
LiveSynth: Towards an Interactive Synthesis Flow
Rafael Trapani Possignolo
Dept. of Computer Engineering

University of California Santa Cruz
rpossign@ucsc.edu

Jose Renau
Dept. of Computer Engineering

University of California Santa Cruz
renau@ucsc.edu

ABSTRACT
Currently, one of the major bottlenecks in digital design is synthe-
sis. Each iteration of a design takes several hours to synthesize,
putting pressure on designers to carefully consider when to sub-
mit jobs and wait for the delayed feedback. This delay is especially
important in FPGA emulation, when synthesis is performed fre-
quently while fixing the system functionality. This work proposes
LiveSynth, a different approach for digital design with relatively
quick feedback after small, incremental changes. Our approach de-
livers results with close-to-optimal quality–within a few seconds
of processing time in most cases. LiveSynth was able to improve
synthesis time by about 10x with minimal impact on QoR.

CCS CONCEPTS
• Hardware→ Methodologies for EDA; Logic synthesis;

KEYWORDS
Incremental Synthesis, Electronic Design Automation, Design Pro-
ductivity
ACM Reference format:
Rafael Trapani Possignolo and Jose Renau. 2017. LiveSynth: Towards an
Interactive Synthesis Flow. In Proceedings of DAC ’17, Austin, TX, USA, June
18 - 22, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3061639.3062275

1 INTRODUCTION
Synthesis is tedious and time consuming, especially during the
timing/power closure cycle. Designers wait several hours for rel-
atively small design changes to get synthesis results. We propose
a different workflow that allow the designer to trigger synthesis
results very frequently as the design is being modified. Most of
the time, providing accurate results takes seconds instead of hours.
This results in quick feedback to further optimize the design with-
out degrading quality. Our proposed flow is an incremental syn-
thesis flow on steroids.

Traditional synthesis flows contrast with the rapid development
techniques popular in software engineering [9]. While most soft-
ware engineers would consider hours of compilation unacceptable,
this is the de-facto expectation in synthesis. Even though the EDA
industry has been trying to address the problem of long synthesis
times [1, 12], the current standards are either not fast enough or
depend on manual interactions that often degrade design quality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DAC ’17, Austin, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4927-7/17/06. . . $$15.00
DOI: http://dx.doi.org/10.1145/3061639.3062275

We expect designers’ productivity to improve with an interac-
tive synthesis environment. Our vision is of a “live” flow, where
designers know right away how the change will affect Quality of
Results (QoR). The flow is divided into two parts: an interactive,
low-effort part, and a background high-effort part. The interactive
aspect gives “live” feedback (within a few seconds) with good accu-
racy but not necessarily fully optimized designs. The background
process has a slow turnaround time and optimizes the design while
the human works in the next set of changes.

This flow allows more iterations per day, helping reduce the
time for timing/power closure. Since iterations are fast, the de-
signer can make more changes, and thus it is easier to track the im-
pact of each change in the design. If the change did not positively
impact QoR, it is easy and cheap to undo the change and proceed
in another direction. In our vision, synthesis is triggered as the de-
signer types or saves the file (as long as it is possible to parse the de-
sign). This guarantees small enough increments while avoiding the
undesirable old habits of experienced designers.When there are no
pending incremental small jobs, a background high-effort synthe-
sis runs to improve the design quality. This background process
aims to remove imperfections inserted by the live flow, thereby
slowly improving the design implementation.

To support this development model, we propose LiveSynth, an
incremental synthesis framework that provides results in a few sec-
onds to half a minute. We target under 30 seconds because that is
the time that the short-term memory lasts in humans. LiveSynth
targets the front-end flow, and can be applied to ASICs and FPGAs.
Our focus in this work is FPGAs. Major FPGA vendors already sup-
port incremental [1, 13] place and route steps that could be lever-
aged by our flow. LiveSynth is independent of the baseline tool.

Triggering synthesis over the whole design is widely adopted
in industry and academia alike. Nevertheless, usually, at a given
iteration, a designer is focusing on one small portion of the cir-
cuit. In traditional synthesis, even if a small portion of the design
is changed, logic synthesis and placement are triggered for large
blocks and require hours to complete. This is due to two main rea-
sons: tools are not designed for incremental synthesis, and inter-
module optimization has a significant impact in QoR.

We focus on highly optimizing the sub-region and triggering
re-synthesis only when necessary, and not over the whole design.
LiveSynth divides the design into multiple regions with invariant
boundaries, i.e., regions whose boundaries’ functionality has not
been changed during synthesis. These regions are smaller than
user defined modules on average. When a change is made in the
RTL description of the design, the synthesis flow needs only to
find which regions were touched and replace them with the newly
synthesized netlist.

Even though the each region is highly optimized, this process
is much faster since the region is kept small. To be able to main-
tain QoR, especially delay, if part of the critical path is within the

DAC ’17, June 18 - 22, 2017, Austin, TX, USA Rafael Trapani Possignolo and Jose Renau

region, the neighboring regions are also included in the high ef-
fort synthesis. Special care is given to the case where multiple in-
stances of a module exist in the design. If the region frontiers are
within the module, the region can be optimized alone, which yields
a faster process. In the case where the region frontiers are outside
the module, each instance must be dealt with separately.

The LiveSynth flow includes a setup phase that performs a regu-
lar synthesis of the whole design and also finds invariant regions,
which are used as incremental grains for the Live phase. When
there is a change in the RTL, LiveSynth finds which regions were
affected and synthesizes only them. The algorithms are designed
so that LiveSynth does not traverse the whole graph. Even a linear
algorithm would not be competitive with our synthesis timing.

Our results show that LiveSynth is able to reduce synthesis time
by about 10x on average, but with high variation. LiveSynth is con-
sistently faster than any of the previous approaches. Also, we only
observe delay degradation in only a minority of design changes,
and only with small magnitudes (<3%). Our main contributions are:

• First incremental synthesis flow that allows inter-module
optimization

• Interactive synthesis methodology with fast feedback
• Incremental synthesis flow that is independent of a spe-

cific synthesis tool

2 RELATEDWORK
An interactive synthesis flow was first proposed almost 30 years
ago [8], motivated to improve timing closure in digital design. The
authors claim that the flow needed under 30 minutes to evaluate
relatively large designs (for the time), but could compute the effects
in frequency of a small design change in only a few seconds of
CPU time. Although the main motivation was timing analysis, the
result is largely an incremental (though manual) synthesis flow.
The whole circuit is kept in memory while the designer applies
small changes to it.

More recently, incremental synthesis has been revisited. Dehko-
rdi et al. [6] propose an incremental synthesis flow that partitions
the design into regions that are synthesized independently. After
a change, only the partition is re-synthesized. Due to the artificial
partitioning, there is a significant hit on QoR depending on the pa-
rameters choice. Since a single set of parameters is not applicable
to any design, the utility of the approach is limited.

Cheng and Singh [4] propose a line-level incremental synthesis
flow that is implemented coupled with the Altera synthesis flow.
Since this flow has access to internals of the synthesis flow, it is
able to keep track of changes during the synthesis flow and reduces
the setup overhead observed in our approach. The final proposal
also incurs in the elaboration of the whole design at each change
and launches the synthesis over the full design. Our approach is
more efficient, since it reduces the amount of work both in the
RTL elaboration and in the final synthesis. Our approach can also
be used with different synthesis tools without accessing any code.

Another approach is presented by Brand et al. [2]. The main
target is to reuse most of the logic, especially late in the design
cycle. The motivation is that large changes in the netlist would
greatly disturb the back-end synthesis, which is undesirable right
before tape-out. Our approach does not look into minimizing the
size of changes as much, since we are focusing more on the timing
closure cycle. We also observe that this approach has a large area
overhead, since the unused logic is kept in the design to reduce the
impact on the implementation.

3 LIVESYNTH
LiveSynthworks by creating an implementation for amodified RTL
specification, utilizing as much as possible from a previous imple-
mentation for the original specification. Incremental flows rely on
partitioning the design into regions that will be independently syn-
thesized. Then, re-synthesis can be triggered in each region when
a change occurs. Early flows depend on user-defined partitions,
which are usually dependent on hierarchy and not optimal, since
partitioning has an important impact on synthesis quality [6].

LiveSynth automatically defines regions of a few thousand gates
that are used as incremental grains. To reduce the impact on QoR,
LiveSynth finds invariant cones, i.e., regions whose functionality
do not change during synthesis. Intuitively, these cones define the
regions across which no further optimization is possible (or neces-
sary) during the initial synthesis. Although this is not always the
case, these regions are a good starting point for the incremental
phase of the synthesis. This is better than relying on a rather arbi-
trary hierarchical division, since it is well known that inter module
optimization plays an important role in design optimization.

LiveSynth (Figure 3) is built on top of third-party tools. A setup
pass is performed right after the initial synthesis to determine equiv-
alence between specification and implemented netlist. This pass
could be removed by integrating equivalence tracking into the syn-
thesis step itself [4]. Still, since it is only executed once, the over-
head from this pass is not a big problem.

3.1 Incremental Synthesis
Any incremental synthesis approach looks into applying changes
in the RTL specification of a design to an existing implementation.
Conceptually, this process involves 4 netlists:

• Spec0 and Spec1: are the netlists after elaboration (and be-
fore synthesis) for the original (Spec0) andmodified (Spec1)
RTL. We refer to these as elaborated netlists.

• Impl0 and Impl1: are the synthesized netlists for the origi-
nal (Impl0) and modified (Impl1) RTL. We refer to these as
synthesized netlists.

The objective of incremental synthesis is to create Impl1 that im-
plements Spec1 by utilizing as much as possible from Impl0. In
LiveSynth, Spec1 is not fully generated: only the modified files will
pass elaboration, whereas the remainder of the modules are in-
ferred from Spec0, since they did not change.

To avoid the need of arbitrarily defining incremental regions,
which was shown to degrade synthesis quality [6], LiveSynth first
synthesizes the entire design and then finds regions that can be
used for incremental synthesis.

3.2 What size should the blocks be?
Partition size has a major impact on synthesis time, especially be-
cause synthesis time is not linear with design time. LiveSynth tar-
gets a “few seconds” synthesis time. To achieve that target, we need
to define what design sizes would be feasible. To better understand
how synthesis time varies with design time and thus define our tar-
get partition size, we perform a preliminary experiment. We syn-
thesized different modules of different sizes in two synthesis tools,
a commercial tool and Yosys [11], to evaluate how blocks of vary-
ing sizes would affect synthesis time (the synthesized blocks were
sub-sets of our benchmarks, explained in Section 4). Since we are
mostly interested in small blocks, we do not scale to large sizes.

LiveSynth: Towards an Interactive Synthesis Flow DAC ’17, June 18 - 22, 2017, Austin, TX, USA

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000 50000

S
y
n
th

e
si

s
Ti

m
e
 (

s)

of Gates

commercial
yosys

Figure 1: Synthesis time varies super-linearly depending on
design size. In our tests, designs with less than ≈ 5k gates,
had the least variation in synthesis time.

In these simple experiments, we observe that synthesis time
varies super-linearly with design size1. Nevertheless, for small de-
signs (under 5k gates) there is little variation in design time,whereas
for designs too small (< 1k gates), most of the time is consumed in
tool overhead, which would be wasteful.

This data suggests that the 1k − 5k gates size offers a decent
trade-off between amount of work done and runtime, and there-
fore, LiveSynth aims to use design partitions in this range.

3.3 What should constitute a block?
The choice of partitioning strategy has amajor impact on synthesis
time, area, and delay in incremental synthesis flows [6]. Choosing
modules as blocks would prevent inter-procedural optimizations,
and thus is not a suitable approach due to degradation of QoR [6].
Chen and Singh [4] propose a flow that triggers re-synthesis in the
totality of the design after the modified region is included into the
original design. Although this technique yields very good results
for both area and delay, it comes at a relatively high cost in runtime.
In some designs, the incremental synthesis takes as much as 77%
of the original runtime. This penalty is due to the necessity to pass
through the whole design at least once.

LiveSynth takes a different approach. We want to maximize de-
sign quality at the same time that we reduce the synthesis time.
LiveSynth uses the concept of Invariant Cones to take advantage
of the idea that further optimization is not possible (or needed)
within the boundaries of that region. Our definition of Invariant
Cone is not tied to module boundaries, and thus leverages intra-
module optimizations. Since LiveSynth does not artificially define
partitions, the QoR impact is substantially reduced.

Functionally-Invariant Boundaries (FIBs) [4] are the endpoints
of invariant cones. A FIB is a net in the design whose functionality
has not been changed during synthesis. This function is necessary,
but the way it is calculated is unimportant. Global inputs and out-
puts are (always) FIBs. A change due a “don’t care” condition is
considered a functional change and thus, the node is not a FIB.

In the example in Figure 2, the synthesis processmay change the
implementation of the logic function f =!(!a+bc) to f = a·!(bc). In
this case, there are two Invariant Cones: fib1 = bc and fib2 =!a·!fib1.
Note that internal nodes in fib2 presented logic changes and thus
do not constitute an Functionally-Invariant Boundary.

1Note that other factors, such as target frequency, technology node, and synthesis
flow,may also affect synthesis time andwere not considered, since they are considered
to be constant throughout this paper.

A

B
C

Y

(a) Specification

A

B
C

Y

(b) Implementation

Figure 2: Functionally-Invariant Boundaries provide a natu-
ral boundary for incremental synthesis.

Table 1: Invariant Cones provide a natural boundary for in-
cremental synthesis. Most of the Invariant Cones present in
our benchmarks are smaller than the proposed target.

Invariant Cone Size fpu mips or1200
< 200 1769 1237 643

200 − 300 99 73 172
300 − 400 938 35 156
400 − 500 1 2 185
500 − 600 649 11 74
600 − 800 34 316 63
800 − 1000 33 29 58
1000 − 1500 5 124 56
1500 − 2000 1 550 0
2000 − 3000 0 421 0
3000 − 4000 0 302 0
> 4000 0 115 0

HDL

Elaboration

Synthesis

Functional
Match

Initial Synthesis Setup Pass

∆HDL

∆Elaboration

∆Synthesis

Netlist Diff

Netlist Stitch

spec0

impl0

spec0 impl0

FIBs

Place & Route Place & Route

Setup Phase Live Phase

Interactive

Figure 3: LiveSynth extracts a small subset of the design for
synthesis and merges it back into the original synthesized
netlist, quickly achieving results comparable to the non-
incremental synthesis. Place and route are not included.

Table 1 shows statistics of the number of gates per Invariant
Cone for our benchmarks (details in Section 4). We note that there
is no clear trend in the distribution of cone sizes. Some cases, like
the fpu, have smaller than ideal cone size and others, like the mips,
have greater than ideal cone sizes. Our main conclusion from this
observation is that it would be possible to merge a good number of
cones in designs like the fpu and or1200 core, but ideally, the flow
could leverage further splitting some blocks in the mips.

3.4 LiveSynth flow
The overall flow of LiveSynth is depicted in Figure 3, and consists
of two phases: the Setup phase and the Live phase. The Live phase
is split into three steps: Netlist diff, Partition Synthesis, and Net-
list stitch. The Setup phase identifies FIBs (and respective Invariant
Cones) between the Spec0 and Impl0 after the initial synthesis. Af-
ter setup in the Live phase, when a change is made in the RTL, the

DAC ’17, June 18 - 22, 2017, Austin, TX, USA Rafael Trapani Possignolo and Jose Renau

(a) Original (b) Modified

Figure 4: A single code change can impactmultiple invariant
cones that will need to be synthesized.

changed file passes elaboration, and the modified netlist is struc-
turally compared to Spec0. The structural comparison (Netlist diff)
only matches the portions of the netlist that are identical in their
logic structure, and thus has linear complexity with the module
size [4]. The main goal of this pass is to identify which Invariant
Cones have been changed.

The final incremental synthesis region can includemultiple cones.
This is because a single code changemay affect multiple cones, due
to the overlapping nature of cones. This is depicted in Figure 4,
which shows a single gate change in a design that affects two In-
variant Cones (marked with the dashed ellipses).

AfterNetlist diff, the extracted netlist containing all themodified
Invariant Cones is synthesized. Then, the resulting netlist replaces
the equivalent Invariant Cones in the original synthesized netlist.
Note that only the small region that was modified is synthesized
during the LiveSynth step, which is a key factor for synthesis speed.

3.4.1 Setup phase. The main goal here is to find FIBs and
which gates belong to each cone, as well as to how many cones
a given gate belongs to. By knowing which gates belong to each
cone, we avoid traversing the whole design when a change is made.
Also, since cones may overlap, we only remove a gate from the de-
sign when it belongs to zero cones.

Since the structure of the logic changes during synthesis, it is
not sufficient to simply compare the netlists. Thus, we rely on SAT
solvers to compare the elaborated and the synthesized netlists. To
reduce the search space, we assume that the synthesis flow has
kept user-defined net names unchanged (except for appending in-
stance names), which we have observed in all 5 flows tested (com-
mercial and open source)2. We then compare the function imple-
mented by each of the logic cones. To account for retiming (i.e.,
changing of flop position) that may have occurred during synthe-
sis, we just count the number of flops between each pair of FIBs.
Although our results show that this is a very long step, it only
needs to be performed once (prior to the execution of the flow), so
this is not a huge problem. Also, this time could be mitigated with
better integration with the synthesis flow to keep track of FIBs [4].

3.4.2 Live phase. After setup, the LiveSynth flow enters a in-
teractive phase that provides designers feedback within a few sec-
onds. This Live phase consists of cycling through three steps each
time a designer makes a valid change.

The Netlist diff step finds which portions of the netlist have
changed. We compare the modules that have been changed (iden-
tified by system time stamp) of Spec1 with the original modules of
Spec0. We traverse the netlist, starting at each FIB and going back-
wards, until a new FIB is found. If a difference is found, we mark
2It is fine to miss some equivalency between nets, this only would increase the size
of regions, but would not jeopardize the method as a whole.

(a) Full Design

Delta Module

(b) Incremental Synthe-
sis Region

Figure 5: Instead of triggering synthesis in the whole design,
LiveSynth extracts the region that needs to be synthesized.
This is a key point for speed in our scheme.

the cone for synthesis. If the traversal does not spot a difference in
the netlist, we ignore that region.

This structural comparison is fast since it only matches logic
that is implemented in the exact same way. Note that to make this
search fast, we assume that nets with the same ID are equivalent.
Then, the search itself is responsible for proving that the two cones
are structurally, and thus, functionally identical. The ID is the con-
catenation of instance names and the net name in the leaf instance.
This allows for uniqueness of identifiers.

During Netlist diff, we also keep track of which gates are part
of the cone, and thus we know which gates need to be synthesized
when Netlist diff is done. The process is depicted in Algorithm 1.

Algorithm 1 Netlist diff algorithm

1: procedure diff(FIB old, FIB new)
2: diff_cone← Set.new
3: same← same_operation(old.op,new.op)
4: for idx дets 0; idx < new.fanin.size; idx++ do
5: if ! is_fib(fanin(new,idx)) then
6: diff_cone.append(fanin(new,idx))
7: same← same & diff(fanin(old,idx),fanin(new,idx))
8: end if
9: end for
10: return [same, diff_cone]
11: end procedure

After Netlist diff, the marked cones are extracted from the con-
text of the design, and synthesized on their own (Figure 5) in Parti-
tion Synthesis. We carefully set nets as inputs and outputs to this
new design to avoid them being optimized away. Since the block
being synthesized does not necessarily begin and end in flops, we
set input and output delays according to the ones reported in the
original synthesis. This forces the synthesis to account for the de-
lay of the logic that was not included in the block. Timing con-
straints are also set in accordance with the original design.

After the delta synthesis, the resulting netlist needs to be reat-
tached to Impl0 to create Impl1 in theNetlist stitch step. Also, any
unused nets need to be removed since synthesis will not be trig-
gered over the whole design. Thus, we first inspect each gate in the
original Invariant Cone and decrement its counter, removing from
the design any gate that reaches the count of zero (Algorithm 2).

This procedure is sub-optimal for area, since it may result in
redundancy. This overhead is small for each synthesis increment,
but may accumulate over the course of multiple changes. However,

LiveSynth: Towards an Interactive Synthesis Flow DAC ’17, June 18 - 22, 2017, Austin, TX, USA

note that a small hit in area (of around up to 5%, observed by [6])
is more tolerable than the same hit in delay.

Algorithm 2 Netlist stitch algorithm

1: procedure stitch(Impl0, new_gates, old_gates, gate_count)
2: for all gate← old_gates do
3: gate_count[gate.id]–
4: if gate_count[gate_id] == 0 then
5: remove(Impl0, gate.id)
6: end if
7: end for
8: for all gate← new_gates do
9: insert(Impl0, gate.id)
10: end for
11: end procedure

3.4.3 Dealing with delay degradation. To reduce delay penal-
ties, when a critical path crosses the boundary of the changed re-
gion, the neighboring region is also included in for synthesis. This
increases the runtime, but reduces delay impact on the final circuit.
Another possibility would be to extend the partition definition, so
the critical paths always lie within a region. One option not ex-
plored here is to trigger a second incremental synthesis when there
is frequency degradation, however, it is not possible to know if the
degradation is due to the flow or the change introduced.

4 EVALUATION SETUP
LiveSynth was implemented in Ruby 2.3 on top of Yosys, a tool
based on ABC [3], targeting Xilinx FPGAs. Placement and Routing
were done using Xilinx Vivado 2014.2, QoR results are reported
after routing. We compare QoRwith full synthesis for each change.

LiveSynth runtime is compared with with LLIR [4] and Rapid
Recompile from Altera Quartus-II 2016.2. The experiments were
run on 2 Intel(R) Xeon(R) E5-2689 CPUs at 2.60GHz, with 64GB of
DDR3 memory, ArchLinux 4.3.3-3 server.

4.1 Benchmarks
We utilized three benchmarks: in-house Floating Point Unit (fpu),
the open source MIPSfpga microMIPS core [7] (mips), the OR1200
RISC core [10] (or1200). To choose the benchmarks, we looked for
open source benchmarks, possibly with public access to versioning
control, that were large but would fit commercial FPGAs.

4.2 Change insertion
To emulate design changes, we inserted code changes to the bench-
marks, using define statements. The changes can be divided into
random synthetic, commented out code, and repository diffs.

Commented out code was used when available, following the
method proposed in [5]. The same principle was applied to repos-
itory diffs when available. We looked for commits in nearby dates
since we target small code changes. Commits that added entire
modules or sub-systems were not considered. The idea of using
commits from repositories tries to mimic “real-word” work.

To increase the number of changes, we also use synthetic changes.
We used a pseudo-random number generator to select a file and a
line of code. Then a change was made around that line. Changes in-
clude flipping bits, inverting conditions in if statements, inverting

 0

 5

 10

 15

 20

 25

 30

 1 2 3

S
p
e
e
d
u
p

fpu

36.1 32.2

 1 2 3

mips

80.6
48.8

 1 2 3

or1200

Figure 6: LiveSynth improves the synthesis speed by an av-
erage of ≈ 10x compared to a full synthesis. Each bar shows
minimum, maximum and first, second and third quartiles
for (1) LiveSynth, (2) LLIR and (3) Quartus. Values higher
than the y-range are reported next to the bar.
the order of concatenations, changing constant, changing expres-
sions, and switching between constant and wire.

The numbers of changes per benchmark are: fpu (32), mips (32),
and or1200 (20). Our experiments start with all changes deacti-
vated, and each change is incorporated with respect to the original
run, independently of other changes. The only restriction on the
changes inserted is the ability to synthesize the design. Changes
can be single- or multi-line but always affect a single file and mod-
ule. However, a changedmodule can be instantiatedmultiple times.

5 EVALUATION
We begin our evaluation by showing the overall speedups achieved
by LiveSynth and prior approaches for our benchmarks. Then, we
provide a detailed runtime breakdown which allows us to better
understand how time is being spent during LiveSynth. Finally, we
provide QoR results to show the quality differences between a full
synthesis and the incremental synthesis techniques studied.

5.1 Overall Results
Our experiments show that LiveSynthwas able to reduce synthesis
runtime by 10x (median value) when compared to the full synthe-
sis (Figure 6). In absolute numbers, this means a reduction from
around 40s to around 4s in LiveSynth, but only to around 20s when
using LLIR. For Quartus-II, the reduction was from around 120s
with full synthesis to around 45s in the incremental version. We
note that LiveSynth only launches synthesis when the code change
affects the elaborated netlist, which is not always the case.

Quartus-II has an almost flat improvement in synthesis time of
around 2x, which is surprising due to the nature of the compila-
tion. Since there are not many details on the implementation of
the flow available, it is not possible to understand why this behav-
ior occurred. Both LiveSynth and LLIR have large variation in the
speedup results, which is expected since each change to the RTL
has a different impact in the final design.

5.2 Runtime breakdown and Setup time
We also report the runtime breakdown of LiveSynth. The longest
step of is the setup phase, results shown in Table 2. Finding FIBs is
in general slower than the full synthesis, but as mentioned, this is
not a huge problem since it is only performed once before design
changes are made. We also emphasize that this could be mitigated
with better integrationwith the synthesis step [4] or by implement-
ing the flow in a faster language such as C++.

DAC ’17, June 18 - 22, 2017, Austin, TX, USA Rafael Trapani Possignolo and Jose Renau

Table 2: LiveSynth requires a setup phase once per design.

Benchmark Synthesis Time (s) Find FIBs (s)
fpu 37 375
mips 90 1403
or1200 22 84

 0

 20

 40

 60

 80

 100

fpu mips or1200

R
u
n
ti

m
e
 %

elab
synth

diff
stitch

Figure 7: LiveSynth spends most of the time finding the dif-
ference between two designs. Synthesis time is around 10-
40% of the total time depending on the benchmark.

0

5

10

15

20

25

30

-5 -4 -3 -2 -1 0

#
 c

h
a
n
g
e
s

p
re

 d
e
g
ra

d
a
ti

o
n

fpu

0

5

10

15

20

25

30

-5 -4 -3 -2 -1 0

mips

0

5

10

15

20

25

30

-5 -4 -3 -2 -1 0

or1200

Frequency Degradation (%)

Figure 8: In most of the test cases, LiveSynth delivers the
same frequency as a full synthesis. In the few cases where
there were degradations, the hit on delay was around 4.5%.

The runtime breakdown for the incremental step is shown in
Figure 7; a considerable amount of time is spent in finding Net-
list diff (50-90%, depending on the benchmark). LLIR (not shown)
uses 60-90% of the time in re-synthesis on average (across bench-
marks). This is because LLIR requires a pass over the whole design
for synthesis, which even if no work takes time. We note that the
algorithm was implemented in Ruby, and runtime is expected to
improve by a few times just by switching to a more efficient lan-
guage such as C++. Stitch is not visible on the plot since it only
takes a fewmilliseconds. Although LiveSynth requires a setup step,
this setup is only executed once (before changes are inserted), and
then multiple incremental synthesis steps can be performed with-
out the need for running setup again.

5.3 QoR degradation
Finally, we investigate the QoR after LiveSynth. Some losses are
expected due to the nature of our approach. Our results were com-
pared against the regular synthesis of the full design and show
that for most of the design changes, there are no degradations in
delay. The maximum delay degradation was around 4.5% due to
the incremental flow. Figure 8 shows the distribution of frequency
degradation per change for each benchmark. In some cases, we ob-
served a slight increase in frequency, but since it comes from noise
in the synthesis tool we do not report it.

6 CONCLUSIONS
Slow turnaround time for synthesis is one of the main bottlenecks
in hardware design productivity. We believe that an interactive

synthesis flow is possible and would reduce design time by allow-
ing faster iterations between code changes and results.

We present LiveSynth, an incremental synthesis flow indepen-
dent of specific tools. LiveSynth leverages natural invariant bound-
aries to reduce the impact of splitting the design into regions while
minimizing the impact on QoR. LiveSynth minimizes the amount
of work that needs to be done by: 1) only elaborating RTL files
that were changed by the designs, and 2) avoiding launching syn-
thesis over the whole design. When a critical path lies within the
boundaries of the incremental region, LiveSynth includes neighbor-
ing regions to reduce the hit on frequency.

Our results show that LiveSynth is able to reduce synthesis time
by an average of 10x. We also show that LiveSynth has small im-
pact on delay (frequency) for only a few design changes but always
smaller than 5%. Our future work will look into partitioning blocks
further and applying disjoint decomposition techniques that can
split a block without compromising QoR. This should improve run-
time in larger blocks observed in some of the benchmarks and thus
further improve our results. We also want to leverage incremental
placement and routing already present in FPGA flows.

ACKNOWLEDGMENTS
We like to thank the reviewers for their feedback on the paper. This
workwas supported in part by the National Science Foundation un-
der grants CNS-1059442-003, CNS-1318943-001, CCF-1337278, and
CCF-1514284. Any opinions, findings, and conclusions or recom-
mendations expressed herein are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES
[1] Altera Inc. 2016. Quartus Prime Standard Edition Handbook Volume 1:

Design and Synthesis. https://www.altera.com/en_US/pdfs/literature/hb/qts/
qts-qps-handbook.pdf. (Mar 2016).

[2] Daniel Brand, AnthonyDrumm, Sandip Kundu, and PrakashNarain. 1994. Incre-
mental Synthesis. In Proc. of the 1994 IEEE/ACM Int’l Conf. on Computer-aided
Design (ICCAD ’94). IEEE Computer Society, Los Alamitos, CA, USA, 14–18.
http://dl.acm.org/citation.cfm?id=191326.191338

[3] Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-
strength Verification Tool. In Proceedings of the 22Nd International Conference
on Computer Aided Verification (CAV’10). Springer-Verlag, Berlin, Heidelberg,
24–40. DOI:https://doi.org/10.1007/978-3-642-14295-6_5

[4] Doris Chen and Deshanand Singh. 2011. Line-level Incremental Resynthesis
Techniques for FPGAs. In Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’11). ACM, New York,
NY, USA, 133–142. DOI:https://doi.org/10.1145/1950413.1950442

[5] K. Constantinides, O. Mutlu, and T. Austin. 2008. Online Design Bug Detection:
RTL Analysis, Flexible Mechanisms, and Evaluation. In Proceedings of the 41st
Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO 41).
IEEE Computer Society, Washington, DC, USA, 282–293. DOI:https://doi.org/
10.1109/MICRO.2008.4771798

[6] Mehrdad Eslami Dehkordi, S.D. Brown, and T. Borer. 2006. Modular Partitioning
for Incremental Compilation. In Field Programmable Logic and Applications,
2006. FPL ’06. International Conference on. 1–6. DOI:https://doi.org/10.1109/
FPL.2006.311202

[7] Imagination Inc. 2016. MIPSfpga microMIPS Core, v1.3. (2016). https:
//community.imgtec.com/downloads/mipsfpga-getting-started-v1-3/.

[8] Norman P Jouppi. 1987. Timing analysis and performance improvement of MOS
VLSI designs. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 6, 4 (1987), 650–665.

[9] Robert Cecil Martin. 2003. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[10] OpenRISC. 2016. OR1200 IP Core. (2016). https://github.com/openrisc/or1200
https://github.com/openrisc/or1200.

[11] CliffordWolf. 2016. Yosys Open SYnthesis Suite. "http://www.clifford.at/yosys/".
(2016).

[12] Xilinx Inc. 2015. Vivado Synthesis - Strategies for reducing run time. http:
//www.xilinx.com/support/answers/62215.html. (2015).

[13] Xilinx Inc. 2016. Vivado Design Suite User Guide. http:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/
ug910-vivado-getting-started.pdf. (Apr 2016).

https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
http://dl.acm.org/citation.cfm?id=191326.191338
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/1950413.1950442
https://doi.org/10.1109/MICRO.2008.4771798
https://doi.org/10.1109/MICRO.2008.4771798
https://doi.org/10.1109/FPL.2006.311202
https://doi.org/10.1109/FPL.2006.311202
https://community.imgtec.com/downloads/mipsfpga-getting-started-v1-3/
https://community.imgtec.com/downloads/mipsfpga-getting-started-v1-3/
https://github.com/openrisc/or1200
https://github.com/openrisc/or1200
http://www.clifford.at/yosys/
http://www.xilinx.com/support/answers/62215.html
http://www.xilinx.com/support/answers/62215.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug910-vivado-getting-started.pdf

