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ABSTRACT
We present LGraph, an open-source database for digital
circuits in different phases of the synthesis and physi-
cal design flow. LGraph is a bi-directional graph and
uses memory maps for fast persistence to disk. It is
meant to be a convergence point between open-source
EDA tools, which will improve the integration of re-
search in different areas. It is already integrated with
Yosys, ABC and OpenTimer and includes parsing for
LEF/DEF and Liberty formats. It can also read Py-
rope, a modern HDL. Extensions will include a place-
ment and a routing tools as well as Chisel integration.

1. INTRODUCTION
Currently, there are many formats to represent a dig-

ital design in the different phases of the flow. How-
ever, there is no open-source option that can represent
the design in different steps of the flow. The alterna-
tive is to use different formats throughout the design
flow, for instance, Verilog and BLIF during logic syn-
thesis, LEF/DEF or bookshelf during physical design
and GDS for layout and parasitics. There have been
some attempts to create a more concise framework for
a wider set of applications, for instance the OpenDesign
Flow Database [7].

Other efforts focused on specific points of the flow.
FIRRTL [6] and RTLIL [14] are two open-source for-
mats that target RTL and netlist. Whereas, Rsyn [3]
and Ophidian [4] provide an extensible framework for
physical design. Also, the formats are usually task spe-
cific and not ideal for integration.

Academic EDA research and contests, e.g., ISPD,
TAU, and ICCAD, focused on isolated steps of the de-
sign flow. While there have been useful advances in var-
ious areas of EDA, a need for an integration has been
identified [8]. In [8], the author proposed a horizontal
benchmark extension methodology, which not simply
converts data format between benchmarks, but also re-
organizes it by either filling missing parts or simplifying
redundancy for different tools.

In the commercial world, OpenAccess (OA),1 is an
“open” format meant to provide interoperability among
IC design tools. OA has many legal constraints that lim-
its its usage. The other commercial option is MilkyWay
from SynopsysTM; however, since this is a proprietary
format from Synopsys, not much can be said about it.

1http://projects.si2.org/?page=69.

We present Live Graph (LGraph), a graph database,
that works as a bridge between different parts of the
design flow. It can represent RTL, any netlist, or a
placed and routed design. LGraph interface with sev-
eral input languages, like verilog, Liberty, LEF/DEF,
and Pyrope [12]. LGraph interfaces directly with ABC
for technology mapping and synthesis [2], and Open-
Timer [5] for static timing analysis. Placement and
Routing tools are currently being developed and will
work directly in LGraph. LGraph is based on mem-
ory maps for fast persistence – similar to mmap [10]
– and is based on the struct of array paradigms to in-
crease memory locality, for instance, when performing
static timing analysis, only the timing related tables are
brought to cache. LGraph is inspired by the LiveSynth
mindset and aim for incremental synthesis results in a
few seconds [11].

Besides synthesis, LGraph is actively being developed
to support simulation of synthesizable HDLs. There is a
focus to have fast code generation, debugging support,
and a framework similar to LLVM but focused on the
much simpler subset of synthesizable HDLs.

Multiple communities will benefit from LGraph. De-
velopers of new HDLs can simply map to LGraph and
leverage the existing back-end infrastructure. Physical
design groups can LGraph to provide support for dif-
ferent languages and to evaluate integration with other
steps, moving beyond simple benchmarks regularly used
for specific steps in physical design. RTL designers will
be able to use the integrated open-source flow, which
provides a very low entry level barrier, instead of spend-
ing time integrating tools from different domains. We
see LGraph as the LLVM in hardware design since it
provides a converging point for both language develop-
ers and back-end engineers.

Our results show that LGraph is fast being able to
traverse netlists with millions of nodes in about 0.01s
when ordering is not required, and in 0.5s traversing
from inputs to outputs, which is comparable to the best
academic implementation. LGraph size is 70% to 90%
larger than Verilog, which does not include physical in-
formation, and comparable with DEF. One of the main
advantages of LGraph is to serve as an integration point
for open-source projects in different areas of EDA.

2. LGRAPH
LGraph is a graph representation optimized to repre-

sent netlists during different phases of the synthesis and
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Figure 1: The overall flow starts with RTL generat-
ing a LGraph that can be synthesized, placed, routed,
timed, so forth. LGraph also offers support for the
cloud, automatically passing databases to servers and
collecting the resulting LGraph.
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Figure 2: The database is a collection of LGraphs that
represent modules and a technology file with standard
cell information. Each LGraph is a collection of tables
with information from different steps of the flow.

physical implementation. It is implemented in C++14
and exposed to users as an API to manipulate the data
structure or as an extendable toolset with a terminal.

2.1 Overview and Expected Usage
LGraph is intended to be used from RTL to layout,

as steps are being performed, the database is modified,
either in-place or through the generation of a new in-
stance (Figure 1). LGraph holds information both on
the design itself and on the standard cell library.

The regular flow consists of generating an LGraph
from an RTL description, such as Verilog. Transfor-
mation passes, like dead code elimination and common
subexpression elimination, can be performed directly on
LGraph to optimize the design. To leverage the large
existing open-source EDA code base, LGraph can also
interface with other tools. Transformations can be ap-
plied in parallel leveraging the servers on the cloud. Our
framework allows for easily extending or replacing any
of the existing algorithms or tools so that researchers
can leverage the existing infrastructure for other steps
of the flow. Also, the integrated approach eases the
implementation of co-optimization that spans separate
design steps.

2.2 LGraph Database organization
As a memory map, the LGraph database gets au-

tomatically persisted to disk when the program exits.

Conceptually, the database contains a target technology
(for mapped designs) and a set of modules (LGraphs)
that represent the design itself. Information correspond-
ing to the standard cell library is not duplicated in the
graph nodes; instead, each node has a type that points
to a specific cell in the library.

A LGraph represents a single module and consists of a
collection of tables, indexed by node ID. The overview
of the database organization is provided in Figure 2
(not all tables represented). To prevent adding arbi-
trarily sized strings in the tables, strings are stored in a
separate char array that provides a unique ID. Note the
case of instance names (“inst name”). Names are stored
in the char array “instance name char array”, while the
table “inst name” stores pointers to specific strings in
the array.

Users can define custom tables as they identify the
need for new applications. However, LGraph provides
a set of standard tables that should be used to keep
compatibility across users. Those tables cover the ba-
sic functionalities of VLSI netlists and are enough to
represent a netlist at any point during the design time.

2.3 Graph Representation
Internally, LGraph uses a bi-directional adjacency list

representation [13], more efficient to represent sparse
graphs. The main drawbacks of an adjacency list are
the difficulty of getting reverse edges. Thus, the deci-
sion for a bi-directional adjacency list graph is still more
memory efficient for VLSI netlist than an adjacency ma-
trix and allow both forward and backward traversals
efficiently.

Each netlist gate can be represented by multiple graph
nodes.2 Each gate is represented in LGraph by an
unique node ID. Node IDs are sequentially assigned, at
node creation, starting from 1. Each port in a gate is
identified by a port ID, PID for short. An overview of
the LGraph representation with the adjacency list and
edges is shown in Figure 3. The graph in the left of the
figure is represented by the LGraph in the right.

For cache locality efficiency, nodes are preallocated
64 bytes to be aligned with a L1 cache line. If more
space is needed – e.g., due to a large number of output
edges – extra space is allocated. For compactness, most
edges use relative indexes. Since most edges will point
to relatively close indexes, only a small number of bits
is needed to represent them.

2.4 LGraph Types
In LGraph, a type is represented as a 64bit unsigned

integer in the form of an enumeration, divided into
ranges. Each range serves a specific category of node
type. The first range of few dozens is reserved for “na-
tive” or primitive LGraph types. Those represent con-
trol flow, unmapped logic and arithmetic operators, and
wire operators. Then a range of 232 can hold subgraph
types, which are used to represent the design hierarchy.
The third and fourth ranges are used for constants, 32
bit (third) and arbitrarily sized (stored as char array
IDs in the fourth range). The last range is used for

2For the sake of clarity, throughout this document, node
refers to a graph node, gate refers to a netlist gate. In
LGraph a gate can be represented by multiple nodes.
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Figure 3: LGraph uses an adjacency list to efficiently
represent sparse graphs. The graph (left) is represented
as the LGraph (right). In the left, the little numbers
outside of nodes represent port IDs, omitted for gates
with a single port ID. Short edges contain relative in-
dexes (±delta), and long edges have absolute indexes.

standard cell technology mapping, where each cell is
also assigned a unique ID.

One particularity in the types representation is the
use of single port per function in commutative opera-
tions, e.g., an and gate contains a single input port,
since the order of the operation does not matter. Also,
it is possible to connect any number of operators in each
port. Thus it is possible, for instance, to create a 3 in-
put and gate using the same operator as one would use
for a 2 input and gate. Arithmetic operators like plus,
mul, lt, gt, and others also have specific ports for signed
and unsigned inputs. In the specific case of plus, there
are also ports for minus operation. The overall goal
is to reduce code complexity when performing transfor-
mation, since several transformations are insensitive to
whether a number is signed or not and can handle fewer
cases with the reduced number of operators.

LGraph defines special operators for wire manipula-
tion. Join operators are used to concatenate wires and
Pick operators are used to select ranges within a multi-
bit wire. For Pick, we leverage the information on the
bit width of the node and rely on a constant that tells
the offset from which we start the range.

2.5 Routing Representation
For routing, LGraph uses a shape based representa-

tion. Overall, each pair of nodes can be connected by
one out of a few basic shapes. To generate more complex
routing shapes, extra nodes can be inserted. Each basic
shape connects a set of nodes, from a source to at least
one sink, whose placements (x,y, and layer) are known.
We anticipate that extra basic routing shapes will be
added in the future, but currently, LGraph supports
straights, L and T shape. There is a trade-off between
extra shapes and extra nodes that requires further study
to decide on extra shapes. Metal layers and vias are
based on metal layer information from the nodes.

2.6 Open Projects
The LGraph code base is in active development and

available on GitHub3. However, there are still some
open ideas to improve adoption by the community.

3https://github.org/mascucsc/lgraph.

Some ongoing work in our group includes the imple-
mentation of a placement and routing tool for ASIC.
The implementation of a custom timer is also on-going
and will run on LGraph instead of requiring to first ex-
port to OpenTimer. There is also an ongoing effort to
integrate a SAT solver into LGraph to facilitate synthe-
sis transformations and verification in LGraph itself.

Support for multiple emerging languages is being added,
for instance there is currently work in integrating Py-
rope [12], which is leveraging LGraph as an API to per-
form control flow graph analysis and data flow graph
generation and optimization. Chisel [1] support is also
among the planned extensions for LGraph.

For simulation, the team has prototypes using C++
targets and LLVM [9]. The main advantage would be
the generation of simulation binaries. The code and
infrastructure generated allow to read from several lan-
guages and generate a single simulation as long as the
HDLs are fully synthesizable.

3. EVALUATION

3.1 Setup
We compared LGraph with Yosys (version 0.7+483) [14]

and RSyn (commit 02d79e4) [3] for reading and writ-
ing from disk and traversal time. For sizes, we com-
pare LGraph with Verilog, RTLIL (Yosys representa-
tion) and DEF. We used the ICCAD15 SuperBlue bench-
marks.4 The benchmarks range in size from 770k to
1.9M gates.

We implemented two simple algorithms: 1) histogram
of cell types and 2) find maximum combinational depth.
Although basic operations, those closely mimic area es-
timation and timing estimation. Calculating the his-
togram of cell types can be done in any order, and
thus allow for a faster traversal of the netlist. Find-
ing the maximum combinational depth is done in topo-
logical order, i.e., from inputs to outputs. All experi-
ments were run on a Intel(R) Xeon(R) E3-1275 v3 core
@ 3.50GHz with 32GB of memory, running Archlinux.
Tools were compiled with clang v6.0.0.

3.2 Results
Figure 4 shows the runtime for both the histogram

and the combinational depth algorithms. Since the passes
are overall much faster than the read and write times,
we performed histogram 100 times and depth 20 times.
We note that LGraph has much smaller read and write
times due to the memory mapped, which avoids the
need to parse netlist files. Yosys has a slower read time
since it has a parser capable of reading the full specifi-
cation of Verilog. RSyn has a more basic Verilog parser
meant for netlists and that is not general for any Verilog,
and thus is faster. RSyn can also read DEF netlists,
which is not available in Yosys. In general, LGraph is
able to load benchmarks in about 1−2s, RSyn in about
30 − 40s and Yosys in about 130 − 200s.

The traversals have comparable runtime between RSyn
and LGraph. An unordered traversal takes about 0.01s
with either of the tools, in Yosys the traversal time

4http://cad-contest.el.cycu.edu.tw/problem_C/
default.html
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Figure 5: LGraph size in disk is compatible with that
of DEF files. Verilog was the most efficient representa-
tion among the ones tested.

is about 50% slower, but still around 0.015s. For or-
dered operations (i.e., from input to output), LGraph
and RSyn are able to traverse a large netlist in about
0.5s, whereas a traversal in Yosys takes about 5 − 10s
depending on the benchmark.

We also looked into the size of each representation.
For that comparison, we only looked into the physical
benchmarks. Verilog netlists are the smallest of the rep-
resentations considered, ranging from 80 to 198MB for
the benchmarks tested. RTLIL, the internal represen-
tation of Yosys was the largest representation, ranging
from 205 to 500MB. LGraph was mostly equivalent to
DEF files, both ranging from about 140 to 340MB. A
summary of the sizes for the benchmarks tested is pro-
vided in Figure 5. However, Verilog and RTLIL do not
include physical information.

4. CONCLUSIONS
We present LGraph, an open-source database for digi-

tal circuits that can represent netlists in different phases
of the design flow from RTL to layout. LGraph is in-
tended as a convergence point for efforts from different
groups and communities, from HDL and compilers re-
search to physical design.

Our results show that LGraph can traverse netlists
with millions of nodes in about 0.01s when ordering is
not required, and in about 0.5s traversing from inputs
to outputs. This is comparable to the best academic
implementation. LGraph is comparable in size to DEF,

and about 70% to 90% larger than Verilog, which does
not include physical information. Further work includes
integration with place and route tools, other HDLs and
extensions to support academic contests.
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