
Deconstructing PARSEC Scalability

Gabriel Southern and Jose Renau
Dept. of Computer Engineering, University of California, Santa Cruz

{gsouther,renau}@soe.ucsc.edu

Abstract
PARSEC is a popular benchmark suite designed to facilitate

the study of CMPs. It is composed of 13 parallel applications,
each with an input set intended for native execution, as well
as three reduced-size simulation input sets. Each benchmark
also demarcates a Region of Interest (ROI) that indicates the
parallel code in the application. The PARSEC developers state
that users should model only the ROI when using simulation
inputs; in other cases the native input set should be used to
obtain results representative of full program execution.

We analyzed the runtime scalability of PARSEC using real
multiprocessor systems and present our results in this paper.
For each benchmark we analyzed the scalability of both the
ROI and full execution for all the input sets. We found that
for 7 of the benchmarks the ROI scalability matches that of
the full program regardless of the input set used. For the
remaining 6 benchmarks, for at least some of the input sets
there is significant divergence between the scalability of the
ROI and the full program. Three of these benchmarks have
much lower scalability for the full program than the ROI, even
when run with the native input set. Finally, we found that for
most of the benchmarks the scalability of the simulation inputs
differs from that of the native input set, both for the ROI and
the full program.

1. Introduction
The PARSEC benchmark suite is “designed to provide parallel
programs for the study [of] CMPs” [6]. It was introduced
in 2008 and has been widely used for computer architecture
research since then. Developed with the needs of researchers
in mind, it has features that make it easier to use with ar-
chitectural simulators. Each benchmark has multiple input
sets, including three that are intended to run with simulators
(simsmall, simmedium, simlarge), and one that is intended
to be representative of a real application (native).1 This al-
lows users to simulate a smaller workload but obtain results
representative of a real workload. Each benchmark also de-
fines a Region of Interest (ROI) indicating which part of the
benchmark executes in parallel. By simulating only the ROI,
PARSEC users can reduce simulation time. The ROI is also
important for ensuring that results obtained using simulation
inputs are representative of real program behavior [5].

Choices in input set size and whether to model the whole
program, or only the ROI, can lead to different interpretations

1Two additional input sets (test and simdev) are included for simulator
testing and are not appropriate for scientific studies.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
p
e
e
d

u
p

Core / Threads

Bienia Pusukuri et al.

Figure 1: Scalability of blackscholes as reported by Bienia [5]
and by Pusukuri et al. [22]. Bienia reports nearly linear scal-
ability with increasing number of cores, while Pusukuri et al.
reports a maximum speed-up of less than 5 times.

when analyzing benchmark results. For instance, Figure 1
shows the reported scalability of blackscholes (one of the
PARSEC benchmarks) from Bienia [5] and from Pusukuri et
al. [22]. Bienia used the simlarge input set and only measured
the scalability of the ROI, concluding that blackscholes has
the potential for nearly linear scaling. But using the native
input set and measuring the runtime of the entire application,
Pusukuri et al. concluded that the scalability of blackscholes
is limited by the serial portion of the application.

Several papers characterize the behavior of the PARSEC
benchmark suite [1, 2, 4, 5, 6, 7, 8, 10, 22] but none of them
compare the runtime scalability of the native input sets with
that of the simulation input sets, nor do they compare the
runtime scalability of the ROI to that of the full program. This
paper provides this missing characterization, but a greater
concern is that users of PARSEC rarely state which portion of
the application is modeled or what input set is used. Table 1
lists how many papers from ISCA 2010 – 2014 used PARSEC
in their evaluation, which input set was used and whether the
paper analyzed the ROI only or the full program execution. In
most cases this information is not provided in the paper, but as
the differing results from Bienia and Pusukuri et al. illustrate,
these parameters are important for interpreting benchmark
data.

In this paper we measure the runtime scalability of the four
main PARSEC input sets, and we compare the scalability of

1

Input Set Full ROI Not Stated
native 1 1 4
simlarge 0 5 9
simmedium 0 2 7
simsmall 0 1 10
not stated 1 1 20

Table 1: Input sets and program region modeled for 55 papers2

published in ISCA from 2010 – 2014 that use PARSEC. Most
papers do not state what region is modeled.

the ROI with that of the whole program. We do so by running
the benchmarks on real multicore systems, varying the number
of threads, and measuring the runtime of the ROI and the full
program for the four different input sets. Our contributions
are as follows:
• First systematic analysis of the runtime scalability of all

PARSEC input sets.
• First systematic analysis of the runtime scalability of the

ROI compared with full-program execution for all input
sets.

• We identify 7 benchmarks where the ROI and full program
execution have similar scalability for all input sets, and 6
where the scalability differs for at least some of the input
sets.

• We show that for most of the benchmarks the scalability
of the simulation input sets differs significantly from the
scalability of the native input set for both the ROI and full
program execution.
The rest of this paper is organized as follows: Section 2

provides background about PARSEC; Section 3 describes
our experiment setup; Section 4 provides detailed results;
Section 5 surveys related work; and Section 6 concludes.

2. Background

PARSEC was developed between 2005 and 2009 as part of a
collaboration between Princeton and Intel [5]. The developers’
goal was to create a benchmark suite of emerging parallel
workloads that would help architects and researchers design
emerging multicore and multiprocessor systems. After its ini-
tial release in 2008, PARSEC quickly became popular among
computer architecture researchers and has since been widely
used in published research.3 Several versions of PARSEC
have been released, but the 13 core benchmarks listed in Ta-
ble 2 were finalized in PARSEC 2.0, which was released in
February 2009.

Six different input sets are defined for each benchmark:
test, simdev, simsmall, simmedium, simlarge, native. Test
and simdev should only be used to test that the benchmark
can run. Native is intended to approximate realistic input
indicative of how the benchmark application would be used in

2Total is more than 55 because some papers used multiple input sets.
3The main PARSEC paper [6] has over 1,500 citations according to Google

Scholar.

practice. The remaining three simulation inputs were created
by scaling down the native input sets in a way that maintained a
representative mix of instructions. The inputs were selected so
that serial execution of the native input sets on a real machine
should complete in 15 minutes or less, while the simlarge,
simmedium, and simsmall inputs should complete execution
within 15 seconds, 4 seconds, and 1 second respectively.

The inputs set scaling process skews the amount of time
spent in serial phases compared to parallel phases. As a result
PARSEC defines an ROI for each benchmark that marks the
parallel phase of the benchmark. Bienia [5] states:

The skew should be compensated for by either ex-
cluding the serial initialization and shutdown phases
and limiting all measurements to the Region-of-
Interest (ROI) of the program, which was defined
to include only the representative parallel phase, or
by measuring the phases of the program separately
and manually weighing them correctly. It is safe to
assume that the serial initialization and shutdown
phases are negligible in the real inputs, which al-
lows one to completely ignore them for experiments.
Benchmark users who do not wish to correct mea-
surements in such a way should limit themselves to
the native input set, which is a much more realistic
description of real program behavior that exhibits
these scaling artifacts to a much lesser extent.

PARSEC supports three different threading models:
pthreads, OpenMP, and Intel Thread Building Blocks (TBB).
PARSEC also allows users to specify the minimum number
of threads run with the benchmark by setting a parameter (n)
when the benchmark is started. Table 2 shows the correspon-
dence between the user specified number of threads and how
many threads the benchmark actually spawns.

Benchmark Threads
blackscholes 1+n
bodytrack 2+n
canneal 1+n
dedup 3+3n
facesim 1+n
ferret 3+4n
fluidanimate 1+n
freqmine n
raytrace 1+n
streamcluster 1+2n
swaptions 1+n
vips 3+n
x264 1+2× frames

Table 2: Benchmarks in PARSEC along with the number of
threads spawned by each benchmark, where n is the PARSEC
minimum threads parameter.

2

In most cases there is a single main thread which spawns n
worker threads, but some of the benchmarks use a pipelined
parallelization model and spawn multiple threads for each one
the users specifies. In addition x264 spawns twice as many
threads as there are frames in its input (native has 512 frames),
but it uses the parameter n to limit how many threads run in
parallel. Most of the benchmarks allow n to range from 1 up
to at least 128; however, there are a few restrictions:
• Facesim is limited to the values 1, 2, 3, 4, 6, 8, 16, 32, 64,

128.
• Swaptions is limited to the number of entries in its input set

(16 for simsmall, 32 for simmedium, 64 for simlarge, and
128 for native).

• Fluidanimate requires the number of threads to be a power
of 2.

• x264 is limited by the number of frames in its input set.4 We
restricted n to 1–8 for simsmall and 1–32 for simmedium in
our experiments.
In this paper we analyze the 13 benchmarks and input sets

first released with PARSEC 2.0.5 We use the native, simlarge,
simmedium, and simsmall input sets, and we use pthreads for
all benchmarks except freqmine (which requires OpenMP).
We vary the number of threads using the minimum threads
parameter n and we report n as the parameter of interest in our
results instead of reporting how many threads were actually
spawned.

3. Experiment Setup

We analyzed the scalability of PARSEC input sets and ROI
by running the benchmarks on three different real multi-
core/multiprocessor systems and measuring the runtime. We
focused our evaluation on wall-clock runtime because this is
the most important metric for determining the scalability of
parallel applications.

The scalability results are specific to the systems that we
used for our evaluation and, in theory, alternative system con-
figurations could produce different results. However, we ex-
pect that the relative scalability trends for inputs sets and ROI
compared to full are applicable to many systems that use PAR-
SEC. The three systems that we used for our evaluation are:
• A single CPU system with 4 cores, 2 threads per core, for a

total of 8 logical processors, along with 16 GB of RAM.
• A dual socket system with 8 cores per socket, 2 threads per

core, for a total of 32 logical processors, along with 64 GB
of RAM.

• A quad socket system with 12 cores per socket, 1 thread per
core, for a total of 48 logical processors, along with 64 GB
of RAM.
The detailed system specifications are shown in Table 3.

4This limitation is not reported when the benchmark is launched, but in
our experiments we observed the output was not correct for n greater than 9
for simsmall and n greater than 33 for simmedium.

5We used PARSEC 3.0 downloaded from the PARSEC website, but there
are minimal changes between 2.0, 2.1 and 3.0 for the benchmarks we analyzed.

System Configuration
1 x Intel Xeon E3-1275 v3 (4 core, 2-way SMT)

M8 32 KB L1, 256 KB L2, 8 MB L3 cache
16 GB DRAM
2 x Intel Xeon E5-2689 (8 core, 2-way SMT)

M32 32 KB L1, 256 KB L2, 20 MB L3 cache
64 GB DRAM
4 x AMD Opteron 6172 (12 core)

M48 64 KB L1, 512 KB L2, 5 MB L3 cache
64 GB DRAM

Table 3: Specifications of systems used for experiments. M8,
M32 and M48 respectively have 8, 32, and 48 logical proces-
sors.

In the rest of this paper we refer to the 8-logical processor
system as M8, the 32-logical processor system as M32, and
the 48-logical processor system as M48.

All of the systems used the x86_64 version of Arch Linux
with version 3.18.6-1 of the Linux kernel. All benchmarks
were compiled with version 4.9.2 of gcc/g++. We disabled
ASLR but did not do any other special tuning. The OS and
hardware were allowed to schedule threads and control CPU
frequency using default scheduling algorithms. We used PAR-
SEC hooks to identify the ROI, and for each configuration we
recorded the runtime of the ROI and full benchmark execution.

We repeated each experiment at least 10 times and calcu-
lated the mean and the confidence interval at a 95% confidence
level. For configurations where the initial confidence interval
after 10 runs was not within 5% of the mean we repeated the
experiment until the confidence interval was within 5% of the
mean. The speedup results we present are computed by divid-
ing the mean execution time of a system, input set, and ROI or
full configuration with a single thread by the mean execution
time of the same configuration with multiple threads. In total
we performed over 300,000 experiments across the 3 different
machines while sweeping through a range of parameters and
gathering statistically stable results.

4. Results

This section presents the results of our characterization of
PARSEC’s scalability. In Section 4.1 we measure the fraction
of time each benchmark spends executing the ROI. Section 4.2
describes how we measured scalability and we present our re-
sults in a set of figures that spans three pages. Section 4.3
summarizes the scalability by comparing maximum speedup,
and Section 4.4 quantifies the similarity of different configura-
tions. Finally Section 4.5 provides insight about benchmark
behavior.

4.1. ROI Percentage

The ROI is the only part of the PARSEC benchmarks that can
be executed in parallel. Figure 2 shows the percentage of time
each benchmark spent in the ROI when running on M8 with
the number of threads n = 1. Seven of the benchmarks (dedup,
ferret, freqmine, streamcluster, swaptions, vips, x264) have

3

 0

 20

 40

 60

 80

 100

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

sw
aptions

vips
x264

geom
ean

P
e

rc
e

n
t

R
O

I

native simlarge simmedium simsmall

Figure 2: Percentage of full execution time that is in the ROI measured by running benchmarks on M8 with a single thread. Seven
of the benchmarks spend nearly 100% of their execution time in the ROI, while the other six spend significantly less for at least
some input sets.

almost all of the execution time included in the ROI for both
the full and simulation input sets. The other six benchmarks
spend less than 90% of their execution time in the ROI and
consequently have a maximum theoretical speedup of less than
10 times for at least some of their input sets. We provide more
detail in the following list and state the maximum theoretical
speedup (calculated using Amdhal’s law) in parentheses when
listing ROI percentages.
• Blackscholes spends approximately 89% (9X) of its time

executing the ROI for all four input sets. The time outside
of the ROI is spent initializing the input array and writing
out the results. This amount of work scales linearly with
the input set size; consequently a larger input sets does not
improve the scalability. We confirmed this experimentally
by creating an input set 10 times larger than the native input
set included with PARSEC and measured the same ROI
percentage for this larger input set.

• Bodytrack has over 99% ROI for the native input set, but
the ROI drops to 94% (17X) for simlarge, 86% (7X) for
simmedium, and 68% (3X) for simsmall. Bodytrack uses
helper threads to load image data for the next frame con-
currently with the threads processing the current frame.
However, the thread pool must be created and the first im-
age loaded before any parallel computation can occur. This
initialization is done before the ROI starts. A negligible per-
centage of total execution time is consumed for the native
input set, but a significant fraction of time is consumed for
the two smallest input sets.

• Canneal’s ROI percentage is 80% (5X) for native, approxi-
mately 30% (1.5X) for simlarge and simmedium, and 23%
(1.3X) for simsmall. The majority of the time outside of
the ROI is spent initializing the netlist. This initialization
time is proportional to the size of the netlist. However, there
are two ways to increase the work done by the benchmark.
Either the netlist size can be increased, or the number of
temperature steps can be increased. We tested using 10
times as many temperature steps for the native input set
with the same netlist, which increased the ROI percentage

to 98%.
• Facesim has over 99% ROI for native, but approximately

69% (3.2X) for the simulation input set.6 There is a fixed
amount of work done outside the ROI based on the facial
features that will be animated. The work done to animate
each frame is in the ROI, and this work scales with the num-
ber of frames. The native input set processes 100 frames,
while the simulation inputs process only a single frame.

• Fluidanimate also have over 99% ROI for native, but
approximately 89% (9X) for the simulation inputs. The
benchmark simulates fluid dynamics for use in animation
sequences. The work outside of the ROI is mostly involved
with partitioning how a single animation frame is processed.
The work in the ROI scales with the number of frames in the
workload, and adding frames adds more work in the ROI.
The native input set has 500 frames, while the simulation
inputs only have 5 frames.

• Raytrace has the worst speedup potential with only 70%
(3.3X) ROI for native inputs, and 20% (1.25X), 9% (1.1X),
and 3% (1.03X) for simlarge, simmedium, and simsmall
respectively. However, it is possible to increase the amount
of work in the ROI by rendering more frames. The native
input set renders 200 frames; when we increased this to
2,000 frames the ROI increased to 95%.

4.2. Measured Scalability

The ROI percentages detailed in the previous section show
how the parallel and serial sections of the workload can im-
pact the maximum theoretical speedup. However, there are
typically other bottlenecks that limit an application’s maxi-
mum speedup. We measured the actual speedup for all of the
benchmarks on our three systems: M8, M32, M48. For each
system we varied the number of threads from 1 to the number
of logical processors in the system and measured the runtime
of full execution and ROI for all benchmarks using all input

6Facesim includes files for three simulation input sets, but they are all
identical.

4

sets. We measured the runtime for over 300,000 benchmark
executions and after averaging and summarizing the data we
had 7,736 data points characterizing the measured scalability
of the PARSEC benchmarks. We organized this data by bench-
mark and system and present it in a series of 39 graphs. The
graphs are grouped into columns by system and into rows by
benchmark. In order to make the data legible it is split into
Figures 4, 5, and 6.

4.3. Maximum Speedup

Figure 3 shows the maximum speedup obtained for each of
the benchmarks for both the full execution and the ROI. As
expected the six benchmarks we identified with low ROI per-
centage show a big difference between the speedup of full and
the ROI. PARSEC was designed so that researchers using the
simulation inputs should only collect data from the ROI, and
our results show the relevance this recommendation.

The divergence between the speedup of ROI for each of the
native inputs and the speedup of ROI of each of the simulation
inputs is a problem because results obtained using simulation
inputs may not be representative of actual application behavior.
For many benchmarks the maximum speedup of the ROI ob-
tained using simulation inputs is different from the maximum
speedup obtained with the native input set. The geometric
mean of these differences is 62%, 47%, and 31% for simlarge,
simmedium, and simsmall respectively.

Benchmark Native Simlarge Simmedium Simsmall
blackscholes 25.6 17.0 12.8 9.5
bodytrack 0.0 1.0 1.5 1.3
canneal 12.4 19.4 16.7 11.6
dedup 0.2 0.4 0.3 0.5
facesim 0.1 3.0 2.9 3.0
ferret 0.2 0.9 1.2 0.4
fluidanimate 0.2 4.7 4.7 4.5
freqmine 0.0 0.0 0.1 0.1
raytrace 27.2 23.8 18.0 10.3
streamcluster 0.0 0.0 0.0 0.0
swaptions 0.0 0.3 0.4 0.4
vips 0.1 0.5 0.8 0.8
x264 0.1 0.2 0.3 0.1
geomean 0.2 0.9 1.1 0.9

Table 4: Average Euclidean distance between speedup of ROI
and full for each input set.

4.4. Quantifying Similarity

Visual inspection of the scalability results presented in Fig-
ures 4, 5, and 6 provides an intuitive sense of how the scala-
bility compares between ROI and full for all of the input sets.
We also attempted to quantify the similarity by calculating the
average Euclidean distance between the measured speedup at
each point. Table 4 shows the results for comparing the ROI
and full execution for each of the input sets. The closer the
values are to 0, the more similar the speedup results. The 6
benchmarks where we measured less than 90% ROI all have an

average Euclidean distance of 1.0 or more; for the remaining
7 benchmarks the distance is less than 1.0.

We also calculated the average Euclidean distance between
each of the simulation inputs and the native input for both ROI
and full. In all cases the average difference was greater than
1.0 and the geometric mean for each category was greater than
5.0. This did not reveal any other clear trends so the data is
not included. Instead we refer readers to the detailed graphs
in Figures 4, 5, and 6 as well as the benchmark insights in the
following section to interpret benchmark behavior.

4.5. Benchmark Insights

Blackscholes has the best scalability of any benchmark for
the ROI with the native input set. The maximum speedup of
the full execution is limited to less than 9 times because of
the serial portion of the benchmark. It is also noteworthy that
even for the ROI, the simulation inputs do not scale as well as
the native input set for large numbers of threads. On M48 the
execution time of the ROI for the simsmall input when running
with 48 threads is 14.4 ms. We tested a modified version where
the worker threads spawn and return immediately without
doing any work and the ROI time dropped to 4 ms. Thus it
does not appear that the thread creation overhead prevents
further scaling of the benchmark. Determining the precise
cause of the scalability limits for the simulation inputs in the
ROI is a topic of future work for us.

Bodytrack has relatively good similarity between ROI and
full for native and simlarge. For simmedium and simsmall
speedup of full and ROI drops noticeably, particularly on M48
with many threads.

Canneal has limited scalability for full for all of the input
sets with a maximum speedup of less than 5 times for native
input. Even for ROI only, the total scalability is limited and
on M48 the speedup of ROI drops after roughly 30 threads.
Canneal uses atomic operations to synchronize data between
threads; as a result adding more threads increases the chance
of conflicts between threads. There is a tradeoff between the
size of the netlist and the number of temperature steps. We
think this is why the simlarge input has higher scalability than
native. When we tested with an input with more time steps
than native we found that the scalability of full improved, but
the scalability of the ROI dropped.

Dedup has an erratic speedup pattern due to a work distri-
bution imbalance between threads. Dedup creates queues for
partitioning work between threads, and the number of queues
created is n threads/4+ n threads mod 4. Afterwards each
queue is assigned 4 worker threads, except the last queue,
which has n threads mod 4 threads. This workload imbalance
causes the scalability to be best when the number of threads is
a multiple of 4. It is also noteworthy that the simlarge input
set has a maximum speedup with 12 user threads while the
other inputs sets have a maximum speedup with 8 user threads,
and the maximum speedup of simlarge input is much higher
than that of native for both ROI and full. We suspect this is

5

 0

 10

 20

 30

 40

 50

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

freqm
ine

raytrace

stream
cluster

sw
aptions

vips
x264

geom
ean

S
p

e
e

d
u

p

native-full
native-roi

simlarge-full
simlarge-roi

simmedium-full
simmedium-roi

simsmall-full
simsmall-roi

Figure 3: Maximum speedup measured on M8, M32, and M48, for each benchmark, region, and input set combination. The best
is Blackscholes ROI with native input that has a 43 times speedup. The worst is Raytrace full with simsmall that has a 1.1 times
speedup.

caused by differences in the input set data. Dedup performs
deduplication, and simlarge achieves 2.38X compression fac-
tor, while native, simmedium, and simsmall achieve 1.05X,
1.06X, and 1.09X compression respectively.

Facesim has much lower scalability for the simulation input
than for the native input set for both full and ROI. The lower
scalability of full is explained by the fraction of the bench-
mark that is in the ROI. Since simulation and native inputs
both process the same frame we expect the differences be-
tween the scalability of the two inputs are related to additional
initialization overhead that is included in the ROI time but not
amortized over multiple frames.

Ferret also has much lower scalability for the simulation
inputs than for native. It uses pipelined parallelization, but
the first and last stages in the pipeline only spawn a single
thread. We experimented with removing these stages from
the ROI, but that did not improve the ROI scalability for the
simulation inputs. Bienia [5] notes that the simulation inputs
for Ferret have less opportunity for parallel execution, while
Pusukuri et al. [22] found that the speedup for the native input
set was limited by lock contention. Although we do not have a
definitive explanation for the scalability difference, we do note
that the simulation inputs reach their maximum speedup much
earlier than when using the native input, and this maximum
speedup is much lower than when using native inputs.

Fluidanimate’s low scalability for full execution of the
simulation inputs is explained by the lower fraction of the
benchmark in the ROI. However, even for the ROI the scala-
bility of the simulation inputs is lower than that of the native
input set. We suspect this is due to the thread communication
overhead that is proportional to the number of particles in the
input set, and so the overhead is more for the smaller input
sets. It is also noteworthy that the speedup of simsmall on
M48 drops when increasing from 16 to 32 threads.

Freqmine is another benchmark with much lower scalabil-

ity for the simulation inputs than the native input set. Both the
native and simulations inputs have a high percentage of their
work included in the ROI. However, freqmine uses OpenMP
and we suspect that the smaller simulation inputs have their
scalability constrained by the serial portions of the workload
and that the parallel loops are too small to provide much
speedup.

Raytrace has extremely limited scalability for the full exe-
cution because of the low fraction of the benchmark in the ROI.
Increasing the number of frames from the 200 used for the
native input set to 2,000 increases the maximum speedup from
3.5X to 16X. Consequently we recommend that any studies
using full execution should use a larger input set than native. It
is also noteworthy that the ROI for the simulation inputs does
not scale nearly as well as the native input set, particularly for
simmedium and simsmall.

Streamcluster uses barrier based synchronization, and the
scalability for simmedium and simsmall is much worse than
for native. On M48, running simsmall with 48 threads is 68
times slower than running with 1 thread. Of even greater
concern, the maximum speedup for simsmall on M48 occurs
when the PARSEC minimum thread parameter is 2, and af-
terwards the performance worsens as more threads are added.
Roth et al. [24] observed similar behavior and attributed it to
inefficiency in the barrier synchronization.

Swaptions has very similar scalability for the ROI and the
full program. The simulation inputs also match native scal-
ability at some points but diverge at others. The application
itself has a stairstep type of scalability caused by an imbal-
ance in workload distribution between the threads. Earlier
papers [22, 24] also identified this problem and our results add
further confirmation to their observations.

Vips also uses a pipelined parallel programming model
with two threads for performing I/O and then n threads for
processing the data, and we suspect this is what causes worse

6

Native Full

Native ROI

Simlarge Full

Simlarge ROI

Simmedium Full

Simmedium ROI

Simsmall Full

Simsmall ROI

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

blackscholes (M8)

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

blackscholes (M32)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

blackscholes (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

bodytrack (M8)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

bodytrack (M32)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

bodytrack (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

canneal (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

canneal (M32)

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

canneal (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

dedup (M8)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

dedup (M32)

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

dedup (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

facesim (M8)

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

facesim (M32)

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

facesim (M48)

Figure 4: Speedup of blackscholes, bodytrack, canneal, dedup, and facesim for all input sets for both ROI and full on M8, M32,
and M48. Benchmarks are grouped in rows and systems are grouped in columns. Native, simlarge, simmedium, and simsmall
inputs are marked with a square, circle, triangle, and diamond mark respectively, and full are solid while ROI are hollow.

7

Native Full

Native ROI

Simlarge Full

Simlarge ROI

Simmedium Full

Simmedium ROI

Simsmall Full

Simsmall ROI

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

ferret (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

ferret (M32)

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

ferret (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

fluidanimate (M8)

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

fluidanimate (M32)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

fluidanimate (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

freqmine (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

freqmine (M32)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

freqmine (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

raytrace (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

raytrace (M32)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

raytrace (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

streamcluster (M8)

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

streamcluster (M32)

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

streamcluster (M48)

Figure 5: Speedup of ferret, fluidanimate, freqmine, raytrace, and streamcluster. The data is presented using the same formatting
as explained for Figure 4. In some cases the full and ROI speedup for an input set is the same, so only one set of markers is
visible because they completely overlap.

8

Native Full

Native ROI

Simlarge Full

Simlarge ROI

Simmedium Full

Simmedium ROI

Simsmall Full

Simsmall ROI

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

swaptions (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

swaptions (M32)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

swaptions (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

vips (M8)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

vips (M32)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

vips (M48)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

PARSEC minimum threads parameter

x264 (M8)

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

S
p
e
e
d
u
p

PARSEC minimum threads parameter

x264 (M32)

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45

S
p
e
e
d
u
p

PARSEC minimum threads parameter

x264 (M48)

Figure 6: Speedup for swaptions, vips, x264, presented using same formatting explained in Figure 4.

scalability for smaller input sets. Bienia’s dissertation [5] notes
that the size of the output buffers can limit parallelism, and that
this problem may be corrected in future versions of PARSEC.
Although most of our tests used the benchmark code from
PARSEC 3.0, for vips we reverted to PARSEC 2.1 because the
source code for PARSEC 3.0 was missing ROI annotations.
After noting Bienia’s comment we also experimented with the
vips source code in PARSEC 3.0, but our preliminary results
show the same behavior as PARSEC 2.1.

x264 also has much lower scalability for the simulation
inputs than for the native input set. The x264 application
compresses an input video stream, and the simulation inputs
have fewer and smaller frames than the native input. The
smaller inputs have more dependencies between frames, and
this limits the overall potential for achieving parallel speedup.

5. Related Work
Christian Bienia’s 2011 dissertation [5] is the most comprehen-
sive study of the PARSEC benchmarks and extends material
published earlier [4, 6, 7, 8]. The characterization of PARSEC
in Bienia’s work relies on simulation and is intended to be

machine independent. In contrast, our characterization is done
using real machines and we focus on runtime as performance
metric of interest.

Pusukuri et al. [22] developed Thread Reinforcer to pick
an optimal number of threads for a parallel application. They
evaluated their proposal using 8 of the 13 PARSEC bench-
marks running on a 24-core system. They used the native
input sets for their evaluation, and like us, found that the
maximum speedup of the full execution of blackscholes and
canneal was limited due to the fraction of serial code. Part of
the motivation for our study was noting differences in Bienia
and Pusukuri et al.’s characterization of PARSEC’s scalability.

Several other papers have also studied the problem of thread
scheduling and included characterization of some of the PAR-
SEC benchmarks as part of their evaluation [17, 18, 19, 20,
21, 23, 25].

There are also several papers that characterized the perfor-
mance of PARSEC. Like us, Bhadauria et al. [2] studied the
scalability of PARSEC workloads using real machines, but
they did not compare different input sets, or ROI and full pro-
gram execution. Barrow-Williams et al. [1] analyzed commu-

9

nication patterns between threads in PARSEC and SPLASH
using Simics. Bhattacharjee and Martonosi [3] analyzed TLB
behavior of PARSEC benchmarks using a combination of na-
tive execution and simulation. Ferdman et al. [15] analyzed
the single threaded performance of a variety of benchmark
suites including PARSEC. Cebrián et al. [10, 11] proposed
extending PARSEC with better support for SIMD hardware.
Bryan et al. [9] examined how synchronization overhead and
other system-level effects limited the potential scalability of
PARSEC 1.0 benchmarks.

Several papers have also analyzed the scalability of some
of the PARSEC benchmarks while developing techniques to
find performance bottlenecks in parallel applications [12, 13,
14, 16, 24].

6. Conclusion

Benchmarks are a critical part of the quantitative approach to
computer architecture research. But the complex interaction of
the many layers of the computing stack, coupled with the slow
speed of architectural simulators, forces architects to make
approximations when simulating benchmark execution. PAR-
SEC provides reduced size input sets and demarcates a ROI as
ways to reduce simulation time while still approximating the
behavior of the actual workload. In this paper, we presented
the first systematic analysis of the runtime scalability of all of
the input sets for all of the PARSEC benchmarks for both full
program execution and ROI only.

Our results show significant variation in benchmark scala-
bility depending on parameter selection. When calculating the
maximum benchmark speedup on a 48-core system the aver-
age of all 13 benchmarks (calculated using geometric mean)
ranges from 17.3X when measuring the ROI of the native input
down to 3.1X for the full execution of the simsmall input set.
Even when using the ROI only, as suggested by the PARSEC
developers, the average scalability varies (17.3X for native,
10.7X for simlarge, 8.1X simmedium, and 5.4X simsmall).
We also found that the scalability of full and ROI only varies
for 6 benchmarks and is nearly the same for the other 7.

The PARSEC developers state that the native input sets
can be used in cases where users want to measure the entire
benchmark execution rather than ROI only. This is true for
most of the benchmarks, but not for blackscholes, canneal, and
raytrace, which have significant variation in speedup between
ROI and full when using the native input sets. The PARSEC
developers also suggest using as large an input set as possi-
ble, and relying on sampling to accelerate simulation. We
agree that the larger input sets tend to offer better scalability.
However, for several benchmarks the scalability of all the sim-
ulation inputs, including simlarge, is much less than that of
the native input set, even when measuring ROI only.

Users of PARSEC should be aware of the differing be-
havior of PARSEC depending on input and region selection
and should provide information about what parameters were
selected when writing research papers, for the benefit of re-

viewers and other readers. In addition several of the scalability
anomalies that we observed have been identified in the past
and possible solutions have been proposed [24, 22]. How-
ever, the proposed fixes have not yet been incorporated into
PARSEC. We think the research community as a whole would
benefit from having a way to more quickly update PARSEC
with bug fixes and performance improvements.

References
[1] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication

characterization of SPLASH-2 and PARSEC,” in IISWC 2009, October
2009.

[2] M. Bhadauria, V. M. Weaver, and S. A. McKee, “Understanding PAR-
SEC performance on contemporary CMPs,” in IISWC 2009, October
2009.

[3] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB behavior
of emerging parallel workloads on chip multiprocessors,” in PACT
2009, October 2009.

[4] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in IISWC 2008, September 2008.

[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in PACT 2008,
October 2008.

[7] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for chip-
multiprocessors,” in MoBS 2009, June 2009.

[8] ——, “Fidelity and scaling of the PARSEC benchmark inputs,” in
IISWC 2010, December 2010.

[9] P. Bryan, J. Beu, T. Conte, P. Faraboschi, and D. Ortega, “Our many-
core benchmarks do not use that many cores,” in WDDD 2009, June
2009.

[10] J. Cebrian, M. Jahre, and L. Natvig, “Optimized hardware for subopti-
mal software: The case for simd-aware benchmarks,” in ISPASS 2014,
March 2014.

[11] ——, “Parvec: vectorizing the parsec benchmark suite,” Computing,
pp. 1–24, 2015.

[12] S. Dutta, S. Manakkadu, and D. Kagaris, “Classifying performance
bottlenecks in multi-threaded applications,” in MCSoc 2014, September
2014.

[13] D. Eklov, N. Nikoleris, and E. Hagersten, “A software based profiling
method for obtaining speedup stacks on commodity multi-cores,” in
ISPASS 2014, March 2014.

[14] S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks: Identi-
fying scaling bottlenecks in multi-threaded applications,” in ISPASS
2012, April 2012.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: A study of emerging scale-out workloads on modern hard-
ware,” in ASPLOS 2012, March 2012.

[16] W. Heirman, T. Carlson, S. Che, K. Skadron, and L. Eeckhout, “Us-
ing cycle stacks to understand scaling bottlenecks in multi-threaded
workloads,” in IISWC 2011, November 2011.

[17] J. Lee, H. Wu, M. Ravichandran, and N. Clark, “Thread tailor: Dy-
namically weaving threads together for efficient, adaptive parallel
applications,” in ISCA 2010, June 2010.

[18] R. Moore and B. Childers, “Inflation and deflation of self-adaptive
applications,” in SEAMS 2011, May 2011.

[19] ——, “Using utility prediction models to dynamically choose program
thread counts,” in ISPASS 2012, April 2012.

[20] ——, “Program affinity performance models for performance and
utilization,” in DATE 2014, March 2014.

[21] A. Navarro, R. Asenjo, S. Tabik, and C. Caşcaval, “Load balancing
using work-stealing for pipeline parallelism in emerging applications,”
in ICS 2009, June 2009.

[22] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, “Thread reinforcer:
Dynamically determining number of threads via OS level monitoring,”
in IISWC 2011, November 2011.

[23] ——, “Thread tranquilizer: Dynamically reducing performance varia-
tion,” TACO, January 2012.

[24] M. Roth, M. J. Best, C. Mustard, and A. Fedorova, “Deconstructing
the overhead in parallel applications,” in IISWC 2012, 2012.

[25] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient, parallel
execution of parallel programs,” in PLDI, June 2014.

10

