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Abstract
Temperature is a dominant factor in the performance, reliability,
and leakage power consumption of modern processors. As a result,
increasing numbers of researchers evaluate thermal characteristics
in their proposals. In this paper, we measure a real processor focus-
ing on its thermal characterization executing diverse workloads.

Our results show that in real designs, thermal transients operate
at larger scales than their performance and power counterparts.
Conventional thermal simulation methodologies based on profile-
based simulation or statistical sampling, such as Simpoint, tend
to explore very limited execution spans. Short simulation times
can lead to reduced matchings between performance and thermal
phases. To illustrate these issues we characterize and classify from
a thermal standpoint SPEC00 and SPEC06 applications, which are
traditionally used in the evaluation of architectural proposals. This
paper concludes with a list of recommendations regarding thermal
modeling considerations based on our experimental insights.

Categories and Subject Descriptors B.8.2 [Performance and Re-
liability]: Performance Analysis and Design Aids

General Terms Measurement, Experimentation, Performance,
Reliability

Keywords Microarchitecture, Temperature, Thermal simulation

1. Introduction
This paper presents an experimental approach to measure and char-
acterize the thermal behavior of real processors and their work-
loads. The aim of our work is to provide experimental data and
insights to further validate and address the issues and challenges
associated with the simulation and modeling of the thermal charac-
teristics of processor designs.

Temperature has become a first order processor design con-
strain and has proven to be a key limiter in performance, throttling,
clock skew, leakage power, reliability, variability, and cooling costs
for modern processors. This has resulted in an increase of ther-
mal publications. Figure 1 shows the number of papers published
recently, in top computer architecture and VLSI conferences, ad-
dressing thermal issues. The top line in the chart tracks the fraction
of those papers using thermal simulation, while the bottom trend
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Figure 1. Growth of Temperature related publications over
the years.

line shows the fraction of those simulation-based papers which use
HotSpot [26]. 1.

Most thermal research approaches require methods to calculate
and measure temperature. This is traditionally addressed in three
ways: using thermal and power simulation infrastructures such as
Hotspot [26] and Wattch [2], hybrid approaches mixing thermal
simulation and direct measurements of architectural state via per-
formance counters, or via direct measurements using on-chip ther-
mal sensor(s) such as thermal diodes.

Approaches using power and temperature simulation to esti-
mate temperature offer the freedom to analyze different alterna-
tives. However, the architectural simulations required to generate
power consumption traces are slow, forcing architects to simplify
their models. For example, most prior approaches either perform a
single “long” simulation or use profile-based sampling simulations.
For most modern processors, 1 billion instructions accounts for less
than 1 second of execution. These constraints raise questions about
the length of the simulation and the impact of profile-based sam-
pling. Questions which are compounded by the effect in the ther-
mal time response of different design parameters such as heatsink
configurations and power densities.

In addition to simulation length and thermal time response (tem-
poral resolution), spatial resolution is another challenging question
regarding thermal simulation and measurement. This is mainly due
to variable power densities, not just across major processor struc-
tures but among some of the substructures that comprise each pro-
cessor block [1]. Diverse power densities inside major processor
structures, together with their cycling and utilization behavior, may

1 We tracked papers in ISCA, MICRO, ASPLOS, HPCA, PACT, ISLPED,
ICCAD, DAC, DATE, and ASP-DAC from 2000 to 2008.



define different thermal characteristics not only across major struc-
tures but inside them as well.

This paper attempts to provide educated answers to these ques-
tions using experimental data, which is used to provide a thorough
thermal characterization of most of the applications in the SPEC
CPU 2000 and 2006 benchmark suites. The experimental results
show that the majority of SPEC applications have very predictable
thermal behavior.

The main contributions of this paper are: the characterization
of the SPEC benchmark suites for multiple thermal related met-
rics (1); show that conventional thermal simulation methodologies
based on short execution times using profile-based sampling meth-
ods like Simpoint [24] can be ill-suited for thermal characterization
(2); provide preliminary results showing that currently used spatial
resolution at block granularity has issues with some thermal metrics
(3); provide an analysis of the thermal time response of real proces-
sor systems and discuss its impact on the required simulation time
(4); show that IO intensive applications have more thermal vari-
ability than SPEC (5); provide a set of recommendations for future
research involving processor temperature (6).

The rest of the paper is organized as follows: Section 2 defines
several temperature-dependent metrics, their related performance
metrics, and the thermal implications of profile-based sampling.
Section 3 addresses some issues related to the thermal measurement
setup; Section 4 quickly summarizes the experimental setup and
the parameters selected; Section 5 provides experimental results;
Section 6 explains the related work; and finally Section 7 shows
the conclusions and future work.

2. Temperature-Aware Metrics
In order to analyze applications from a thermal standpoint, a well
defined set of temperature-aware metrics is required. Section 2.1
contains a summary of key thermal metrics. Section 2.2 details the
related performance metrics. And lastly, Section 2.3 covers profile-
based sampling and its potential impact on thermal evaluations.

2.1 Thermal Metrics
Temperature has a different impact on several key design factors
such as timing integrity, reliability, leakage power, and cooling cost.
For example, temperature has an exponential impact on leakage
power but a linear relationship with various timing violations.

Furthermore, since power consumption is usually non-uniform
across the die, this implies that temperature does not necessarily
have a constant or uniform distribution across area or time. Thus,
to properly characterize the thermal behavior of a processor, the
pertinent metrics must capture both temporal and spatial tempera-
ture behavior of the design.

Thermal issues can be analyzed differently regarding their im-
pact on timing, reliability, and leakage energy consumption. To ad-
dress this, we define 3 different categories of thermal metrics: tim-
ing, reliability, and energy.

2.1.1 Timing
Thermal metrics regarding timing considerations include maxi-
mum temperature (MaxT ) and maximum spatial difference in tem-
perature which we refer to as thermal gradient (GradT ). MaxT
affects performance throttling. Furthermore, since temperature af-
fects the operating frequency of circuits, it may limit the speed for
the entire design. For the same reason, GradT affects performance
because a high thermal gradient in the chip can induce skew viola-
tions and timing violations.

2.1.2 Reliability
We use RAMP [27] as a quantitative basis for reliability. This
work describes 5 Mean Time To Failure (MTTF) wear out failure
models: Electro Migration (EM), Stress Migration (SM), Time-
Dependent Dielectric Breakdown (TDDB), Thermal Cycling (TC)
and Negative Bias Temperature Instability (NBTI).

Since MTTF is not additive, the average Failures in Time (FIT)
per block is estimated as the application executes. By default, a
block corresponds to a processor architectural unit. Although, our
work also considers finer grain spatial resolution. In both cases,
the FIT is proportional to the area. At the end of the execution,
we add the area-weighted FITs to report the overall FIT value for
the entire processors. Like the RAMP authors, we assume that all
the different failure mechanisms have the same contribution to the
overall FIT value, which is adjusted to a preset value. In our case,
we adjust the FIT value for all the SPEC applications to 10,000.
This is approximately equivalent to a MTTF of 11 Years which is a
short but reasonable lifetime for a 65nm chip.

Electro migration: occurs when atoms migrate from one end
of the interconnect to the other, eventually leading to increased
resistance and shorts. The model used in this work for EM is
defined as follows:

MT T FEM ∝ (J)−n × e
EaEM

kT . (1)

Stress migration: Materials differ in their thermal expansion
rate, and this difference causes thermo mechanical stress, referred
to as Stress Migration. We use the following SM model:

MT T FSM ∝ |T0 −T |−n × e
EaSM

kT . (2)

Time-dependent dielectric breakdown: It is the result of the
gate dielectric gradual wear out, which leads to transistor failure.
Ramp uses TDDB model

MT T FT DDB ∝ (
1

V
)(a−bT ) × e(

X+ Y
T +ZT
kT ). (3)

Thermal cycling: Thermal Cycling is another reliability factor
since the temporal thermal gradients e.g. power on and off and high
frequency changes in power due to changes in workload behavior,
affect the lifetime of the processor. There is no validated model
for high frequency thermal cycles, but the effects of low frequency
cycling can be modeled via:

MT T FTC ∝ (
1

T −Tamb
)q. (4)

Negative bias temperature instability: NBTI leads to upward
shifts in the transistors’ threshold voltage that leads to timing vio-
lations. Ramp uses NBTI model

MT T FNBT I ∝ ((ln(
M

1+2e
N
kT

)− ln(
M

1+2e
N
kT

−H))× T

e
−I
kT

)
1
β . (5)

2.1.3 Energy
Energy thermal considerations revolve mostly around leakage
power (Leak) because of its temperature dependency. The BSIM3
model [14] provides a way to estimate leakage power 2.

Leak = P0 ∗ν2
t ∗ e

VGS−Vth−Vo f f
n∗νt (1− e

−VDS
νt ). (6)

Leak ∝ T 2 × e
α
T × (1− e

γ
T )

Different processor blocks may have different transistor densi-
ties and/or leakage. Since this information is not available for real

2 An alternative leakage power model can be found in [7]



processors, we assume that leakage is proportional to area. As in
previous reliability metrics, we consider both block as well as finer
grain spatial resolutions.

2.1.4 Thermal Time Constant
In order to capture the thermal “speed of change”, we define a
thermal time constant (τ) as the time it takes the chip to cool down
to (T1 −T0) ∗ e−1 once the application stops executing. Similarly,
τ can be also defined as the time it takes the chip to warm up from
T0 to (T1 − T0) ∗ (1− e−1) when the application starts executing.
The behavior is similar to the time constant for an RC circuit.
Our experimental data shows thermal time constants for modern
processor that are in the order of milliseconds. This gives a clear
insight regarding the amount of time needed to simulate to better
characterize the thermal behavior of a design. For example, based
in our experimental figures, it is necessary to wait between 5 and
300 ms to have a thermal swing of around 63%.

2.2 Related Performance Metrics
Performance metrics can be used as a proxy for thermal behavior.
We use a set of performance metrics as an approximation to the
associated temperature profile of the application. These metrics
include average IPC and maximum IPC. For the latter, the thermal
time constant is used to filter the performance spikes that do not
have a considerable effect on temperature. The average IPC is,
however, calculated over the entire execution time.

2.3 Profile-based Sampling Impact
Profile-based sampling techniques that leverage Basic Block Vec-
tors (BBV) like Simpoint [24] are commonly used to summarize
application execution. Their goal is to find a subset of the applica-
tion that matches the behavior for the entire application, so that a
smaller window of execution can be used for simulation instead of
executing the program to completion.

Many thermal simulation methods use Simpoint to accelerate
execution, with the assumption that thermal phases match perfor-
mance phases. This assumption, however, induces significant error.

To determine this error, we gather a thermal trace for the entire
processor, measured by an IR camera during program execution.
We also gather performance metrics, in real-time, from the pro-
gram executing within the same processor being measured. Sim-
point [24] is then used to determine the simulation points and their
weights. Each simulation point needs to be adjusted by its own
weight, we define this as True Simpoint (True). Which is very rare
in thermal simulations, since most previous works simply concate-
nate simulation points without weight (Typical). Some authors go
one step further, using only one simulation point. Which can be ei-
ther the most representative, but more commonly, only the first sim-
ulation point (First) is selected to further reduce simulation time.
Although a few papers do not perform warm-up, it is well under-
stood that thermal warm-up is required. Unless otherwise stated,
we perform warm-up before the first simulation point.

3. Thermal Measurement Setup
We leverage previous infrastructures [6, 15], developed to char-
acterize chips thermally by directly measuring the temperature at
the transistor layer using an infrared (IR) imaging system. Tradi-
tional chip cooling solutions use metal heatsinks and heat spread-
ers, which are opaque to the infrared spectrum. An IR-transparent
cooling solution based on a continuous flow of IR-transparent oil
is used to cool the target chip, while allowing us to observe its op-
eration under nominal frequency and voltage specifications. A key
difference with the [15] setup is the addition of a 3mm thick sap-
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Figure 2. Testchip floorplan.

phire window 3 on top of the die to compensate for the replacement
of the metal heatsink and heat spreader combo.

The objective of this section is to analytically and empirically
show that an oil cooling solution could be used to characterize
thermal phases. In the following subsection we address questions
regarding oil cooling efficiency (thermal resistance), the oil flow
direction, and the oil thermal transient response (thermal capaci-
tance).

3.1 Oil Cooling Efficiency
Different cooling solutions can have different specific heat, ther-
mal capacitance, and thermal resistance. For steady-state analysis,
only the thermal resistance affects the cooling efficiency of the sys-
tem. If we apply a constant power, the thermal capacitance does not
have any effect. Heat transfer equations are similar to the Maxwell
electrical equations. The electrical capacitors do not have any effect
when a constant voltage is applied. Similarly, the thermal capaci-
tance does not affect the temperature for a constant power.

Metal has a different vertical and lateral resistance than oil.
In addition, there is a Thermal Interface Material (TIM) between
the silicon and the heatsink. Non-uniform thermal resistance raises
possible issues with the IR measurement setup [9]. We adapt the
solution presented in [12]. First, apply an infrared transparent sap-
phire window (SW) on top of the die to compensate for the TIM
and resistance changes. Second, adjust the oil flow to match the
cooling performance of the equivalent metal heatsink solution.

A sapphire window increases the thermal capacitance and im-
proves lateral heat spreading. The other missing factor is the TIM.
Typical TIMs have thermal conductivity between 1 and 4 W

mK . This
thermal resistance is placed between the silicon substrate and the
metal heatsink. For the oil solution, we use oil as an IR transparent
TIM. Liquids are effective TIMs but not commercially used.

Once we have a sapphire window, we control the oil volume
flow as previously used by [15]. Nevertheless, there are physical
limits or lower bounds beyond which the oil flow stops behaving
like a laminar flow. To safely avoid difficult to model oil flow
artifacts, we fix the oil flow speed to 16 m

s , and restrict the minimum
oil thickness to 1mm. For systems operating under 20W additional
adjustments lowering flow thickness and rate may be required.

To evaluate the effectiveness of the previous corrections, we
use a testchip with a 484mm2 die area implemented on a BGA
GL771 package as shown in Figure 2. The chip is divided into a
grid of blocks arranged as non-overlapping tiles of similar area.
The power consumption for each block in the chip can be in-
dependently controlled. Each block also has a unique embedded
thermal diode, which can sense sub-millisecond thermal responses
with sub-centigrade error in temperature. We focus our attention
on 3 specific blocks in the testchip: A single block in the center
(P) which is powered arbitrarily, and two adjacent blocks (S1, S2)
which remain inert.

Figure 3 shows the temperature for blocks P, S1, and S2 in the
testchip when different steady-state power consumptions are ap-
plied to block P. The oil flows from top to bottom. When Block

3 A silicon window has a lower thermal capacitance and resistance.
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Figure 3. Temperatures for blocks P, S1, and S2 with differ-
ent constant power in block P. HS and SW stand for AMD
Mobile heatsink and sapphire window respectively.

P gets powered from 0 to 250 W
cm2 , we measure a consistent linear

increase in temperature for the heatsink (HS) and the sapphire win-
dow (SW). This implies that the overall vertical thermal resistance
of the oil and metal heatsinks are very similar.

To validate the lateral thermal resistance, we measure blocks S1
and S2. S1 is adjacent to block P, and therefore its temperature is
very close to P when using both the metal and the sapphire solution.
However, the temperature difference between block P and block S2,
placed 5mm away from each other, increases as the power density
increases. This is because the lateral thermal resistance creates
thermal gradients on the die. We observe that both the traditional
heatsink and sapphire have a consistent slope.

This simple experiment also validates the behavior of the sap-
phire window as an alternative cooling solution to a metal heatsink
with similar vertical and lateral thermal resistances.

3.2 Oil Flow Direction
To compensate for the different cooling efficiency across the die
due to the direction of the oil flow, the IR setup performs an
additional image correction over each captured frame. In the worst
case, we observe a maximum temperature gradient of 4◦C between
opposite sides of the testchip. This corresponds to approximately
0.2◦C correction for each mm that the oil flows over a hot block.

Our experimental evaluation isolated fewer gradients than re-
ported by [9]. The reason is that the sapphire window attenuates the
impact of the oil flow because it dissipates the temperature from a
more localized area at the silicon substrate to a bigger area at the
top of the sapphire window. To further reduce the gradients due to
oil flow, it is possible to add a diamond heatsink on top of the sap-
phire window which increases the lateral resistance. Alternatively,
we explore a software correction mechanism.

If all the blocks are uniformly heated, applying the 0.2◦C
mm cor-

rection is a simple and effective alternative. However, real chips
do not display such uniform temperature across their dies. Ideally,
a model describing the fluid dynamics of the oil should be used
to perform the oil flow correction. However, this solution is too
compute-intensive especially considering the 4◦C worst case. In-
stead, we have a quick approximation estimating the oil flow cor-
rection. For every mm that the oil flows over a block, we adjust the

correction by 0.2 ∗ BlockTemp−45◦C
10◦C . We never let the correction be

negative. This is a simple algorithm with linear cost that provides a
fast and effective solution.

Block Top-Bottom Left-Right Right-Left Bottom-Top

P 64.9 (65.3) 64.9 (65.3) 64.9 (65.3) 64.9 (65.3)
S1 63.9 (63.9) 64.7 (65.4) 63.6 (63.6) 63.5 (63.5)
S2 48.2 (48.2) 48.1 (48.1) 47.8 (48.6) 48.2 (48.2)

Table 1. Oil flow direction impact. Uncorrected value in
parentheses.
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Figure 4. Athlon-like simulated transient thermal response
for different cooling solutions.

To evaluate the accuracy of the correction and the impact of the
oil flow, we repeat the same experiment as in Figure 3. This time we
apply the oil from four possible directions when block P is powered
with 7.8W. The values in parentheses are the uncorrected values
obtained when the oil flow correction algorithm is not applied. The
only blocks affected by the oil flow direction are S1 and S2 when
we have a horizontal flow. Without correction, the maximum error
is 1.8◦C (S1 with Left-Right flow). After the correction, the error
is reduced to 0.9◦C.

3.3 Oil Thermal Transient Response
To validate the thermal response for the oil flow, we start by per-
forming thermal simulations using an Athlon-like chip configura-
tion with metal heatsink and oil. Then, we continue by performing
experiments with the testchip.

Figure 4 shows the simulated thermal transient response for four
different cooling solutions using an Athlon-like chip with package.
“HS" is a traditional heatsink solution; “Half HS" is equivalent to
“HS" but halving the metal spreader thickness; “Oil” shows the
theoretical thermal response with an oil cooling solution; “SW”
shows the thermal response when a sapphire window is placed
between the silicon substrate and the oil flow.

Reducing the heatsink thickness (“HS” vs “Half HS”) affects
the metal spreader thermal capacitance and lateral thermal resis-
tance. As a result, a slightly different thermal response is observed
but both cooling solutions still show the same thermal phases.
While the additional thermal capacitance attenuates the thermal re-
sponse, the decreased lateral resistance reduces the cooling effi-
ciency.

As reported by [9], “Oil” flow has a lower thermal capacitance
and it has a faster response showing clearer thermal phases. The
previous section has shown that a sapphire window (SW) reduces
the thermal resistance difference between oil and the heatsink.
Sapphire also increases the thermal capacitance because it has
double the specific heat of copper (0.75 J

g∗K vs 0.385 J
g∗K ) but

approximately half the density. As a result, copper and sapphire
have an equivalent thermal capacitance. In conclusion, “SW” has a
more attenuated thermal response than “Oil”.

In our experimental validation, we use a testchip which provides
μs sampling capabilities. Figure 5 shows block P temperature when
a periodic power pulse is applied to it and the rest of the chip is
idle. The same power pulse is applied for a heat sink “HS” and a
sapphire window “SW”.

The 25ms power pulse is applied every 100ms (10Hz). We
clearly observe that the thermal transients of the heatsink and the
sapphire are very close. [9] pointed that an oil cooling solution with
this power pulse would have a significant error for fast transients.
The measured results show that a sapphire window solves the
problem. We also perform 250 ms power pulses to validate the
equivalence between the heatsink and the sapphire window for



 23

 24

 25

 26

 27

 28

 29

 30

 31

 0  100  200  300  400  500  600  700

T
e
m

p
e
ra

tu
re

 (
C

)

Time (ms)

10Hz HS
10Hz SW
1Hz HS
1Hz SW

Figure 5. Thermal transient response for a testchip when
an 25 ms power pulse is applied periodically every 100 ms
(10Hz). HS and SW stand for Heatsink and Sapphire Win-
dow respectively.

slower transients. Again, the proposed cooling solution closely
matches the metal heatsink solution.

Combining the fast and slow transient response accuracy with
the cooling efficiency validation for the vertical and lateral thermal
resistances, we conclude that the oil cooling solution with a sap-
phire window is an appropriate vehicle to capture existing thermal
phases.

4. Evaluation Setup Parameters
4.1 Performance Parameters
To gather IPC traces we use pfmon [11], a performance monitoring
tool. One of the machine specific registers (MSR) available in the
CPU is used to count the number of retired instructions (RI). We
program in a threshold that when reached, resets the RI counter to
zero, resumes counting, and generates an interrupt. A time stamp
is saved in the interrupt service routine for this event so that we
can determine the time it takes to reach the threshold number of
instructions to retire. To extract the basic block vectors (BBV), we
use Valgrind −3.3.0 [19] and exp−bbv plugin [24]. Then, we use
Simpoint 3.2 [24] to generate the simulation points.

4.2 Thermal Parameters
The thermal measurement setup uses an infrared camera to directly
measure the transistor temperature. The infrared camera is a FLIR
SC-8000. This camera provides real-time thermal imaging a reso-
lution of 1024x1024 pixels, with sampling rates of over 100Hz.

For each category of thermal metrics (performance, reliability,
energy), we report the metrics based on constants extracted from
65nm technology files. Table 2 summarizes all the metrics and their
parameters.

Category Metric Parameters

Timing
MaxT
GradT

Reliability

EM aEM = 0.9, k = 8.617343×10−5

SM n = 2.5,aSM = 0.9
T DDB V = 1.1, a = 78, b = −0.081,

X = 0.759, Y = −66.8, Z = −8.37
TC Tamb = 293, q = 2.35
NBT I M = 1.6328, N = 0.07377

I = −0.06852, β = 0.3, H = 0.01

Energy Leak α = −1175, γ = −0.00005

Table 2. Thermal metrics constants.

As stated previously, this work focuses on the measurement
of thermal characteristics from a real processor operating under
nominal frequency and voltage. For this purpose, we measure an

AMD K8-based processor, running at 1.7GHz. It offers an out-of-
order single core, manufactured using a 130nm process, with a peak
power consumption of 70Watts.

4.3 Cooling solution
As explained in Section 3, we use an IR transparent heatsink with
a sapphire window that matches the cooling characteristics of the
metal cooling solution for a Mobile Athlon processor.

In order to satisfy those requirements, we use an oil-sapphire
combination as the cooling solution for this experiment. A 3mm
thick sapphire window with a 50mm diameter is placed on top of
the chip, which acts like a traditional heat spreader while allowing
IR energy to be measured. This window is then cooled by a flow
of mineral oil, which is also transparent to IR and removes the
heat. The mineral oil is temperature-controlled by a heat exchange
maintaining the oil between 15◦C to 20◦C. This allows the jet
of oil to remove heat from the sapphire window optimally, while
maintaining a laminar regime of flow with a speed of around 16 m

s .

We use purified mineral oil with a specific heat of 1.63 J
gK .

4.4 Applications
We evaluate almost all of the applications of SPEC00 and SPEC06
suites (24 from SPEC00 and 22 from SPEC06). Reference input
sets are used for All the SPEC benchmarks.

Applications with a mixture of computation and IO tend to dis-
play more varied thermal behavior as observed with our IR setup.
Since all the SPEC applications are designed to be CPU bound, we
complement them by also evaluating 5 applications involving I/O:
System Boot, Linux make, pdflatex, emacs, and BDB. System Boot
includes the time from when the machine is powered up until the
Linux boot is finished; Linux make compiles and links the Linux
kernel and its modules; pdflatex compiles this paper with pdfla-
tex; emacs performs verilog-mode macro, which creates a mod-
ule skeleton, performs auto-completion, and syntax check. Once
the verilog macro is finished, we conduct a conversation with the
ELIZA mode for natural language processing. The BDB test in-
volves a database with 1000K random fixed-size records each con-
taining 32-bit keys and 256-bit data fields. Pages are 32KB, bulk
transfers buffer is set to 4MB, the log buffer is also 4MB, and the
buffer cache is 8MB. We perform 5K random queries and back-to-
back update pairs.

For all the applications in SPEC, the execution time is limited
to 90 seconds which is long enough to let capturing thermal transi-
tions and far longer than most architectural simulations.

5. Evaluation
The evaluation is divided in 6 sections. Section 5.1 starts by char-
acterizing SPEC applications and showing all the thermal metrics.
Section 5.2 continues analyzing the impact of profile-based sam-
pling with thermal simulations. Section 5.3 shows how to estimate
the minimum simulation time. After showing the impact of other is-
sues in Section 5.4 and discussing the impact of IO in Section 5.5,
Section 5.6 concludes with enumerating a list of thermal modeling
recommendations.

5.1 SPEC Characterization
Table 3 presents the performance, reliability, and energy thermal
metrics for our target processor executing SPEC00 and SPEC06.

MaxIPC as well as metrics capturing the maximum temperature
and thermal gradient (MaxT , GradT respectively) only reveal a
small portion of thermally-related issues that may be of interest.
To complement these metrics, we provide temperature-dependent
reliability (EM, SM, TDDB, TC, NBTI) and power (Leak) metrics.
The reliability metrics in Table 3 are normalized to a Meat Time
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Figure 7. Thermally variable SPEC06 applications.

Between Failures (MTBF) of 57.08 years, in the same fashion
leakage numbers are also normalized to 1.

From our experimental data, we observe some interesting ther-
mal aspects triggered by SPEC execution. First, there is a lack of
correlation between average IPC and temperature. The correlation
between IPC and MaxT is 0.36 and between IPC and GradT is
0.27. For example, the CFP00 suite has an average IPC of 0.81,
which generates an average MaxT 76◦C, however CINT00 displays
a lower average IPC of 0.69 generating a higher average MaxT of
80◦C. A similar lack of correlation can be observed on a per appli-
cation basis. For example, sixtrack has the highest average IPCs of
1.59 (with the second highest MaxIPC of 1.6) reaching MaxT and
GradT of 78◦C and 41◦C respectively. Whereas mcf, with an IPC
77% lower, reaches a 4% higher maximum temperature. The reason
for this lack of correlation is that MaxT and GradT report the max-
imum temperature or the maximum temperature difference. These
values are not very correlated with average IPC. MaxIPC displays
better correlation with temperature but the correlation is still low
because short IPC spikes are not long enough to increase MaxT .

Better correlation can be found between temperature and the
EM reliability metric. For example, specrand has both the low-
est (MaxT ,GradT ) tuples with (55◦C, 17◦C) respectively, and the
highest EM with 232.41 years. At the same time, sjeng has the high-
est (MaxT ,GradT ) tuple with (103◦C, 77◦C) and the lowest EM of
22.35 years. However, SM does not follow a similar trend since
it is more dependent on spatial concerns, such as the temperature
distribution across the die.

By analyzing the correlations in Table 3, we can observe that
all three categories of thermal metrics have a low correlation. As a
result, one metric cannot be approximated from another.

From the transient temperature data captured with our experi-
mental setup, we divide the thermal behavior for the SPEC suite
in two categories: thermally predictable and thermally variable.
For example, the thermally predictable category (Figure 6) for the
SPEC06 benchmarks have a predictable plateau after the initial
warm up. In contrast, the thermally variable category (Figure 7)
have over 5◦C oscillations once the warm up is over. The majority
of SPEC06 is fairly predictable, only a few benchmarks have sig-
nificant performance oscillations. SPEC00 with a shorter execution
time has even shorter oscillations, and only gcc, swim, mesa, lu-
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Figure 9. Histogram with the maximum thermal gradient
observed in each simulation point for all the SPEC applica-
tions.

cas, gap, galgel, facerec, and mcf 4 could be classified as thermally
variable. Of note gcc and facerec show oscillations over 10◦C. The
temperature of each trace has a constant increase as it goes through
time. Figure 6 and 7 show only 30 seconds of the execution, while
Table 3 reports the results for 90-second long execution. Thus the
maximum temperature reported for each application in Table 3
might be higher than what shown in these figures.

5.2 Profile-based Simulation Impact
Figure 8 shows the overlap between simulation points and the
measured performance trace for the SPEC06 gcc benchmark. Each
simulation point lasts only 100M instructions which corresponds to
approximately 100 ms.

We observe two key problems with simulation points. First, the
ending temperature of each simulation point can be very different
from the starting temperature of the following simulation point. For
example, while simulation point 1 finishes in the high 60s◦C, the
following simulation point 2 starts in the high 70s◦C. This leads to
inaccurate simulations. Second, simulation points are too short to
capture significant transients. Figure 9 shows a histogram for the
maximum thermal gradient observed in each simulation point for
all the SPEC applications. The majority of the simulation points
have a thermal gradient under 2◦C. Some simulation points have
over 4◦C because they are located during the warm up phase where
the thermal gradient is higher.

4 mcf only has two spikes of thermal variability after 60 seconds of execu-
tion



Apps IPC MaxIPC MaxT GradT EM SM TDDB TC NBTI Leak

C
IN

T
0

0

crafty 1.04 1.14 78 41 60.24 162.63 67.14 141.52 63.11 1.0
vortex 0.97 1.31 84 49 47.09 100.86 58.65 83.14 57.1 1.03

gcc 0.96 1.61 83 53 88.23 315.22 72.66 377.17 63.94 0.94
gap 0.87 1.13 86 50 45.99 76.43 57.31 64.42 57.14 1.03
eon 0.86 0.92 79 44 64.59 181.13 67.5 161.68 62.85 0.99

bzip2 0.85 1.44 86 50 46.24 64.29 53.42 53.85 54.03 1.03
parser 0.66 0.96 74 39 87.04 219.9 70.86 212.15 64.94 0.95
twolf 0.57 1.0 79 46 66.11 117.46 61.36 97.97 59.07 0.99
vpr 0.44 0.66 81 44 61.49 103.5 58.91 85.69 57.19 1.0
mcf 0.19 1.09 72 38 137.03 151.83 63.37 134.43 59.41 0.9
gzip 0.14 0.27 78 42 75.1 220.07 67.5 215.43 61.29 0.96

Average 0.69 1.05 80 45 64.14 126.08 62.98 109.24 59.82 0.98

C
F

P
0

0

sixtrack 1.59 1.6 78 41 58.33 65.89 57.0 55.33 57.95 1.02
wupwise 1.44 1.51 75 32 66.35 40.34 51.12 37.52 53.94 1.0

applu 0.85 1.27 80 40 52.71 57.25 55.53 49.05 57.14 1.03
galgel 0.81 1.8 78 41 69.87 49.29 51.38 43.23 53.22 0.99
mgrid 0.8 1.13 68 28 100.81 72.48 58.48 60.28 59.0 0.95
lucas 0.74 1.36 88 55 52.18 43.92 50.36 42.51 51.96 1.02
apsi 0.73 1.18 76 37 70.82 94.4 62.03 78.35 60.95 0.99

facerec 0.72 1.28 83 51 91.56 193.98 68.35 182.04 62.9 0.95
mesa 0.7 1.36 69 37 121.37 162.38 67.3 143.41 63.06 0.92
swim 0.67 0.84 83 42 43.28 47.68 52.76 42.42 54.96 1.05

equake 0.64 1.32 67 32 114.8 59.36 53.47 50.19 54.61 0.93
ammp 0.6 0.82 75 38 74.84 47.66 51.53 41.83 53.67 0.99

art 0.25 0.31 73 44 104.55 645.39 90.75 1331.91 76.1 0.93
Average 0.81 1.21 76 40 71.19 66.15 57.72 58.62 57.85 0.98

C
IN

T
0

6

perlbench 0.95 1.26 84 50 51.29 433.68 83.43 631.42 72.36 1.01
h264ref 0.94 1.16 84 39 44.23 23.26 45.87 24.88 51.03 1.05
hmmer 0.87 0.93 100 77 22.35 109.62 59.75 94.4 57.24 1.12

libquantum 0.87 1.55 97 77 40.56 119.9 62.05 106.69 58.65 1.04
gcc 0.84 1.49 90 65 56.67 109.95 61.61 92.6 59.48 1.0

sjeng 0.82 0.92 100 75 27.42 147.06 62.78 132.23 58.54 1.09
bzip2 0.78 1.28 87 53 44.5 128.71 65.08 111.47 61.81 1.03

gobmk 0.76 0.95 95 63 29.02 72.1 55.66 61.6 55.49 1.09
xalancbmk 0.57 0.94 74 34 84.85 61.08 55.05 51.33 56.27 0.97

mcf 0.36 1.1 81 45 67.46 67.1 55.1 56.68 55.54 0.99
astar 0.35 0.93 77 34 58.73 30.58 48.1 29.51 52.38 1.02

specrand 0.09 0.12 55 17 232.41 101.1 57.31 81.73 55.91 0.85
Average 0.68 1.05 85 53 44.36 68.9 58.06 63.64 57.47 1.02

C
F

P
0

6

namd 1.1 1.27 82 40 45.04 58.4 53.63 49.63 54.82 1.05
gamess 0.97 1.37 84 41 39.66 30.53 47.09 29.63 51.04 1.06
dealII 0.91 1.62 85 48 62.39 189.58 66.47 176.89 61.39 0.99
povray 0.88 0.95 81 48 54.75 368.56 75.76 523.19 66.3 1.01
leslie3d 0.78 0.93 81 38 45.53 20.16 43.33 22.04 48.89 1.05

cactusADM 0.63 1.08 77 35 58.92 34.33 47.69 32.03 51.15 1.02
milc 0.62 1.6 75 35 95.85 44.56 50.61 39.15 53.1 0.95

gromacs 0.61 1.2 72 32 84.96 46.53 51.55 40.38 54.03 0.97
bwaves 0.45 0.95 83 36 39.86 7.51 36.74 12.64 45.44 1.07
soplex 0.42 0.92 71 34 90.34 87.39 55.66 71.12 54.87 0.96

Average 0.74 1.19 79 39 55.87 30.75 50.89 35.52 53.54 1.01
SPEC Average 0.73 1.13 80 44 57.08 57.08 57.08 57.08 57.08 1.0

O
th

er

BDB - - 47 13 952.05 500.64 74.5 1333.86 63.24 0.7
Emacs - - 45 13 1677.6 1534.95 89.97 2081.04 69.78 0.65

Power Off - - 44 15 1813.04 1428.76 88.01 1004.08 68.25 0.64
System Boot - - 67 25 300.54 48.59 50.86 44.32 52.06 0.81

pdflatex - - 43 15 1308.97 1048.95 84.1 9532.39 67.27 0.67
Linux Make - - 93 61 48.98 7.5 41.91 16.28 48.98 0.98

Average - - 61 28 147.21 32.94 61.65 53.26 58.86 0.78

Table 3. Performance and Thermal metrics for SPEC00, SPEC06, and IO Applications.
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Figure 10. Different Simpoint approaches average results
normalized against the full execution.

Figure 10 shows the impact of the simulation points on IPC and
different thermal metrics. There are five comparison points. Full
corresponds to the complete execution of the program. Oracle is
a weighed simulation point with an oracle setting its correct initial
temperature. True uses a weighted average and the ending tempera-
ture from the last simulation point as the beginning temperature for
the current point. Typical is the same as True sans a weighted av-
erage. This is the most typical method to use simulation points with
temperature simulations. Some papers use only the first simulation
point to perform their simulation (First).

As expected, IPC is very close to all the methods except First.
For these metrics, First is not representative. Typical and True
have similar results with the exception of leakage power where
True has better results. In both cases, there is a 20% error for
MaxT . The most problematic metric is reliability where the results
are as bad as First. For the thermally variable subset of applica-
tions, the difference is even worse than the reported average nor-
malized values (for example 1.18 vs. 1.03 for Oracle).

Oracle shows that simulation has potential to yield correct re-
sults if the temperate for each simulation point is set correctly.
However, temperature has a significant state, making it necessary
to thermally simulate several seconds before the simulation point
starts to obtain the correct initial temperature.

Using simulation points with thermal simulations introduces
potential issues when evaluating reliability metrics. With a worst
case occurring when only one simulation point is used, in that case
all the metrics but IPC have significant error. Simulation points
have potential to yield correct results if the initial temperature is
appropriately set for each simulation point. [3] proposes reusing the
power consumption calculated in similar phases to approximate the
starting temperature of the simulation point. We cannot verify the
accuracy of this system with our setup.

5.3 Simulation Time
A common question by architects is “how long should I simulate?”
Section 5.2 shows that profile-based simulation has several issues
regarding thermal modeling. The answer is not simple because it
depends on package, application, and metrics being tracked.

5.3.1 Package Impact
To understand the “the minimum time required to simulate” due to
package constraints, we use the thermal time constant as defined
in Section 2.1.4. If we ignore the material property changes due
to temperature, the package thermal constant is independent of the
power trace.

The package acts as a low-pass filter, attenuating those power
cycles with frequencies higher than the cutoff frequency for the
filter. Since the thermal constant operates in an RC fashion, we

define the cutoff frequency as 1
2πτ . Therefore, we consider 2πτ as

the minimum simulation time using the package as a constraint.
Shorter simulation intervals are not long enough to pass the filter
without the temperature being attenuated. A 50 ms thermal time
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Figure 12. SPEC suites Max Interval Variability.

constant (τ) implies that we need simulation periods of over 300 ms.
In Figure 5 we observe a thermal time constant (τ) of 54 ms for our
sapphire cooling solution.

5.3.2 Application Impact
The package for the processor provides a minimum simulation
time required to obtain a meaningful thermal simulation (2πτ or
300 ms for the package analyzed in this paper). Nevertheless, appli-
cations may have longer phases leading to more moderate changes
in power density. This section provides more insight into the mini-
mum time for thermal simulations from the standpoint of the appli-
cations being analyzed.

Rangan et al [23] define Interval Variability as the difference
in IPC of one interval against IPC of the previous interval. The
authors observe that 300 cycles have an order of magnitude more
interval variability than 10,000 cycles intervals. Both ranges are
still much faster than the 300 ms cutoff frequency for the package in
this study. Figure 11 shows the average Interval Variability between
5 ms and 0.5 secs. It shows that most of the variability happens
in time intervals under 150 ms. For a thermal frequency cutoff of
300 ms, all the changes happening faster are attenuated. This is one
of the reasons why so many SPEC applications fall in the thermally
predictable category.

Figure 12 shows the maximum Interval Variability. The SPEC
applications have over 0.3 (or 30%) activity change for all time
intervals. Therefore, thermal metrics may be affected by the poten-
tial changes in power activity. As a result, we need to look at the
thermal metrics because the SPEC applications do not show clear
points to constrain simulation time.

5.3.3 Thermal Metric Impact
In addition to the package and application, the metric being ob-
served also has an impact in the simulation time requirements.
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Figure 13 shows the error or inaccuracy suffered when only a
subset of the application is modeled for different metrics. IPC is
the metric that requires the least simulation time, a few seconds are
enough to yield relatively accurate results. As shown in Section 5.2,
simulation points can further improve the accuracy yielding over an
order of magnitude accuracy improvement given the same simula-
tion time.

Performance and energy thermal metrics (MaxT , GradT , Leak)
require longer simulation times, requiring over 10 seconds to
achieve an error of less than 20%. Reliability thermal metrics are
the most difficult to capture. They require over 40 seconds to have
less than 20% error. The previous plot selects a subsection of the
application after warm-up. If warm-up the simulation starts from
the beginning of the application the same type of results still hold.

Since thermal metrics depend on the application behavior, it
is more desirable to consider the number of instructions than the
overall time of execution. For a 1.7GHz processor with an average
IPC of 0.73, we need approximately 20 billion instructions for
performance and power thermal metrics, and close to 100 billion
instructions for reliability thermal metrics. For IPC estimation, we
just need around 2 billion instructions after initialization which is a
fairly common simulation length.

5.4 Other Thermal Issues
5.4.1 Spatial Resolution Impact
Up to this point, our evaluation has used a spatial resolution of
50x50μm. We now evaluate the impact of averaging the temperature
inside each of the floorplan blocks.

Figure 14 compares the different thermal metrics between fine
grain and coarse grain. MaxT and Leak do not have significant dif-
ferences, but most reliability metrics are completely displaced. The
problem resides with the exponential dependence of reliability met-
rics with temperature, which makes them very sensitive to temper-
ature distribution changes in a given area.

Figure 15 shows the difference in MaxT and GradT when us-
ing fine grain vs coarse grain thermal measurements. Interestingly
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Figure 16. Thermal time response when block P is powered
at different power densities.

there seems to be a constant offset between them. This opens to
opportunity to further optimizations.

We observe that the spatial resolution has a big impact on many
metrics because they are not linear with temperature. Nevertheless,
more work is needed to quantify what is the correct granularity and
how to manage the reliability metrics because they are the most
sensitive to spatial resolution.

5.4.2 Heatsink and Power Density Impact
Finally we consider the impact of the cooling solution and power
density on thermal modeling and simulation. While power density
affects the maximum temperature, the heatsink affects the max
temperature and the thermal time constant.

Power Density Figure 16 shows the impact of changing the power
density. Again, we power cycle block P with a 1Hz frequency
(150ms active pulse and 750ms inactive pulse), under different
power densities: 56 W

cm2 , 31.5 W
cm2 , 14 W

cm2 .
The power density has no impact on the thermal constant, but

it changes the max temperature that the system can reach. Power
density affects the max temperature or T1 from the (T1 −T0)∗ (1−
e−1) thermal time constant equation. Higher power densities may
require faster response to avoid thermal emergencies. This is due
to the fact that MaxT is reached faster, however it does not change
the required simulation time to characterize the application.

Heatsink The thermal time constant is very dependent on the
heatsink resistance and capacitance characteristics. Figure 17
shows the impact of the quality of the cooling solution. Block P is
power-cycled at 1Hz, with 2 different heatsinks, the default AMD
Mobile heatsink (Small) and a massive Cooler Master V8 (Big).
Each heatsink is evaluated with two TIMs; TIM1 uses OmegaTh-
erm 201 thermal paste, and TIM2 uses a liquid oil-based TIM. In
addition, we use a 2mm thick silver/diamond heat spreader with
the big heatsink and TIM2. The best cooling solution with a large
heatsink has a 5 ms thermal time constant.
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Figure 17. Thermal time response when block P is powered
with different heatsink solutions.

The thermal response, max and min temperatures are very sen-
sitive not only to the heatsink but also to the TIM solution. Both
heatsinks are fairly close for TIM1, but as the TIM material im-
proves, the big heatsink shows a significant cooling improvement.
To push the limits of the air cooling solution, we use the diamond
solution which improves the thermal characteristics reducing max
and min temperature.

From Figure 17, we note that the cooling solution is a key
parameter for temperature modeling. Surprisingly, it is disregarded
in several papers. This is a major concern because most papers do
not specify their cooling approach, or adapt their cooling solution to
the new power envelope for that matter. This is especially important
with thermal throttling, because different cooling solutions could
cause the system to slowdown or not throttle properly.

Another important observation is that different cooling solu-
tions have different thermal time constants, and therefore cutoff
frequencies that affect the required simulation time. In our lab, we
have measured between 5 and 300 ms thermal time constants. The
conclusion is that low power cooling solutions require longer sim-
ulation times than aggressive ones. As Section 5.3 shows, the sim-
ulation time should be the maximum of the package, application,
and metrics time requirements.

5.5 IO vs SPEC Workload
As the simulation time section has shown, fast power consumption
changes are filtered out. Therefore, applications may not show as
many thermal oscillations as IPC oscillations.

Applications are thermally variable when they have power con-
sumption changes that last in the same order as the thermal time
constant. The more abrupt the power consumption change, the
more significant the thermal oscillation. This means that many
common applications involving large amounts of IO, interrupts, or
varied distributions of IPC have a high chance of belonging to the
thermally variable category.

Figure 18 shows 5 different applications concatenated one after
another. Unlike SPEC, these applications perform IO. We start by
booting the system which includes BIOS and Linux kernel boot.
After power up, the BIOS creates a fast spike reaching 65◦C before
the Linux kernel starts to boot. The Linux kernel has significant
thermal oscillations due to the IO activity periods which the CPU
leverages to reduce power consumption.

The second application is Emacs. The first spike of 15◦C is
due to loading Emacs and to perform a Verilog macro and load-
ing ELIZA. Once we start to “converse” with ELIZA the power
consumption of the system decreases significantly. We observed
that this was typical in many applications that have a thermal spike
while loading but that require little computation afterward leaving
the CPU nearly idle. Although not possible to see in the tempera-
ture scale, each keystroke generates around 1◦C thermal spike.
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The third application is pdflatex. It has a behavior similar to
Emacs with two thermal spikes followed by a cool down. The
fourth application involves a BDB database, it is very IO intensive
and shows constant changes in temperature. The last application
just powers off the system. Again the same initial spike followed
by a cool down is observed.

Figure 19 shows the Linux kernel compilation (Linux Make).
The first 40 seconds correspond to different dependency resolution
and compilations with significant IO. The right most plateau reach-
ing around 80◦C corresponds to the linking of the kernel modules.

With the exception of Linux boot, the previous applications
have so much IO that they are not able to reach high temperatures.
As it is shown in Table 3, the maximum temperature on average
is around 19◦C less than that of SPEC. In fact workloads with
lowest temperature fall under this category of applications. These
applications are thermally variable, with a low chance of triggering
a thermal emergency. As is shown in Figure 6 and 7, many of
the SPEC benchmarks show predictable thermal behavior while
IO workloads mostly show variable thermal behavior. A common
characteristic of many IO applications is a thermal spike followed
by a cooling down phase. However, the behavior of interactive
workloads is closely affected by the way a user interacts with the
application. Hence the thermal behavior of these type of workloads
is not easy to predict.

Another characteristic is that TC reliability metric is worse
than the average SPEC application for Linux Make and System
Boot. Also, Linux Make has worse SM reliability than any other
application evaluated. While the MaxT and GradT for Linux Make
are close to SPEC06 gcc, the IO activity makes Linux Make much
worse than gcc for many reliability metrics. As Table 3 shows,
lower average temperatures for IO workloads compared to SPEC
applications implies lower leakage consumption.



5.6 Thermal Modeling Recommendations
The three commonly used temperature estimation approaches (us-
ing thermal and power simulation, hybrid thermal simulation-
measurement, and direct measurement) have their own strengths
and weaknesses. Our work provides the following recommenda-
tions for improvement that can be applied to all three approaches:

• Profile-based sampling is effective for performance and power
phase detection, but it potentially induces an elevated degree of
error for thermal modeling, especially in the conventional way
it is used in the thermal simulation studies. A way to mitigate
the error would be to reuse the power consumption calculated
in similar phases as proposed in [3].

• The minimum simulation time depends on the package, the ap-
plication, and the metrics being tracked. Simulation time should
be selected to guarantee that the following three constraints are
satisfied.

The packages provides an absolute minimum simulation
time assuming a worst case application. For for the systems
analyzed in this paper, the thermal time constant is 54 ms.
Other packages measured have thermal time constants be-
tween 5 and 300 ms. As an example using the cutoff fre-
quency from our measured systems, it is recommended a
minimum simulation of 31 ms for the most aggressive cool-
ing solutions and 2000 ms for more conservative ones. Em-
bedded systems with even simpler cooling solutions may
require longer simulation times.

The SPEC suite does not show decay of interval variabil-
ity. Therefore, the maximum between thermal metrics and
package simulation time constraints should be used to se-
lect the thermal simulation time.

Each thermal metric has a different simulation time con-
straint. For performance (MaxT , GradT ) and power (Leak)
metrics 20 billion instructions after initialization keep the
error under 20%. For reliability metrics close to 100 billion
instructions are required.

• Most papers using HotSpot for thermal simulation do not mod-
ify 5 the heatsink. The heatsink should be adapted to the chip
power consumption. Any thermal paper should specify their
cooling solution capabilities and adjust to their power demands.
Ideally, papers should also report the % of time that the systems
has thermal emergencies (going over a given max temperature)
before and after their optimizations.

• Although SPEC is widely accepted as a representative bench-
mark for performance and power, we think that more work is
required to determine a representative thermal suite. Since I/O
intensive applications have a very different thermal behavior,
we think that researchers should try to include I/O benchmarks
in their workload. This is hinted at the observation that rela-
tively similar applications like gcc and Linux Make show very
different reliability metrics.

• Workload selection is always important. This is also true for
thermal evaluations because most SPEC applications behave
like a simple heat phase followed by a flat plateau. Many bench-
marks show under 2◦C oscillation after warm up. This may not
be so important for papers that only care about temperature to
estimate leakage power. Nevertheless, reliability, performance,
or thermal modeling papers should try to incorporate IO apps,
and dealII, gcc, mcf, milc, and sjeng from SPEC06.

5 The papers do not mention changes in the heatsink configuration, so we
assume that they keep the default parameters.

• Commonly used functional unit granularity do not seem to be
enough. The measurements show thermal discrepancies consis-
tent with some power densities reports [4]. Current implemen-
tations of the three approaches do not provide such intra func-
tional unit resolution. As the technology scales, this problem
becomes less important because a single processor becomes a
small part of the whole die. Nevertheless, it seems that further
research is required to create models with finer spatial resolu-
tion for large structures like caches.

6. Related Work
Increasing power densities have led to a need to further study spa-
tial and temporal requirements for proper power and thermal mod-
eling. [8] investigates the relationship between core size and on-
chip hot spot temperature considering spatial low-pass filtering fea-
ture of temperature. [13, 17, 18] address the optimum locations
and allocations for thermal sensors in reconfigurable and multipro-
cessor systems. In [16, 20, 28] authors investigate the effect of
temperature-aware floorplaning and how the processor can exploit
it for improved thermal management. In all these studies, the tem-
perature is estimated using modeling and thermal simulations.

A majority the studies in microarchitecture use the SPEC bench-
mark suite to evaluate their proposed methods and design propos-
als. Nevertheless, no thermal characterization of the benchmarks
itself is available to the community. (see [21, 22] for the studies
addressing benchmark evaluation with objectives other than tem-
perature). We believe that this work is the first to characterize the
thermal behavior of the SPEC benchmark, using accurate thermal
measurement.

Several studies investigate phase behavior of applications for
characterization and optimization purposes [3, 5, 10, 24, 25]. These
studies are referred to by many of the simulation-based studies
addressing thermal issues in order to take advantage of skipping the
simulation of redundant execution phases in the application. Except
[3] that exploits reusing power traces, users hold the assumption
that performance phases match thermal phases. Nonetheless, there
is no study to verify this assumption. This work evaluates it by
measuring the exact error imposed by this assumption through live
experiments.

7. Conclusions
This paper measures real systems and provides many insights and
recommendations to the computer architecture community working
with thermal modeling. In addition, the main contribution of the
paper is to show that commonly used statistical sampling based
thermal simulation methodology has significant problems with key
thermal metrics. While Simpoint has less than 1% IPC error, they
have a large error for key reliability metrics.

To better understand why conventional thermal simulation
methodology based on statistical sampling does not work with
temperature, we provide measurements to estimate simulation time
impact. We show that thermal constant is over 50 ms for a modern
package, as a result without significant changes in power density
thermal simulations with a few milliseconds does not make much
sense. Simulators need to perform large simulations to capture ther-
mal phases available in programs. Papers that perform sub second
simulations with a realistic heatsink configuration do not have time
to perform significant thermal transients.

Leveraging the measurements, we propose a list of recommen-
dations for researchers performing thermal simulations. The evalu-
ation also thermally characterizes SPEC00 and SPEC06 for the first
time. We classify thermal applications between thermal predictable
and thermal variable. In addition, we show that IO applications not
seen in SPEC benchmarks show more variable thermal behavior.
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