adapt to changes in application behavior, profiling can
help determine how to manage the activation of techniques
to improve a certain metric.

In this paper, we propose to use a global approach to such
profiling. The idea is to profile the application on a section-
by-section basis but to make the decisions in a global man-
ner, competitively comparing the different sections. Under
such conditions, the system can be more effective. For ex-
ample, we can target for reduced energy consumption in an
application without slowing it down. The results show that
such an approach can reduce the energy consumption of 7
applications by 12% with negligible slowdown.

1 Introduction

In recent years, computer architecture has shifted from a
performance vs. cost design to a more challenging perfor-
mance vs. cost vs. energy design. Energy consumption has
become a major concern for the designers of modern proces-
sors due to many reasons, including increased importance
of mobile computing, high cost associated with heat dissi-
pation systems and to a lesser extent, increasing demand for
electricity.

The increasingly high speed of modern processors is an
important factor in growing power consumption. Various
techniques have been proposed to trade off performance for
energy savings [8, 12, 16, 18, 20, 26]. These techniques
have been applied in previous frameworks [9, 11, 13, 14, 21,
24, 28] to slowdown the processor mainly for three reasons:
the processor is faster than needed and thus wastes energy,
the system needs to save battery energy, or the temperature

�

This work was supported in part by the National Science Foundation
under grants CCR-9970488, EIA-0081307, and EIA-0072102; by DARPA
under grant F30602-01-C-0078; and by gifts from IBM and Intel.

is too high. In all the situations, the basic idea is the same:
reduce power consumption at the expense of processor per-
formance. If the system does not have enough slack in ex-
ecution time, these frameworks will not produce much en-
ergy savings without sacrificing performance. In this paper
we go one step further, trying to achieve significant energy
savings with negligible slowdown. To do this, we perform
off-line profiling to obtain a global view of the impact of
low power techniques on different code sections. Based on
this information, we activate techniques in a smart manner
to maximize total energy savings per unit slowdown. More-
over, though we still use techniques that on average slow
down the execution, due to the non-uniformity of applica-
tion’s behavior, some of the techniques even speed up code
sections. Therefore, it is possible to achieve zero or negligi-
ble net slowdown.

In our simulation environment, we show that this global
optimization allows us to reduce the energy consumption of
a set of diverse applications by an average of 12% and as
much as 16% with negligible slowdown.

The rest of the paper is organized as follows: Section 2
motivates the problem considered; Section 3 describes the
profiling algorithm and parameters; Section 4 discusses the
evaluation environment; Section 5 evaluates the proposed
solutions; Section 6 presents the related work, and we con-
clude in Section 7.

2 Motivation

2.1 Opportunity

It is well known that, as applications execute, they regu-
larly go through changes in high-level parameters such as
IPC (Instruction Per Cycle) or power consumption. How-
ever, we observe that they also exhibit another important
type of variability. The relative impact of an architectural
modification is not constant with time; instead, the result-
ing change in IPC or power consumption varies widely as
time proceeds. This observation allows us to activate an
architecture-modifying technique only during the most fa-
vorable periods, those that save that largest amount of en-
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Figure 1: Impact of applying low-power techniques on the energy consumption (a) and IPC (b) as a function of time.

ergy per unit slowdown for example, and deactivate it oth-
erwise.

To visualize this effect, we simulate a processor running
one application. The simulation environment and applica-
tion suite are described in Section 4. In the experiment,
we apply two low-power techniques seperately, adding an
instruction filter cache [18], or disabling ALUs by clock-
gating. Figures 1-(a) and (b) show the relative energy con-
sumption and the relative IPC variation, respectively, as the
execution proceeds. In both figures, 0% corresponds to the
base system, with none of the techniques activated. Positive
numbers reflect energy reduction and better performance.

We can see from the figures that the relative impact of
these techniques varies across time. These are, therefore,
non-uniform techniques. To emphasize this effect, the fig-
ure also shows the impact of voltage scaling1, a technique
whose behavior is qualitatively different. In this case, the
relative changes in energy consumption and in IPC remain
constant across time.

Our goal in the rest of this paper is to try to exploit this
variability of low-power techniques within and across appli-
cations. Our system dynamically adapts by activating and
deactivating a set of techniques to save energy. Since our
focus is on high-performance systems, we strive to reduce
energy consumption without incurring much slowdown.

2.2 Decision Mechanism

In order to exploit the above mentioned opportunity, we
need to identify the points in the code where it is advisable
to adapt the system. The goal is to divide the program exe-
cution into different sections, so that each section has rela-
tively uniform reaction to system adaptation. Also, the gran-

1For simplicity, we assume the voltage of the whole system is scaled,
not just the processor.

ularity of such sections has to be relatively coarse so that the
transient state and/or any adaptation overhead becomes very
small.

Many dynamic systems[3, 4, 7] constantly monitor the
program and predict that the behavior in the near future is
similar to the current one. This usually involves an observa-
tion interval of a fixed duration. In [25], it is shown that pro-
grams generally demonstrate periodic behavior, but the pe-
riod is application-specific. Furthermore, depending on the
length of the interval, programs go through different code in
neighboring intervals and show different architectural met-
rics (e.g. IPC, cache miss rate etc.). Indeed, for short inter-
vals, we observe a high variance in IPC among neighboring
intervals in the benchmarks studied. Naturally, the optimal
duration for the interval depends on the application.

A good unit of behavior repetition is the function. When
the same function is executed again, its behavior is unlikely
to change much. Arguably, IPC is a good indicator of high
level program behavior. In the following test, we analyze
the IPC variation of one program during its execution. In
the case of fixed interval, we measure the standard deviation
of IPC for every interval. In the case of the function, we
measure the standard deviation of IPC for all invocations of
the same function. Figure 2 shows that, we can predict the
behavior of a future function invocation much better than we
can predict the future behavior in an interval.

We see that the effectiveness of micro-architecture mod-
ifications varies during the program execution, and that we
can use functions as a unit to manage techniques. In this
paper, we get most out of the low-power techniques without
paying a big average performance penalty.
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Figure 2: IPC standard deviation for different sampling
methods.

3 Profiling Approach

We use profiling to determine when to activate and deac-
tivate low power techniques. In this section, we describe
important profiling parameters, including the statistics col-
lected, the sampling interval, and the algorithms used to pro-
cess the statistics.

3.1 Profiling parameters

3.1.1 Statistics collected

We need to understand the energy and performance impact
of applying a technique on a section of code. Therefore,
profiling should collect performance and energy statistics.
Specifically, we measure cycle count and total amount of
energy consumed.

The energy statistics could be obtained by reading from
an energy meter, or by approximating from processor ac-
tivity statistics [17]. As an example of this approximation,
cache energy expenditure could be estimated by multiplying
the number of accesses by the average energy per access. In
this paper, for simplicity, we assume we can read the energy
numbers from a meter. In Section 5.2 we also show that in
the case energy statistics are not available, using only per-
formance counters is also a viable alternative.

3.1.2 Sampling Interval

An important profiling parameter is the grain size of sam-
pling interval. Since we need instructions to activate tech-
niques at the beginning of each sampling interval, a very
fine-grain profiling incurs a lot of overhead. On the other
hand, if the grain size is too large, it will shield the phase-
changes inside.

To produce a good sampling interval we break down the
code into modules. A module is a piece of code that is small
enough so that its reaction to low-power techniques is quite
uniform, and also large enough so that the overhead of tech-
niques activation is negligible.

We start the instrumentation process with the most fre-
quently executed functions. We instrument at the entrance
and exit of the function. Since a small portion of static code
often represents most dynamic execution time, we only need
to instrument a few functions.

We do not instrument inside functions that have very short
execution time per invocation to avoid too much overhead.
Instead, we either consider them as part of the caller func-
tion or do transformations to reduce overhead of the instru-
mentation. For instance, we put a wrapper around recursive
functions and only instrument in the wrapper function. For
a tight loop invoking a short function, we only instrument
around the loop body.

Whether or not to instrument functions that have medium
execution time per invocation is a trade-off. The more we
instrument, the better we could adapt, but this also leads to
more overhead. In most of our experiments we choose not
to instrument them. In Section 5.1.2 we also evaluate this
trade-off quantitatively.

For large functions, overhead of the instrumentation is
negligible. However, it may not have a uniform behavior,
we can break them down into smaller modules. In Sec-
tion 5.1.2 we show the result of trying to exploit behavior
changes insides functions.

For the profiling runs, the instrumented code will read
the statistics counters. We will use these statistics to decide
what techniques to apply for each module, and instrument
code into the final binary accordingly.

For many applications, the final instrumented modules are
functions. For generality, we still call them modules.

3.1.3 Profiling types

In order to find the effect of each technique, we need to pro-
file the application several times, since we do not use statisti-
cal profiling. In addition to the original profiling run without
low power techniques, we need one run for each technique.
This requires �

���
runs for each application, where � is

the number of low-power techniques. Here, we assume no
interference among techniques. This implies that the perfor-
mance penalties and energy savings for different techniques
are additive when the techniques are applied together. We
call this type of profiling, Independent profiling.

Profiling only with individual techniques could be inac-
curate if two techniques do interfere with each other. So,
in another extreme, we could do what we call Cumulative
profiling, where we run once for each possible combination
of the techniques. This exponentially raises the number of
profiling runs. In reality, chips will very unlikely include
many techniques that target the same area for energy re-
duction, and techniques that target different components are
largely independent of each other. Thus, the number of pro-
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file runs can be reduced, by profiling in combination only
those techniques that do target the same components. We
refer to this kind of profiling as Semi-Independent Profiling
(Semi-Indep).

3.2 Selection Algorithms

Once we have collected all the profiling information, we can
use this information to decide which techniques to apply
for every module. The algorithm for selecting techniques
is straightforward. We use a metric called efficiency score
to characterize the impact of every technique on every mod-
ule. The score is calculated using Equation 1, and is a met-
ric showing the efficiency for trading off performance for
energy reduction, hence the name.

���������
	 ��� ����� � if ������� ;Wastes energy���
if �������
& ����� � ;Improves energy and perf.!#"!#$ Otherwise ;Trades perf. for energy

(1)

In this equation, %'& and %'( are the slowdown and the
energy reduction respectively. Specifically, let & and ( be
the total delay and energy consumption of a module in the
unaltered application run, and &*) , (+) be that of the module
running when technique , is activated. Then %'&.-/&0)213&
and %'(�-/(415(�) . This way, in the common cases, we will
be dealing with positive numbers.

We keep one entry containing %'& , %'( and the efficiency
score for each pair of module and technique in a table. Since
our goal is to maximize energy savings while minimizing
slowdown, we sort the table by decreasing efficiency score.
Once we have the table sorted, it can be used in different
ways. To achieve our goal of saving energy without slow-
ing down, we traverse the table top-down, scheduling all the
technique/module pairs at the top of the table while keeping
the sum of %'& less than but as close as possible to zero.

When some slowdown is tolerable, we simply select more
entries keeping the the sum of %'& close to but less than this
slowdown. We can also embed this information with the bi-
nary, and delay the selection till runtime when the tolerable
slowdown is available.

In the case of performance-only profiling, where we do
not have energy counters, we use equation 2 to calculate the
score and the rest of the algorithm remains the same.

6�7�8�9;: -=< �?> if %@&BADCEF E Otherwise
(2)

By using the reciprocal of relative slowdown as score we
favor the cases where the technique has little negative per-
formance impact on the module. This approximation does

not give optimal scheduling of technique onto modules, for,
by ignoring energy, it is possible to activate one technique
with small slowdown, but with little or even negative energy
savings. However, energy reduction has a strong correla-
tion with slowdown. For example, for techniques similar
to cache filtering, large relative slowdown suggests higher
miss rates, which further suggests more energy consump-
tion. Also, processor has some per cycle energy overhead
such as clocking, more slowdown directly cuts into energy
savings. In Section 5.2 we show that the results of using en-
ergy/performance and performance-only profile information
are very close.

4 Experimental Setup

4.1 Baseline architecture

In our simulation, the baseline architecture is an out-of-
order processor with two levels of caches. The architecture
loosely models an IBM Power3 chip scaled to 6-issue. Ta-
ble 1 lists the parameters used in the simulation. While the
latency numbers in the table correspond to an unloaded ma-
chine, we model contention in the whole system in great de-
tail. For the processor chip, we assume 0.18 G m technology
operating at 1.67V.

4.2 Energy

We simulate the performance of the system using a mint-
based execution driven simulator [19] that models an out-
of-order processor with its memory subsystem in great de-
tail. We port Wattch [6] to model the energy of such system.
Wattch has different clock gating strategies. In all the sim-
ulations, for each functional unit, we charge a fixed amount
of energy when the unit is idle. This amount is, about 10%
of the energy for a typical operation performed in that unit.
We enhance Wattch in the following way:H Wattch uses a modified version of cacti [27] for cache-

like structures. We developed our own extended
CACTI called XCACTI. For caches of the same size,
our new model produces approximately the same la-
tency estimation as CACTI, but it gives considerably
lower energy consumption results. The energy con-
sumption is smaller mainly because we replace the
Wada sense amplifier model with a more energy effi-
cient latched sense amplifier. We also extended CACTI
to model writes and reads differently. A write has a full
bitline swing, while bitline swing for reads is around
15%. We calculate different energy numbers for reads,
writes, line-fills, write-backs, and cache misses. It can
be configured to search for configurations with the low-
est delay, energy or energy-delay product. The search
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Processor Caches Bus & Memory

Freq: 1 GHz Branch units: 1 L1 size: 32 KB FSB freq: 333MHz
Issue width: 6 Branch penalty: 8 cycles L1 OC,RT: 1,3 ns FSB width: 128 bits
Dynamic issue: yes Return stack: 32 L1 assoc: 2way-LRU DRAM: 2-channel Rambus
I-window size: 96 BTB entries: 2K L1 line: 32 B DRAM bandwidth: 3.2GB/s
Ld/St units: 2 BTB assoc: 4 L2 size: 512 KB Mem RT: 108 ns
Int,FP units: 5,4 Predictor: GAp(10,8) L2 OC,RT: 4,12 ns
Pending Ld,St: 16,16 L2 assoc: 8way-Pseudo LRU

L2 line: 64 B
I-Cache: 32KB 2-way

Table 1: Baseline configuration. OC, RT and FSB stand for occupancy, round trip latency from the processor, and front side bus
respectively.

can be optimized based on several timing constraints,
the expected ratio of loads and stores, and the cache
miss rate.H We developed a low level model of the DLX proces-
sor and derived energy consumption for different types
of integer operation based on our spice simulation of
the DLX model. We extrapolate the energy number
for floating point units based on Wattch and other re-
search [22].H Wattch assumes a physical register file incorporated
into the instruction window. This model eliminates the
chance for running out of renaming register at the ex-
pense of using a larger, therefore more power hungry
device. We follow the common approach of current
microprocessors, and use a smaller stand alone register
file and halt the decoding stage if we run out of renam-
ing registers. This has nearly negligible performance
impact for our benchmarks.H We add DRAM energy consumption. The energy num-
bers are based on Intel’s white paper [15]. We assume
1.2W for one memory channel operating at full band-
width, including the overhead in memory controller.

Figure 3 shows the energy consumption breakdown for
different components. The breakdown ratios are in line with
numbers published by other researchers [6]. As expected,
power expenditure is spread out. It is difficult for a single
technique to reduce the energy consumption considerably.
Thus, the processor should incorporate multiple low-power
techniques that target different parts of the system.

4.3 Low-power techniques

In our framework we use several existing low-power tech-
niques. We choose techniques that target major source of
energy consumption in the processor. Since we target high
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Figure 3: Energy consumption breakdown. Memory is
the energy consumed by DRAM. Global clock is the clock
distribution energy consumption. OOO Logic is the re-
maining parts of the processor: instruction window, regis-
ter file, branch predictor, result bus, register alias table, and
load/store queue.

performance, these techniques require little or no modifica-
tion to the critical path of the processor. Notice that we do
not employ voltage scaling since the activation overhead is
too high to be practical for fine-grain adaption.

The system is not limited to these techniques. The fol-
lowing sub-sections give a highlight of the techniques.

4.3.1 Instruction Filtering

We use a small filter cache [18] in the instruction memory
hierarchy. The filter cache requires much less energy per
access not only because it is smaller and direct-mapped, but
also because it is virtually tagged, eliminating the need for
a TLB check. Traditionally, the filter cache is activated all
the time, trading energy for performance on average. We
dynamically activate/deactivate it instead. When it is deacti-
vated, instruction fetch goes directly to the instruction cache
without checking the filter cache. We do not maintain inclu-
sion for the filter cache and the L1 instruction cache. We
only need to invalidate the filter cache when it is disabled,
and the code is modified. This only happens when there is
a context switch, or when the application self-modifies the
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code.

The proposed filter cache is small, fast and energy effi-
cient. It is very effective for code sections with a small foot-
print, but ineffective in sections with poor instruction local-
ity. Code sections with a big footprint may even spend more
energy and slow down. After balancing speed, energy con-
sumption and chip-area, we chose a 1KB filter cache. Read
access of the filter cache costs 386 compared to 2022pJ to
access the I-Cache.

4.3.2 Stack Filtering

A small specialized stack cache reduces energy consump-
tion without affecting the performance much [12]. Nev-
ertheless, some code parts have worse energy and perfor-
mance than using a normal L1 alone. In those cases we
can shut down the stack cache by redirecting all the stack
accesses to the L1 cache. Thus, to maintain coherence, in-
stead of accessing L2 [12] on a stack cache miss, we access
L1. Shutting down the stack cache has the overhead of writ-
ing back dirty lines, and invalidating the whole stack cache.
We use a 1KB cache that can be accessed in 1 cycle as stack
filter cache. Compared to 1763pJ for normal L1 accesses, a
stack filter cache hit only consumes 209.

4.3.3 Phased Cache

A phased cache [10] is a set-associative cache where an ac-
cess first activates all the tag arrays. If there is a match, only
the correct data bank is subsequently activated, reducing the
amount of bitline activity and sense amplification in the data
array. Consequently, the phased cache saves energy at the
cost of extra delay. Our processor has an L1 data cache with
two modes of operation. In the normal mode emphasizing
performance, it behaves like an ordinary cache, activating
data and tag in parallel. In the low-power mode, it turns into
a phased cache, activating the tags before activating the data
bank. When changing to phased cache mode, we buffer the
signals to the data bank for two cycles, therefore serializing
the access. When restoring to normal mode, we block the
cache for two cycles to drain the pipeline and stop buffering
data bank signals. Reading the L1 cache in the phased cache
mode, consumes 974pJ, 45% less than in the normal mode.

4.3.4 Reduced ALU

Wide issue processors tend to have many functional units to
reduce structural hazard. This comes at the price of more en-
ergy spending. Seldom are all these functional units needed,
and even if they are, they are not needed all the time. We di-
vide the functional units in two clusters: master and slave.
Each of the cluster consists of two floating point units, two
integer units and and one load store unit. The master cluster
also has a branch unit. When we reduce the number of avail-
able functional units, we clock-gate the entire slave clus-

ter. This saves the clock distribution power, and part of the
instruction issue logic power inside the slave cluster. No-
tice that although this technique can be implemented to re-
duce leakage as well, we do not address the issue in this pa-
per. Therefore, the energy savings only come from dynamic
power reduction. For multi-cycle pipelined functional unit
we assume the clock-gating starts after a fixed amount of
delay to allow draining of the pipeline. We assume clock
distribution power to be around 15% of the average power
consumption of the functional units. The actual energy sav-
ings per cycle depend on the execution speed and so on. In
our simulation, it ranges from 15% increase in the energy
consumption in the worst case, to about 9% savings of the
average power consumption.

4.4 Applications

Our simulations are based on seven benchmarks represent-
ing a mix of multimedia, SPECint, and SPECfp bench-
marks. We compile them with the IRIX MIPSPro compiler
version 7.3 with -O2 optimization. Applications are sim-
ulated from beginning to end, which lasts from hundreds
of millions of cycles to a billion cycles. For SPECint and
SPECfp benchmarks, we reduce the input dataset. In all the
cases, we verify that with the reduced data set the simulated
applications produce about the same cache and TLB miss
rates as the native execution with the reference data set in an
R12K processor. The relative weight of each function does
not change much either.

CRAFTY (186.crafty), BZIP (256.bzip2), and MCF
(181.mcf) are from SPECInt 2000. HYDRO (104.hydro),
and APSI (141.apsi) are from SPECfp 95. Profiling is per-
formed with the official train input set.

MP3D is an MP3 decoder. We use mpg123 version 0.59r,
which is one of the fastest available UNIX GPL MP3 de-
coders. We reproduce a high quality hifi sample. Profile
training is done with a CD quality mp3 file.

MP3E is an MP3 encoder. We use lame3.85, which is fast
and widely used in the MP3 community. We encode music
with CD quality. We profile using a small voice file.

5 Evaluation

In our simulation, we model the performance and energy
overhead for technique activation and deactivation in de-
tail. Specifically, we model the flushing of the stack filter
cache, the two-cycle bubble when deactivating the phased
cache mode, and the delayed clock gating when disabling
the slave cluster. We do not model the overhead for the in-
structions that actually activate or deactivate the techniques.
We assume a single instruction writing a mask to a control
register, our results show that, this represents less than 0.1%
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of the total simulated instructions.

5.1 Energy/performance profiling

We start our evaluation by profiling in an somewhat idealis-
tic situation. We assume that energy and performance data
is available, the same input set is used for profiling and ac-
tual execution, and we perform Cumulative profiling. In the
following sections, we compare the result of relaxing these
restrictions. Unless otherwise stated, the target is to reduce
energy consumption and maintain the original performance.
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Figure 4: Energy-performance trade-off curve for applica-
tions.

Figure 4 helps to understand the trade-off between the
energy reduction and the induced slowdown for our pro-
file based approach. For each application, given a desired
slowdown (or speedup), we can find the best projected en-
ergy saving from the corresponding curve for the applica-
tion. We should notice two things from the curves. First, the
slope differs dramatically from one end of the curve to the
other, suggesting the great difference of efficiency: while we
can save much energy with little slowdown at the beginning
of the curve, we can only save a little energy and pay with
much larger performance penalty towards the middle of the
curve. In fact, the curve even bend down at the end, where
the techniques start to waste energy. This suggest that we
arrange carefully where and which techniques to activate.
Our second observation from Figure 4 is that when compar-
ing two schemes, looking only at the difference in energy
reduction is not enough, special attention should be paid to
the delay incurred, since the scheme with lower slowdown
leaves more room for trading off more performance to save
energy.

Throughout the rest of the section we use one set of bars
per application, and an additional set labeled Avg for the av-
erage of all seven applications. In order to have a fair com-
parison, in calculating all the average slowdown, we con-

sider any speed up for one application as zero slowdown.

5.1.1 Comparing profiling based approach with
other approaches

Figure 5 shows the energy reduction and performance degra-
dation when we apply different techniques. The four bars on
the right in each group represent the effect of the four tech-
niques applied individually and statically throughout the ap-
plication run. The leftmost bar shows the result of the appli-
cation with compiler inserted directives for technique activa-
tion based on profiling information. The bars in Figure 5-(b)
for profiling based scheme are very small. The algorithm for
obtaining these directives is described in Section 3.2.

As we can see, none of the techniques consistently speeds
up applications while saving energy. Indeed, if such tech-
nique were found, it would be incorporated into the base-
line architecture. The best technique, one that for unit slow-
down saves the most energy, varies from application to ap-
plication. The average effect of these techniques is to save
some energy while slowing down a bit. However, by apply-
ing multiple techniques and using profile-based feedback,
we can achieve significant energy savings without slowing
down the applications.

We now compare Profiling with Static and DEETM* , two
different approaches trying to exploit the behavior changes
among different applications or within one application.

In the first approach, static , we do not activate techniques
dynamically. Instead, for each application, we select a set
of techniques that, if applied all the time throughout the ap-
plication execution, save the most energy without incurring
noticeable slowdown.

The second approach, DEETM*, is an improved
DEETM [11] framework. In the DEETM framework, differ-
ent techniques are calibrated off-line and ranked according
to their average effectiveness across a set of benchmarks. At
run-time, the framework ensures the chip-temperature does
not go beyond a set limit for an extended period of time,
meanwhile exploits any performance slack to save energy.
This behavior is controlled by a thermal and a slack algo-
rithm executed at fixed intervals. Here we use a scheme
similar to the slack algorithm. In [11], the order of the tech-
niques is determined by averaging results of several appli-
cations. In our improved version, we assume the system
knows a priori the effect of each individual technique and
uses the best technique order for each application. Many
times, a technique that works well on one application does
not work well for another. For instance, instruction filter
cache tends to work well for MCF, speeding it up and saving
energy. But its effect is detrimental for CRAFTY, where it
slows down the application significantly and wastes energy.
Therefore, the framework will try to activate the instruction
filter cache first when running MCF, while not activating it
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Figure 5: Effect of individual techniques and profiling based approach. (a) shows the energy reduction, and (b) shows the
slowdown.
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Figure 6: Comparing profiling based approach with static optimization and DEETM*.

at all for CRAFTY. The DEETM framework requires a pos-
itive slack to save energy. In this simulation, the slack used
is a small 0.5%.

In Figure 6, the leftmost bar of each group is the same
as in Figure 5. The bar in the middle of the group shows
the static approach, and finally, the rightmost bar gives the
result of DEETM*.

A closer inspection of Figure 5 and 6 shows that the ap-
plications fall into three groups:H Little phase-change within application:

Naturally, if different parts of the application reacts
similarly to low-power techniques, or those parts that
react very differently do not have enough weight of ex-
ecution time, then we can not exploit intra-application
phase change. Therefore, doing profiling at module
level will not be much different from doing profiling
at the granularity of the whole application (the static

approach).

CRAFTY and HYDRO belong to this group though
each of them favors a different technique. For these two
applications, the static approach gives results very sim-
ilar to that of the profiling based approach. Recall that
when comparing the energy reduction in part (a) of the
figures, we also have to take into account the slowdown
shown in part (b), since it is usually possible to slow
down even more for more energy savings(Figure 4).H Moderate phase-change within application:
Some applications have more noticeable behavior
changes, thus the profiling based approach works mod-
erately better, saving more energy after factoring in the
slowdown, than the possible static combination. APSI
and MCF fall into this category.H Significant phase-change within application:
This final category is the best for the module-level pro-
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Figure 7: Parameters for profiling.

filing. These applications consist of sections of code
that react very differently to techniques, so it pays off
to profile them and apply each technique only at the
suitable modules. BZIP and the two media benchmarks
MP3D and MP3E belong to this category, and indeed
the profiling based approach significantly outperforms
any individual or static combination of techniques.

Finally, the improved DEETM framework nearly always
produces a slower and less energy efficient solution than the
profile-based approach. The reason is three-fold: first of all,
instead of triggered when a different module is executed,
the hardware re-tests the system at regular time intervals.
This leads to random testing and is thus difficult to capture
phase-changes well. Secondly, assuming a fixed order of
techniques throughout the application leads to less efficient
trade-off in some sections of the code. Finally, when testing
slowdown of one technique, the hardware tests IPC at two
time points before and after applying the technique, without
knowing which part of the code is being executed at these
points, this leads to misprediction of the slowdown which
may lead to over-reacting (slowing down too much, us-
ing relatively inefficient techniques) or under-reacting (not
slowing down enough, wasting the chance to save energy)
in others.

To be fair, we need to note that DEETM is not designed
with near-zero slack in mind. In a system with large slack,
these drawbacks are less significant.

5.1.2 Profiling parameters

Section 5.1.1 analyzes Cumulative profiling. In Figure 7,
we also show the result of Independent and Semi-Indep pro-
filing. In our system, both stack filtering cache and phased
cache try to reduce the energy consumed in L1 data cache.
To quantify the overlap, Semi-Indep profiling performs an

additional profile run with these two techniques activated
simultaneously.

As we can see, by testing all possible combinations, Cu-
mulative knows the interaction of techniques, and this gen-
erally leads to less misprediction then estimating based on
statistics from each individual techniques, but this approach
is really not necessary since it produces results that are very
close to the other two styles which require much less profil-
ing runs.

We can also see that in our case, just by performing one
additional profile run, Semi-Indep’s results are nearly iden-
tical with those of Cumulative and slightly better than those
of Independent. In the case of MP3D, Semi-Indep’s en-
ergy savings are noticeably better than those of Independent.
Therefore, we recommend Semi-Indep type of profiling.

Another factor that is unrealistic in Section 5.1.1 is that
we are using the same input file for the profiling runs. Now,
we relax this constraint by running the profiling runs with
a different training input file. In Figure 7, we label this ex-
periment as Diff Training. In this experiment we only use
Semi-Indep profiling. The figures show that the difference
in the input files affects the results very little. This may
seem strange, but in fact, it is quite logical because we use
efficiency score to rank module/technique pair, though the
absolute number of energy and performance might change
significantly with different input set, this score is more sta-
ble, because it represents a characteristic of impact the tech-
nique has on the module. Also, we select a set of mod-
ule/technique pairs to activate, the change in efficiency score
may change some relative orders but as long as it doesn’t
change the content of the set much, the result will not change
much either.

Finally, until now, the sampling interval selected is at
function level without instrumenting medium sized func-
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tions or breaking large functions into smaller modules. In
Figure 8, we compare the effect of different sampling inter-
vals in a limited fashion.
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Figure 8: Effect of different grain size for profiling.

We carry out two experiments using two different applica-
tions. In the first experiment, we reduce the sampling gran-
ularity by instrumenting more functions in APSI. These are
many medium-sized functions. Before instrumenting them,
their behavior is blended with the caller’s. By being more
fine-grain, we are able to capture more behavior changes
and save more energy. Specifically, we improve energy sav-
ings slightly. However, the extra instrumentation introduce
much more overhead. In particular, the average switching
frequency increases from once every 22,234 cycles to once
every 606 cycles. There is, therefore, a trade-off of the ben-
efit and the price for being more fine-grain.

In a second experiment, we reach finer granularity by
breaking some functions into smaller modules in applica-
tion MP3E. As shown in Figure 8, taking into account the
larger slowdown for the coarse-grain scheme, the two pro-
duce very similar results.

These two experiments suggest that in many cases, func-
tion is a pretty natural entity that shows uniform reaction
to low-power techniques. Obviously, programming style
for a particular application also determines whether this is
true or not. Considering the effort in determining where to
instrument the code, and runtime overhead for this instru-
mentation, we believe, focusing on functions is more cost-
effective.

5.2 Performance-only profiling

If a chip is not equipped with energy statistics registers, we
are forced to use only performance statistics as feedback. As
described in Section 3.2 we use only slowdown to calculate
efficiency score for ranking the techniques. The results are
shown in Figure 9.

As discussed in Section 3.2, by ignoring energy, it is pos-
sible to activate a technique with a small slowdown that
has little or even negative energy savings resulting in non-
optimal energy reduction per unit delay. In reality, our data
shows that this does happen, but very infrequently, and the
quantitative difference of the two approaches is not signifi-
cant.

In general, the information about energy consumption
helps to better shield the noise of using different input files
and normal fluctuations. With the energy statistics, we know
the behavior better, and can produce better scheduling, but
the results based on performance-only profiling are suffi-
ciently satisfying for practical purposes.

6 Related work

The main related work are the dynamically adaptable sys-
tems. Among the many works, Albonesi introduced an in-
teresting concept of CAP [1], Complexity Adaptive Proces-
sors. A CAP is a processor that adapts the resources to the
application.

While [1] is only performance oriented, the concept can
be naturally extended to incorporate energy issues. Other
CAP works [2, 4] propose different heuristics to decide
when to activate or deactivate a single technique. These
heuristics are closely related to the specific technique dis-
cussed, and therefore can not be applied in a general manner
in a system with multiple unrelated techniques. An interest-
ing difference between our findings is that in [4], after com-
paring sampling at subroutine level and at fixed periodic in-
tervals, the latter is selected because it is simpler and better.
In contrast, we sample at subroutine level for two reasons.
First, we want to capture behavior change. This is an in-
herent property of the code thus the system should consider
the code. Second, using subroutines, a global view of the
program is obtained. This facilitates us to slow down one
part of the code more than another and obtain more energy
reduction than if we choose to slow down the application
uniformly.

In [21], applications are tested with different configura-
tions to determine the best one for each basic block and this
selection is encoded in an extended instruction set to adapt
the system at runtime. The extension is required to avoid
the otherwise significant overhead of such fine-grain adap-
tation. Our work shows that by adapting at subroutine level,
a much coarser grain size, we eliminate the need for an in-
struction set redesign. Also different is that we maximize
energy savings per unit slowdown, a metric that has to be
optimized globally, while [21] optimizes locally. This is
because energy is used as the metric to optimize. Being an
additive metric, it can be optimized locally for each basic
block.
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Figure 9: Energy/Performance profiling vs. Performance only profiling.

Many schemes have been proposed to trade off, some-
times extra, performance for energy/power reduction for
curbing temperature surge, extending battery life, and so on
[5, 9, 20, 23, 24]. To this end, the following two works are
the most related.

In [13], a framework is designed to adapt system con-
figuration and frequency to lower the energy consumption
while still meeting the deadline of multimedia applications.
That work focuses on multimedia applications and adapts
at a coarser granularity. Our system targets broader range
of applications, and does not rely on any knowledge of the
application’s functionality. Our approach uses finer gran-
ularity to exploits the non-uniformity. Additionally, [13]
tries to eliminate performance slack, while we target iso-
performance.

The DEETM [11] framework also tries to maximize en-
ergy savings for a given tolerable slowdown. This hard-
ware based approach does not depend on profile, thus with-
out knowing the characteristics about applications, and the
changes inside them, DEETM optimizes for the common
case and produces less optimal energy savings for very small
slowdown. By using profile, we adapt the system better and
thus energy savings become more significant in our system.

7 Conclusions

Knowing that applications go through different phases, in
this paper we show that this phase-change also manifests
itself in terms of relative impact of system configuration
change. In particular, different sections of the code exhibit
very different reaction, in terms of relative slowdown and
energy reduction, after applying one of the common micro-
architectural low-power techniques. We show that this non-
uniformity of reaction can be easily exploited using profil-
ing to improve the efficiency of trading off performance for

energy reduction.

Our study shows that function level sampling, with some
simple transformations to further reduce the activation over-
head, is a very cost-effective approach to exploit phase-
changes. We find that with low profiling cost, semi-
independent profiling, produces results almost identical to
those of cumulative profiling, a more costly approach in a
system that employs multiple low-power techniques. Also,
as we focus only in the relative change of performance and
energy after applying a certain technique, the influence of
using different input file is very small. This renders profil-
ing very practical. Finally, even without energy counters,
we can still exploit the non-uniformity effectively.

Using profiling, enabled by a set of four different low-
power techniques, we manage to reduce on average 12% of
the energy consumption for a set of seven diverse applica-
tions with negligible slowdown. The result is significantly
better than an improved DEETM system that also tries to
maximize energy reduction for a given slowdown or a static
solution that employs the most efficient set of techniques per
application.
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