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Abstract—Near Threshold Computing (NTC) has the po-
tential to significantly improve efficiency in high throughput
architectures like GPGPUs. Nevertheless, NTC is more sensi-
tive to process variation (PV) as it complicates power delivery.
We propose GPU Stacking, a novel method based on voltage
stacking, to manage the effects of PV and improve the power
delivery simultaneously. To evaluate our methodology, we first
explore the design space of GPGPUs in the NTC to find a
suitable baseline configuration and then apply GPU Stacking to
mitigate the effects of PV. When comparing with an equivalent
NTC GPGPU without process variation management, we
achieve 37% more performance on average. When considering
high production volume, our approach shifts all the chips closer
to the nominal non-process variation case, delivering on average
(across chips) ≈ 80% of the performance of nominal NTC
GPGPU, whereas when not using our technique, chips would
have ≈ 50% of the nominal performance. We also show that
our approach can be applied on top of multi-frequency domain
designs, improving the overall performance.

Index Terms—Process Variation, Voltage Stacking, Near-
Threshold Computing, GPGPUs

I. Introduction
Near Threshold Computing (NTC) is a circuit design

technique used to reduce the power envelop used by a
design and thus improve energy efficiency by reducing
the operating voltage to near the threshold voltage of the
transistors employed [1]. Although more energy-efficient,
NTC devices usually do not present as high performance
as their non-near threshold counterparts. However, it
has been shown that the performance impact resulting
from NTC can be mitigated through parallelism. An
ideal candidate for such operation is a GPU [1], [2], [3].
Nonetheless, NTC makes the system more sensitive to
process variation [4].

To manage the additional sensitivity to process vari-
ation (PV) introduced by NTC, some researchers have
proposed frequency scaling [5] or having multiple voltage
domains [6]. Having multiple voltage domains requires
additional power rails which will further exacerbate the
current delivery problem. Multi-frequency domains [7]
have been shown to moderately mitigate the problem of
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PV effects on energy and performance in many-core NTC
designs.

Voltage stacking improves the efficiency of power de-
livery [8]. When n units are stacked, they are placed
in a series fashion, rather than the conventional parallel
scheme. Thus, the current in the power delivery network
is reduced by a factor of n in a system. This allows voltage
regulators (VRs) with increased efficiency, smaller areas
and fewer package pins dedicated to power [9]. Voltage
stacking has been applied to CPUs [8], GPUs [10], and
SRAMs [11].

However, in this work we look at voltage stacking from
a different perspective. We note that voltage stacking can
compensate for PV effects. The proposed GPU Stacking
methodology lets the voltage node between the stacked
elements (VMID) float.1 This floating node is the key to
PV compensation. GPU Stacking alleviates the current
delivery challenges, and intrinsically mitigates PV effects
without requiring multiple voltage domains. GPU Stack-
ing automatically creates a voltage domain per level in the
stack without the cost of multiple power rails. We build
on top of this premise, and discuss how it can be leveraged
for managing PV.

Voltage stacking of many cores has its own challenges,
among which is the load mismatch between the stacked
cores [9]. Cores go through different phases while running
applications, which can result in transient impedance
mismatch of the stacked cores, and yield timing failures.
As a result, stacking is successful when the cores have
a matching workload. GPGPUs are instances of such de-
signs. Not only are the cores identical, but the applications
running on them are roughly homogeneous2.

The evaluation of GPU Stacking is carried out in the
near threshold region. Although the use of this method in
the near threshold region is proposed, it is not a require-
ment. The use of NTC in this research study is justified
by the increased sensibility of NTC to process variation
effects. The first part of this experiment consists of finding
the ideal GPU configuration for the NTC region. By
carefully sizing the GPU to NTC, power consumption is
reduced by 43% with only 4.8% performance degradation
compared to the baseline.

Based on our experiments, there is a potential for self
balancing in the stacked configuration. We observe that
stacking of cores with opposing PV trends is a better

1For safeguarding reasons, a few voltage regulators are used to cap
the maximum and minimum levels of voltage but the voltage does
float between maximum and minimum values.

2Even though divergence exists in modern GPUs, the amount of
load mismatch observed in traditional GPGPUs benchmarks can be
handled by our technique, as it will be shown in our evaluation.
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choice to gain the best self balancing results. This study
proposes the stacking of SIMD Lanes, because having a
large number of lanes provides more opportunities for
PV compensation. Analyzing several PV maps, GPU
Stacking shows that it is able to deliver, on average,
≈ 80% of the nominal performance in a multi-frequency
domain scenario (as opposed to ≈ 60% in a non-stacked
configuration). This represents a reduction of about 30%
in the effects of process variation even after using a multi-
frequency domain based compensation of process variation
effects. When not considering the multi-frequency domain
scenario, the reduction in process variation impact is even
more important, around 37% of the process variation
effects are compensated. This compensation is mainly due
to an uneven voltage distribution that considers the PV
of cluster of lanes. For a nominal voltage of 0.6V, the
observed voltage was in the range of 0.602V to 0.65V for
lanes negatively affected by PV, and in the range of 0.55V
to 0.598V for lanes positively affected by PV.

The floating Vmid node could be a source of problems
in cases of extreme load mismatch, or high temperatures.
Thus, we propose the use of Dummy Activity (DA), and
a small voltage regulator to keep the voltage within safe
operational margins (i.e., to avoid voltage starvation in
one of the levels). We use SPICE simulations to verify
the reliability of the power delivery network (PDN), and
show that GPU Stacking does not incur extra voltage
noise. In our simulations, DA and the additional VR were
not required, given the stability of the operational voltage.

The main contributions of this paper are:
• The first study to show how voltage stacking allevi-

ates PV effects.
• The first study proposing stacking with an uneven

voltage division (VMID).
• A study to propose a technique to make the post-

silicon configuration of the design feasible.
The remainder of this paper is organized as follows.

In Section II, we discuss related work in a few different
topics: voltage stacking, PV mitigation effects, NTC and
energy efficiency in GPUs. Then, in Section III, we
briefly present background information needed to the
understanding of this work. We present the GPU Stacking
model in Section IV. Finally, we discuss the experimental
setup in Section V and results in Section VI. We wrap-up
on Section VII.

II. Related Work
We divide our related work into a few categories.

We start discussing prior approaches for voltage staking.
Then, we follow presenting other techniques to mitigate
PV effects. Finally, we discuss work on NTC and energy
efficiency for GPUs.

Voltage Stacking: As supply voltage decreases, the
efficiency of power delivery components degrades [9]. On-
chip voltage regulators [12] have been proposed to increase
the PDN efficiency, as well as the series configurations
of units rather than parallel [13], [14], [8]. Such config-
urations are known as Multi-Story Power Delivery [13],
charge recycling [14], or voltage stacked systems [8]. Our
proposed technique, GPU Stacking, depends on a series
configuration of cores, yet for a different purpose. Note

that no previous research on voltage stacking exploits the
stacking method to control or neutralize PV effect.

Process Variation mitigation: PV increases as feature
size shrinks. And lowering Vdd, as a power management
technique, further exacerbates the PV effects. Lee et
al. study the impact of frequency variation on the
throughput of a GPGPU [15]. Adaptive Body Bias (ABB)
leverages the power-performance trade-off to manage PV
effects [16]. Slower devices due to PV, can run faster by
consuming more power, and vice versa. Adaptive Supply
Voltage (ASV) is another technique, where supply voltage
of a region in the design is adjusted to compensate for
performance loss due to variation. ABB and GPU Stacking
are orthogonal techniques, and could be used together,
although ABB efficiency is expected to reduce with
technology scaling [7]. Similarly to ASV, our technique
provides a custom supply voltage to each stacking cluster
to compensate for process variation.

NTC: An extensive amount of research targets increas-
ing the power/energy efficiency of processors. Apart from
the many proposed techniques of how to reduce the
utilization of resources [17], [18], or how to promote the
use of more power efficient structures [19], [20], there are a
significant number of proposals that attempt to utilize the
power-performance trade-off. DVFS and Power Gating are
among the techniques widely studied at an architectural
level, for the same purpose [21], [22]. Intel Turbo Boost
technology is another example of utilizing voltage and
frequency scaling to adapt to runtime conditions.

Dreslinski et al. [1] study devices for near threshold
operation, and Chang et al. propose the optimization of
device parameters for NTC [2]. They propose a slightly
modified SRAM cell to address the stability challenges in-
troduced in near threshold regions. Lower Vdd exacerbates
the effects of process variation. Another study of NTC in
many cores where they argued in favor of fine-grained core
assignment and DVFS [7].

Energy efficiency in GPGPUs: With the rising popular-
ity of GPGPUs, several research groups discuss strategies
to make them more energy efficient [23], [24], [25], [26].
Lee et al. study the impact of frequency variation on the
throughput of a GPGPU [15]. This methodology, however,
is the first to extend the evaluation to NTC trade-offs
and it is an extension of previous research addressing
NTC challenges. Massive data parallelism and extremely
repetitive nature of the GPGPU applications is leveraged
to adapt the operational region and configuration to the
runtime application demand.

III. Background
This section briefly describes background concepts re-

lated to Voltage Stacking, PV and NTC that are needed to
better understand this work. We also go over the micro-
architecture of a GPU, giving special attention to the
details relevant to this paper.

Figure 1 depicts two power delivery schemes, the con-
ventional power delivery scheme (Figure 1-a) has all the
elements in parallel. The elements can be interpreted as
individual gates, functional units within a core, a whole
core, and so forth. The stacked power delivery scheme
has elements in series, in the case show in the figure,
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the number of stacking levels is two, since there are two
elements stacked. In general, for voltage stacking, this is
not a requirement, but in this paper we only consider two
levels. In a voltage stacked system, the power delivered
is the same as in the conventional case, but the delivery
voltage is multiplied by n, the number of stack levels, and
the current is divided by n, on average [8].

Assuming that the power consumed by each element
is the same, the voltage across each element is equal to
the nominal Vdd. Because roughly half the current flows
through the system, the power delivery subsystem could
operate more efficiently [9]. However, this is not always the
case. When a full core is stacked on top of another, the
activity on each core will depend on the program running,
and will create a mismatch between the stack levels and
make Vmid shift from Vdd. This problem has been solved
in different ways in the literature, for instance by inserting
an extra voltage regulator [8], partitioning a core in units
that have correlated power consumption [9], or by stacking
memory arrays for SRAM application [11].
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Fig. 1. Conventional vs. stacked power delivery mode

In this work, we use GPGPUs, which contain a large
number of identical cores operating in lock-step, running
the same program. This provides a very good starting
point for voltage stacking. We note that “divergence” can
occur and we address divergence later in this paper.

A. General Purpose GPU
In this section, we explore the micro-architecture of a

GPU. General purpose computing on graphic processing
units (GPGPU) is becoming pervasive as it provides
excellent computing power for massively parallel appli-
cations. GPGPUs are mainly designed as a cluster of
simple processors, depicted in Figure 2. Identical simple
processors (lane3) operate in lock-step inside a stream
multiprocessor cluster (SM), running identical threads
(though processing different data).

The homogeneous structure of GPGPUs, both in hard-
ware and application, makes them suitable for voltage
stacking in order to manage process variation. GPU
Stacking stacks lanes inside SMs. All the other structures
remain in a conventional configuration. The choice of
stacking lane provides room for more configurability, due
to the larger number of lanes. It also provides a fine-
grained mitigation of process variation, while at the SM
level, techniques like multi-clock and multi-voltage domain
are possible.

3Some authors use the term lane to refer to each of the small
execution cores within what we call a SIMD lane. We use the same
definition as Gebhart et al. [27], and thus count one lane per
load/store unit. This leads to a lane count 4× smaller than what is
advertised for commercial GPUs.
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Fig. 2. GPGPUs present a large number of identical SIMD lanes,
ideal for stacking.

B. Process Variation Model and Effects
So far, we have mentioned PV without specifying how

PV can affect a chip. Process variation is the deviation
from nominal specifications of a chip due to the difficulty
of precisely control the fabrication process of a chip,
especially at small feature sizes, e.g., lithographic lens,
dopant density fluctuations, and others. Variation can
be divided in two categories: systematic and random.
From a design point of view, they differ on the gran-
ularity at which they occur. Random variation occurs
at the transistor level. Systematic variation occurs at a
much coarser granularity: within-die (WID) and die-to-
die (D2D). Significant variation can be seen on the order
of half the chip length [4]. Overall, random variation
ends up being averaged out across a few gates in a path
since statistically, positive and negative variation will be
observed in that path.

D2D variation cannot be addressed with on die tech-
niques, since the whole die is biased towards a process
corner. Therefore, this work aims to address WID varia-
tion. WID affects blocks in different regions of the design
differently. This makes that each clock region is limited
by the slowest block within it.

For a MOS transistor gate delay can be formulated as
follows, where Vdd is the supply voltage to the core, Leff

is the effective channel length, K and M are fabrication
constants [4].

delay ∝ Vdd × Leff

K × ln2(eM×(Vdd−Vth) + 1)
(1)

Due to the exponential component with the (Vdd−Vth)
term, the gate delay exhibits more sensitivity to Vth

variation at supply voltages close to Vth. The delay
variation with regard to Leff however is linear. This is
particularly important for NTC applications, since Vth will
have more effect in those cases.

C. NTC and Power Performance Trade-off
The main argument for the adoption of NTC is its

energy-efficiency in terms of energy per-operation [4]. This
is because, frequency has a linear relationship with the
voltage down to the near threshold region, while power
is reduced in a cubic relationship with voltage. Thus, for
instance, going from 1V to 0.5V, the device delay increases
by factor of 2, while the power is lowered to (1/2)

3 of
the original value which results in a reduction of energy
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consumption, as a product of power and delay, to (1/2)
2

of its original value.
The performance loss can be compensated with extra

resources to support more parallelism. If we consider 2×
more resources to compensate for the 2× increase in
delay, the power would increase by a factor of 2, and the
delay would decrease by half, leaving the energy reduction
unchanged. So ideally, without considering the impact of
PV and faults, energy consumption can be cut to (1/2)

2

for the same performance target.
However, as mentioned, the effects of PV, in particular

of Vth variation, are exponential with (Vdd−Vth), meaning
that the effect of variation is more significant at lower
voltages. Therefore, our approach is particularly useful in
NTC applications.

IV. GPU Stacking
In this section, we take a bottom-up approach to

construct the GPU Stacking model. We start by analysis
the fundamentals of how stacking can help mitigate PV
effects, and build upon that to get to the stacked GPU.

A. Process Variation Compensation with Voltage Stacking
GPU Stacking provides a unique opportunity to manage

the effects of process variation. An increased channel
length (Leff ) or an increased threshold voltage (Vth) due
to process variation will result in higher impedance of the
channel and slower device.

In a conventional parallel power delivery system, the
adverse process variation results in a lowered current Iini

through the corei, as Iini = Vdd/Zi
4. Since gate delay is

inversely proportional to the Iini, it will result in a higher
delay and a slower core. To compensate for the lower Iini,
higher voltage can be applied to the core, or the body bias
could be adjusted to reduce the gate delay. In short, the
adverse effect of process variation can be compensated by
delivering higher voltage.

In a stacked configuration, the same current Ic passes
through different stack levels. Therefore, higher impedance
of corei, due to adverse process variation, results in a
higher voltage across it (Vi = IcZi).

Equation 2 shows the voltage across each core. Index i
is the core or lane number. Depending on the switching
activity of the circuit, the equivalent supply to ground
impedance of a core changes during execution. This will be
referred to as Z(t). Process variation will bias Z according
to the magnitude of the variation. Switching activity (or
the running application) will change the transient aspect
of Z. Using a performance and power simulator, we can
obtain the core power traces and when physical dimensions
of the PDN are given, using a circuit simulator, we can
analyze the impedance change over time [28]. In our
experiments, since the power consumption changes over
time, the impedance of the circuit has also varied over
time.

4Z(t) = R(t) + jX(t). The real component R defines the rela-
tionship of the magnitudes of I and V , and the complex component
X affects the phase of V and I. In VLSI circuits the switching of
the core will cause complex effects and thus phase change. To avoid
impedance effects we discuss adding extra coupling capacitors.

Vi(t) = Vin(t)×
Zi(t)∑
Z(t)

(2)

Utilizing the inherent feature of stacking is a key
contribution of this work. The core with higher impedance
due to adverse process variation will have a higher voltage
drop across its power terminals. This results in a core
speed up, relative to its speed without the higher voltage
and with respect to a conventional power supply system,
as delay is inversely proportional to the voltage. This, of
course, comes at the cost of a lower speed for the other core
in the stack. So stacking enables the slower core to run
faster, relative to its speed in a conventional configuration,
at the cost of the faster core running slower. In other
words, the effects of process variation are intrinsically
balanced in a stacked configuration.

Ideally, the variation effects in a stacked configuration
converge to an average variation. For this simplistic exam-
ple, let us assume linear effects of PV5, then one can expect
the frequency of the stacked cores to converge to the
average of the two cores in a conventional configuration.
For example, a core with 10% variation compared to the
nominal value runs at 0.9f in a conventional configuration,
and a core with -10% variation runs at 1.1f . Stacking these
cores would result in both cores exhibiting delay properties
similar to the nominal values and run at about the nominal
frequency (+1.1f+0.9f

2 = f). After all, the nominal value
is nothing more than the mean properties across all the
samples. A non-symmetrical example, would have non-
ideal compensation, e.g., c1 = 0.8f and c2 = 1.1f would
result in an average of 0.9f , which is better since the cores
would have to run at 0.8f if stacking was not applied.

Now, we apply this reasoning to a SPICE simulation of
a toy circuit, to test how this compensation works in a sim-
ple circuit. SPICE simulations (at 45nm technology [29])
are performed for an example case where inverters are
configured in conventional and series with two stack levels.
The test circuit consists of an inverter driving 4FO4, to
exacerbate the delay effects with such a small circuit. The
stacked configuration is supplied with 1.2V . We test three
configurations: nominal (ref), not stacked with PV (PV),
stacked with PV (s-xxxx). For the stacked configuration,
the variation is set to affect the header inverter positively
(i.e., shorter Leff , thus faster), and the footer negatively
(i.e., longer Leff , thus slower).
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Fig. 3. Stacked configuration (S − foot and S − head) intrinsically
mitigates the variation effects. These signals are closer to the case
without process variation ref , than the non-stacked baseline PV .
Since Vmid has shifted, there is more voltage available for the slower
part of the design.

In this example, there is a 20% process variation in
effective channel length (Leff ). If the channel length

5This is not considered in our evaluation.



5

increases, the response time will be slower than the
nominal non-variation case (lines PV and ref at the
bottom of Figure 3). And if the channel shortens, the
opposite effect will be observed (PV will be faster than
ref at the top of Figure 3). However, this also implies
different power consumption for each, as seen above.

The simulation results show that with voltage stacking,
the voltage rail between the two levels of the stack
(Vmid−pv) settles around 0.63V. This is because the header
transistors have less resistance due to the shorter Leff .
The header transistors are effectively supplied with 1.2V
- 0.63V = 0.57V, and the footer transistors with 0.63V.
In this case, there is a mitigation of the delay variation,
shown by S − head and S − foot, which are closer to the
scenario without process variation. This is a reduction of
more than half the delay variation introduced by process
variation. Next, we evaluate the effects of Vth variation
on the inverter delays. The same scenarios are simulated,
except that this time the variation is on Vth. The transient
response for this case is similar to that of Figure 3, and
thus the graph is not included.

Figure 4 summarizes all the experiments for different
variation values from -20% to +20%. We evaluate both
Leff and Vth. Note how the delay variation is smaller
with the use of stacking. Only one line is presented for
the stacked configuration, since the stack position (header
or footer) does not change the result.
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Fig. 4. Mitigation of the variation effects compared to conventional
configuration.

The SPICE model confirms the premise of intrinsic
mitigation of process variation in stacked configuration.
Throughout the text, “variation” refers to the combination
of the effects of different sources of process variation,
and its total effect on the frequency is measured, unless
otherwise specified. However, as could be expected, the
compensation is not ideal, being specially suboptimal for
Vth, due to the non-linearity dependency between delay
and Vth.

B. Which Lanes to Stack?
Now that we established how PV effects can be com-

pensated by voltage stacking, we look into the problem
of how to decide which GPU lanes should be stacked for
optimal results. Stacking neighboring lanes can mitigate
the process variation effects regionally. For example,
consider the die shown in Figure 5. The figure shows four
lanes with differing amounts of variation compared to
the nominal properties. Stacking the lanes based on their
adjacency (i.e., lane 1 and 2 as one stack, and lane 3 and
4 as another) will help mitigate the worst case variation

(i.e., 20%). The 1-2 stack would operate at about -15%
of the nominal frequency ((1.1f + 1.2f)/2 = 1.15f , in
practice the attenuation would be less). The 3-4 stack
would operate at about 15% of the nominal frequency
((0.9f + 0.8f)/2 = 0.85f). The actual frequency must be
that of the slowest stack.

1

-20%

3

10%

2

-10%

4

20%

Fig. 5. Sample die with 4 lanes and different variations.

For the best results, however, the stacking configuration
has to be determined based on the observed variation,
i.e., to stack a lane adversely affected by variation with
a lane positively affected. For example, stacking lane 1
and lane 4 together, and lane 2 and lane 3 as another
stack would result in each running at about the nominal
frequency. The best strategy is to cluster, in each side
of the stack, lanes minimizing the standard deviation of
variation (the rationale is that lanes with similar process
variation require approximately the same compensation).
Then, the cluster with maximum process variation average
in the header should be stacked with the one with
minimum negative variation in the footer. However, this
might not be trivial to find, since the number of possible
combinations is large. A simpler approach, used in this
study, is to have the same number (for instance N)
of lanes in all the clusters. The clustering is made by
simply picking the N lanes with maximum variation in
the header and clustering them with the N lanes with
negative variation in the footer. The process is repeated
for the remaining lanes. This simpler approach works fine
in the level of lanes, since their spatial proximity causes
similar variations. Note that although this example shows
an optimal case with opposite variations having the same
magnitude, this is not a requirement.

Since the variation is not known until after fabrication,
a configurable fabric is needed to group and stack the
lanes based on the observed variation. We adapt the idea
of a configurable power delivery fabric [14], [30] to allow
the connection of lanes that are not neighbors, because
in terms of variation management, neighboring lanes are
most likely, affected similarly. Our proposed fabric capi-
talizes on the fact that GPU Stacking is actually better
suited for the connections of logic with opposite variation
effects. Note that this may cause a problem, given that
it increases the path from Vdd to Gnd. Thus, there is
a design trade-off here: on one hand, the compensation
would be better if the stacked logic were farther apart
in the chip, on the other hand, if this distance is larger,
the voltage droop due to voltage rails and switches is
increased. That is another reason why stacking lanes is a
good design choice as opposed to stacking SMs. Lanes are
well constricted in space, within the SM, while SMs will
be farther apart in the chip, still an SM is large enough
to be used for the purposes of GPU Stacking, i.e., there
is enough variation in the SM to allow for the type of
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compensation we aim, as observed in our evaluation.
To simplify the design, we propose to cluster the

stacking of lanes. The clustering is a trade-off between cost
and complexity. To cluster lanes for stacking, we define
Shared Net. Shared Net is a common net that connects a
number of lanes. For example, Vdd is conceptually a shared
net. However, we specifically use the term Shared Net for
an intermediate net that connects a number of lanes in a
stacked configuration (Vmid). The number of Shared Nets
is a design parameter and changes the trade-off between
area and compensation granularity (more Shared Nets
result in a more fine-grained compensation).

Vdd

Gnd

C1 C2 C3

C4 C5 C6

(a) Stacked

Vdd

Gnd

C1 C2 C3

C4 C5 C6

S-Net
VR

(b) 3 Shared Nets
Fig. 6. Shared Net configuration simplifies stacking and supports
post-fabrication configurability.

Figure 6a shows a two-level stacked configuration of
six cores with no shared nets. The stacking configuration
is static, and is determined at the design time. As the
variation is not known at the design time, and there
is a spatial correlation in the variability, this scheme
is not likely to provide the compensation opportunities.
Figure 6b shows the design with three Shared Nets. To
simplify the proposed design, each lane is fixed to either
header or footer at design time. This choice certainly
reduces the freedom of the system, but because there are
several lanes per SM, the loss is minimal. The resistance in
Figure 6b Shared Nets is not modeled in this study. The
scheme is similar to a multi-power domain case, where
multiple voltage rails are present and each part of the
circuit connects to a different rail. The configurability only
applies to the intermediate nets.

The number of Shared Nets is determined at design
time based on the expected variation of the technology,
or the severity of variation effects on the design metrics
and to the level they need to be managed. This decision
has to be based on the variation profile for the fabrication
technology. Given the knowledge on the variation, it is
possible to calculate the expected power consumption
for a block (in relative terms), e.g., using Varius-NTV
models [4], the power information can then be used to
calculate the expected Vmid voltage for a given stacking
configuration, which can finally be used to calculate the
expected performance. The decision on the number of
Shared Nets is then a trade-off between the cost of adding
an extra Shared Net and the extra performance boost
gained. This is explored in our evaluation.

During post-silicon testing, each lane can be tested
to characterize the observed variation for that particular
lane. This increases binning time, but current chips al-
ready undergo this type of testing for speedgrade purposes.

Once the effect of variation is known for each die, the lanes
can join a cluster based on their observed variation. Note
that the clustering is static and done once in the lifetime
of the chip in a calibration step, right after fabrication.
To allow for the post-silicon configurability, an array of
power transistors or fuses can be used between each lane
and each Shared Net. Power transistors are present in
modern designs for power gating purposes. Although we
did not consider them in this design, the reduced current
passing through them (due to voltage stacking) will largely
reduce their impact on the circuit.

When multiple Shared Nets are present, the clustering
is done by stacking the same number of lanes (namely n)
on each side (foot or head) of the Shared Net. The lanes
are sorted by variation (minimum delay), for both head
and foot groups. The n first lanes in the head group are
stacked with the n last lanes in the foot group. The next
n lanes in each group are stacked together, and so forth.
This configuration will have the maximum compensation
within each SM, as lanes with opposed variation trends
tend to be in opposite sides of the same stack, replicating
the behavior observed in Section IV-A.

C. Divergence and Extreme Conditions
The last component that needs to be addressed is the

presence of diverging code executing in each stack level,
which has the potential to cause power mismatch and
make Vmid to diverge too much from safe levels.

However, Vmid cannot be fixed by the means of an
extra traditional voltage regulator, as it is usually the
case in voltage stacking designs. The process variation
compensation comes from the fact that Vmid is “floating”,
i.e., is not at a fixed frequency. Footer and header groups
have different voltages instead. Nevertheless, it is possible
that due to load unbalance (caused by GPU divergence),
or e.g., , extreme temperature conditions, the voltage
difference is such that either level has not enough voltage
to guarantee correctness. We call this “voltage starvation”.
We propose different mechanisms to handle such scenarios.

Dummy-activity is inserted through the activation of
parts of the lane that are not being used. For instance, if
divergence is observed for long periods of time, this could
shift the voltage towards the most active lanes. This shift
can be canceled by adding activity in inactive lanes, or
inactive parts of lanes. When Dummy-activity is inserted,
the lane does not commit any change to the architectural
state, nor does it execute stores, for obvious reasons.

“Lane turn-off” is a more drastic measure for extreme
cases. In this case, there is no scheduling for one of the
lanes in the level consuming more power than expected.
This can only be done in architectures where each lane
within the SM can execute different code, and would
require awareness in the scheduler to be able to maintain
correctness. The actual “turning-off” may be done in terms
of power-gating, which requires lane level power-gating
or in terms of scheduling/clock-gating. If after the first
lane is turned off, there would still be deviation, a new
lane is then turned-off. This could lead to big impact on
performance, thus Dummy-activity is a preferable solution
whenever possible.



7

Scratchpad DL1

lane-j

lane-j+1 lane-2jlane-j+2

lane-0

RF

lane-1
SNETs

VDD2

GND
VDD1

GND

IL1 L2 L3

VR

Fig. 7. GPU Stacking allows a more fine-grained voltage adjustment
per lane.

Additional VRs are used for extreme cases. In the
stacked logic, it is expected to have Vmid floating, however,
within a range that guarantees its functionality. Two small
integrated voltage regulators are used, one pull-up and one
pull-down, which would be activated when Vmid falls below
0.4V or rises above 0.8V, to guarantee correct behavior
and avoid bit flips. Since these regulators only cap extreme
cases, they are not used in regular operations, therefore,
they can be small and their potential inefficiency is not
problematic in the overall design. Since dummy-activity
and lane turn-off have to be implemented in the micro-
architecture level, they are naturally slower, and thus extra
VRs are only used to give enough time for those to be
activated.

The natural candidate for triggering these mechanisms
is Vmid, so in the case of the architectural mechanisms,
the scheduler needs to be aware of the voltage during the
regular operation of the GPU. VR is always connected
and is triggered without any architectural intervention. In
our experiments (details in Section VI), those mechanisms
were never activated for any of the benchmarks tested,
even when divergence was observed (for instance in BFS).

D. Final Design
In this section, we present our GPU Stacking final

design. GPU Stacking does not change GPU organization
(Figure 2), nor does it affect the placement. GPU Stacking
divides the GPU into different power domains, one for
non-stacked structures (e.g., caches, shared memory), and
one “super” power domain with the stacked lanes (and
associated register files). It is a “super” power domain
because, to be precise, each stack is a power domain
of its own, but this is not known before fabrication.
Figure 7 shows the proposed micro-architecture, from a
power delivery perspective. The figure shows a solution
with four Shared Nets.

We adopt the stacked SRAMs previously proposed [11]
(RF in Figure 7). Note that the SRAM stacked design has
read and write ports at nominal voltage, and thus level
shifters need to be added for read and write to the register
file. There are multiple options available for level shifters
suitable for voltage stacking [31], with different trade-offs
between area, power and performance.

One concern about GPU Stacking is the area overhead
due to Shared Nets. Introducing extra Shared Nets could

increase the total amount of metal dedicated to power
rails. On the other hand, GPU Stacking decreases the
overall current of the chip and metal from Vdd and Gnd
rails could be reduced.

Let mb be the total metal budget for power rails
in a chip. For a 2-level stacked system (as the one
proposed here), the overall current is reduced by half
Istack = Ibase/2. Thus, Vdd and Gnd could have roughly
half the metal budget as needed in the baseline6 (mb/4
for each). For a system with n Shared Nets, each Shared
Net takes Istack/n current. Thus, each Shared Net needs
≈ n times less metal than Vdd (mb/4/n). Consequently in
GPU Stacking, the total metal budget for power rails is
mvdd+mgnd+msnets = mb/4+mb/4+n·mb/4n = 3/4·mb.
In other words, in a GPU Stacking configuration it is
possible to reduce the amount of metal dedicated to power
rails. In our evaluation, we assume that the metal budget
is kept constant instead (i.e., Vdd and Gnd metal is reduced
by 1/3 only), which in turns helps improving the PDN by
reducing the resistance.

This solution is suitable for systems not bound by power
density. However, if power density becomes an issue, a
more elaborated power delivery network would be needed.
It could be achieved by the observation that each lane
only taps either Vdd and Shared Net or Gnd and Shared
Net. Thus, it is possible to reduce the amount of tracks
dedicated to the unused rail on top of each lane and
increase the density of the relevant rails.

In any case, a more thorough analysis of the area
overhead would be required when implementing a design
that uses GPU Stacking. However, since area overhead is
usually not a major concern in modern chip designs, we
do not put much emphasis in this analyse and leave it as
future work.

V. Experimental Setup
To evaluate GPU Stacking, we start by determining

what is the optimal configuration in terms of SMs and
lanes for a NTC GPU. Non-NTC commercial GPUs vary
in size from 2 to 16 SMs, and can have between 16 and 64
lanes per SM. After deciding on the baseline GPU for our
experiments, we evaluate the potential of GPU Stacking
to compensate for process variation both in performance
and power. Then, we evaluate the reliability of the PDN,
as it is a main concern in voltage stacking proposals.

A. Baseline GPU Choice
A modified version of ESESC [32] is used to simulate

a GPGPU. For power estimation, we use a GPGPU
model developed based on McPAT [33], very similar to
GPUSimPow [34]. McPAT, takes the microarchitectural
activity statistics from ESESC, and calculates the power
consumption of each component. This simulation setup
provides both dynamic and leakage power as well as
performance for the applications. The temperature depen-
dency of leakage is also taken into account by ESESC.

We simulate GPGPUs with a range of configurations,
created either by varying the number of SMs or the

6For clarity, we are referring to the amount of tracks dedicated to
rails, not their pitch.



8

structures within each (e.g., number of lanes in each SM).
This is summarized in Table I. McPAT [33] tool estimates
the power consumption of the GPGPU model and only
the on chip structures are modeled for this experiment.
Since the stacking is applied within the SMs, the number
of SMs does not affect the result per SM.

Benchmarks used are from popular suites Rodinia [35],
Parboil [36] and CUDA SDK (bfs, cfd, convolution,
hotspot, backprop, lbm, transpose, srad and sgemm).

TABLE I
Simulation parameters

Parameter 1x 1.5x 2x
lanes per SM 32 32 64
RFs per SM 32K 64K 64K

DL1G-Scratchpad memory per SM 32KB 32KB 64KB
Maximum Frequency 1.5 GHz

Streaming Multiprocessors (SM) up to 8
Threads per warp 32

Maximum Warps per SM 24
L2 256KB 16w
L3 4MB 32w

Memory access latency 180 cyc
Vdd 0.4-1.0 V
Vth 0.30 V
δV 0.1

Ambient Temperature 25C

B. Process Variation Modeling
To evaluate the impact of GPU Stacking to compensate

for the performance loss due to PV, we model PV following
an existing methodology [37]. Briefly, VARIUS-NTV [4]
(planar) and VARIUS-TC [38] (FinFET) are used to
generate process variation maps. VARIUS models both
fine grained (Within Die) and coarser grained (Die-to-Die)
variation – both systematic and random components [39].
The systematic component is modeled using a multivariate
distribution with a spherical spatial correlation structure
and the random component, which occurs at the transistor
level, is modeled analytically. VARIUS divides the chip
into n small equally sized rectangles. Each grid point has
a systematic variation of Leff and Vth which are assumed
to have normal distribution. The random variation of
Leff and Vth is treated differently because of the level
of granularity at which it occurs and it is assumed to be
distributed normally and without any correlation [39].

Given the GPU floorplan as the input, VARIUS-NTV
provides die maps each with a specific process variation
case. The goal is to use VARIUS-NTV to consider the
worst process variation over maps or die maps and
understand how Vmid behaves in extreme cases of process
variation effects or an application. VARIUS-NTV also
outputs normalized delay, normalized Leff , and effective
Vth for each component of the GPU die (lanes, caches,
register files, etc.). The information from VARIUS-NTV is
then used to calculate the expected power for each element
in the stack and then the expected voltage on each Shared
Net. The calculated Vmid is then fed back into VARIUS-
NTV to calculate the delay and power after compensation
in the stacked configurations.

This experiment is performed for different number of
Shared Nets, where we compare our scheme with a conven-

tional non-stacked baseline and against multi-frequency
domain, which has been shown to have promising results
in mitigating process variation effects [7].

C. Power Delivery Simulation and Technology Node
To evaluate the Vmid noise and voltage noise behavior

in the GPGPU PDN, we adapt the methodology proposed
by Leng et al. [28]. In short, a off-chip and on-chip
power delivery network is simulated with cores modeled
as current-controlled current sources, where the transient
current is estimated by cycle-accurate micro-architectural
simulation for each core. This type of approach has been
used in multiple studies of this sort [40], [37], [41]. Thus,
we use the power traces from ESESC for each lane.

Our SPICE simulations model the printed circuit board
(PCB), the package [28], and the on-chip PDN, using
the IBM Power Grid benchmark (ibmpg1t) [42]. Figure 8
summarizes the complete PDN with the simulation pa-
rameters. The grid is represented by the four resistors in
the box named “PDN”, but the simulation is performed
using the full grid. On-package capacitors (Cp) are used
to stabilize the voltage on Shared Nets and smaller on-
die capacitors (Cd) are used to eliminate fast transient
response due to mismatch. Although the figure only shows
one set of on-package caps with respective C4 bump,
we use one set per Shared Net. The cores are modeled
as variable resistances based on the power traces from
ESESC. This methodology is compatible with current
industry practices, and short of fabricating a chip, it is the
best available method for this type of low-level analysis.
For technology node, we use planar CMOS at 45nm [29],
and FinFETs devices at 15nm [43].
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Fig. 8. The complete power delivery model used for simulations
including on small on-die decoupling caps (Cd = 100fF per Shared
Net) and larger on-package decoupling caps (Cp = 5uF per Shared
Net).

For between level communication, we use the level
shifter proposed in [13] which has been shown to provide
good performance/energy/area trade-offs [31]. Our SPICE
simulations show that this circuit has one FO4 delay over-
head at the NTC voltage, when communicating between
different stacks, however these level shifters can substitute
buffers that were present in the design, minimizing the
performance impact. Memory and caches are not stacked
in this study, and since the process variation is being
mitigated due to the stacking in the cores, it is expected
that they will end up achieving a higher frequency than
memory. To keep the improvement on the logic side, we
consider an increase in the number of access cycles rather
than reducing the frequency of the core.
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We consider both single-clock domain, and multi-clock
domain, in which case, each SM runs at a single frequency.
In order to meet timing, this will be the frequency of the
slowest lane (after compensation). It is possible to have
different frequencies for different SMs, but in this study
only one frequency is considered for the whole GPU.

VI. Evaluation
We first look into the baseline selection results, since

all other results will be built upon this GPU. Then,
we present the main results on how GPU Stacking can
mitigate PV effects and present other advantages of our
approach. Then, we evaluate different aspects related to
the stability of our approach to get a comprehensive idea
of how GPU Stacking affects the power delivery of a chip.
Finally, we investigate how the trade-offs presented by
GPU Stacking are changed when FinFET are used and
finish our evaluation discussing design and fabrication
aspects of this new approach.

A. GPU Sizing and Baseline
We start our evaluation with a careful analysis of

performance, energy and area trade-offs of GPUs using
NTC. We consider different voltages and number of SMs.
Figure 9 summarizes energy-delay (ED) and energy-delay-
area (EDA) products for 1x with different number of SMs.
The y-axis shows the normalized value for each metric
with reference to the 1x/4SM configuration at 1V supply.
The x-axis is Vdd. In general, energy decreases as the Vdd

approaches near threshold region. Then the delay starts to
degrade more rapidly, increasing the energy consumption,
mainly due to clocked logics and leakage.
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Fig. 9. Designs with more SMs become more efficient in terms of
energy-delay product, as well as energy-delay-area product as Vdd
decreases.

To understand the effect of a NTC GPU, let us examine
the 4SM and 8SM configurations at both 1.0V and at
the NTV voltage of 0.6V. Clearly, 8SM has a higher
EDA than 4SM at 1.0V . However, as the Vdd approaches
the near threshold, EDA of both configuration decreases.
Moreover, at around 0.6V , 8SM configuration has lower
EDA than 4SM. This means that the 8SM configuration
is more efficient at lower voltages. Also the delay metric
for 8SM configuration at this point is the same as the
delay of the baseline 4SM running at 1.0V . This shows
that investment in extra resources pays off as the Vdd

approaches the near threshold region by maintaining
the performance within 4.8% of 1x/4SM configuration

operating at 1.0V , while reducing the power consumption
to about 43% of baseline. At the cost of more area.

Another observation is that the optimal configuration
for different metrics changes by changing the Vdd. For
example Figure 10a shows the design space for ED
at 1.0V . The optimal configuration is 1x/6SM. Bigger
structure sizes for cache or number of lanes could increase
the performance, but the increased power makes such a
trade off less desirable due to power budget constraints
and possible thermal issues. Figure 10b shows the design
space for the same metrics at 0.6V . At this condition, the
optimal configuration is 8SM. Also the relative efficiency of
bigger structure sizes (e.g., 1.5×) increases. This implies
that the architectural parameters, such as cache or RF
size, should be reconsidered for maximum efficiency as
the operating voltage changes.
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(a) Typical
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(b) Near Threshold

Fig. 10. The optimized baseline in near threshold region is different
from the typical super threshold region. Larger structure sizes for
cache or register file or number of lanes could become more desirable
in near threshold. This demands reconsidering the architectural
parameters to obtain the best energy efficiency, rather than just
lowering the voltage.

B. Benefits of GPU Stacking on PV
Now that we established the baseline configuration of

the NTC GPU, we look into the positive effect of GPU
Stacking on PV. We used the variation maps generate by
VARIUS-NTV, where each map correspond to a die. Then
we estimated performance and power for each die. Each
die presents a unique PV, and thus GPU Stacking will
have different effects on each. We also look at the effect
of different numbers of Shared Nets in the design.
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Fig. 11. The proposed techniques shift the performance and power
towards the ideal scaling with no process variation.

Figure 11 shows histograms for performance and power,
i.e., the y-axis is the percentage of chips (out of 10K chips)
and the x-axis is the performance/power. Performance and
power are normalized to the value obtained in the case
with no process variation. Both Non-Stacked and Stacked
(xSN, where x is the number of Shared Nets) methods
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are shown. The nominal case, i.e., with no PV, would be
in the x = 1 mark. We notice that without stacking and
with PV, the average performance is around 50% of the
nominal. Using one Shared Net per SM does not improve
the non-stacked case much, since all the lanes share the
same Shared Net. Two, four and eight Shared Nets provide
good design solutions, with eight being pretty close to four
in terms of power, but with slightly lower power. The best
configuration is arguably eight Shared Nets in this case,
but two Shared Nets present a good trade-off between
design complexity and results.

Overall, GPU Stacking delivers about 75% of the per-
formance, with 75% power, compared to the no variation
conditions. This represents a reduction in the degradation
due to process variation: 37% in performance, and 39% in
power compared to the conventional configuration. The
increase in power is due to the increased frequency, but
Energy-per-instruction remains roughly the same. This
may seem like a no-gain approach, but means that GPU
Stacking is able to reduce the effects of process variation,
delivering a chip that is closer to ideal scaling. For the
sake of comparison, when using ASV with four power
domains, it would be possible to deliver only about ≈ 62%
of nominal performance, on average, while with 4 Shared
Nets, it would be possible to deliver ≈ 70% of nominal
performance, on average.

Another way of mitigating the effects of PV is to use
multi-clock domain [15]. Since each SM in a GPUs operate
in lock-step, the maximum number of clock domains
possible is equals to the number of SMs. However, our
technique is orthogonal to multi-clock domains and could
be applied in combination to it. Thus, we repeat the
previous experiment, but considering multi-clock domains.
Our results (Figure 12) show that, by only using multi-
clock domains, it is only possible to slightly improve the
performance to close to 60% of the nominal performance.
When also applying GPU Stacking, there is a small
improvement with 2SN . 4SN and 8SN have very similar
performance, but four Shared Nets have better power con-
sumption. Thus, 4SN seems to be the best configuration,
with two Shared Nets providing a good trade-off point.
In summary, combining multi-clock domain and GPU
Stacking delivers about 80% of the nominal performance,
with 70% of the power, which is a 20% improvement over
multi-clock domain only.
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Fig. 12. When multi-clock domain architecture is used, GPU
Stacking shifts the performance further towards the ideal scaling
with no process variation.

C. Other advantages of GPU Stacking
Besides compensating PV effects, using GPU Stacking

has other advantages. The increase in the supply voltage

TABLE II
GPU Stacking delivers better performance and power than a

non-stacked configuration under process variation. It also allows
better VR efficiency, and reduced number of power pins.

Parameter Expected Variation
Performance vs. PV not-stacked +37%
Power vs. PV not-stacked +39%
VR area -41%
VR efficiency +10%
Supply pins -41%

has some indirect advantages, some of which are quantified
in this section. They share two main causes: voltage
regulators are more efficient at higher voltages and the
overall current in the circuit is reduced to roughly half [13],
[8]. Using results from Hong et al. research [44], we
estimate memory power as 17% of the total GPU power.
The memory power is not affected by GPU Stacking.

Some of the advantages of GPU Stacking are related to
voltage regulators: VR area is reduced by roughly 2× with
half the current [45]. In the Intel Haswell integrated VR,
each 2.8mm2 cell can delivery a 25A maximum current. A
modern low-end GPU consumes ≈ 55W [46]. VR efficiency
is a function of both Vdd and output current [47]. Consid-
ering both the efficiency from increasing Vdd from ≈ 0.6V
(at the near-threshold region) to ≈ 1.2V , and reducing
by half the total current, we expect an improvement in
VR efficiency of 12%. Also, there is a ≈ 50% reduction in
current drawn by stacked logic, that can yield a ≈ 41%
reduction in VR area.

The number of pins and pads is mainly determined by
the total amount of current flowing through them. To keep
the current per pin constant, it is now possible to reduce
the number of pins. Again the current related to the logic
decreases to roughly half, but the current in memories is
the same. Once more, this yields a reduction of 41% in
the total number of power pins. Note that the number
of pads dedicated to Vdd can be also decreased, but pads
are now needed for Shared Nets, since on-package decaps
are used. The overall number of pads is not expected to
change. Table II summarizes the expected variation in
multiple chip parameters due to GPU Stacking.

D. Analysis of PDN Stability
We also looked into the PDN stability under different

optics to make sure that GPU Stacking can reliably
execute different applications keeping Vmid stable and by
looking at power distributions concerns across the chip.

The main concern is that divergence between applica-
tion threads could cause Vmid to diverge from acceptable
levels. In typical GPGPU applications, threads exhibit
very similar activity rates. This minimizes the possibility
of a load mismatch in the stack. In our experiments, we
observe that the power consumption of lanes are within
5% of each other 98% of the time, and within 10%, 99.2%
of the time. Powerlane1/Powerlane2 averages 1.000024,
with standard deviation of 0.070. The sampling rate for
our measurement is on the order of 1-10 MHz.

One source of concern is peak difference, which is as
high as 40% in our experiments. We observe that mis-
matches higher than 30% only occurred for the backprop
benchmark, but only 0.1% of the time for that benchmark.
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Fig. 13. It is possible to maintain the voltage in each level of the
stacks with on package decoupling capacitors .

Since the elevated mismatches are observed in a very short
interval, they can be handled by decoupling capacitors.

To examine whether the achievable range of decoupling
capacitance in the design is enough for the observed
mismatches, we ran a SM-like design through synthesis
and back-end design down to GDS. We then extracted
the capacitance of the supply nets. Our experiments
show that such a design using standard cell decoupling
capacitance cells (dcaps) would have total capacitance of
1.4nF/mm2. At the super threshold region, with a power
density of about 1W/mm2, the time constant for the power
supply RC circuit would be on the order of a couple of
nanoseconds. Such a small time constant is not enough to
sustain the transient mismatches that appear on the order
of 100ns to 1us. At the near threshold region, with smaller
power density, the time constant would be on the order
of 10 nanoseconds which is still not enough. Therefore, we
use of on-package capacitors, which are commonly use for
PDN stabilization. Adding additional capacitors for the
Shared Nets will not increase the package pins [9].

In the PV case, Vmid is expected to deviate from the
nominal voltage, and this behavior is desired, since it is
the source of the PV compensation. We evaluate how
the load mismatch affects the voltage available for both
levels of the stack by carrying a SPICE simulation of
the model presented in Figure 8. Each stack contains 16
lanes, 8 in the header and 8 in the footer, a total of 4
stacks (2 SMs with 32 lanes each) are hooked in the grid,
equally distributed, each Vmid has two 5µF on package
decoupling capacitor (one between Vmid and Gnd and the
other between Vmid and Vdd). BFS and backprop are run,
one in each SM (those where the two benchmarks with
higher mismatch between lanes).

Figure 13 shows the on-chip transient voltage for each
stack level during execution, one of the stacks is omitted
for clarity. The voltage source is 1.2V . Instead of plotting
the voltage with relation to the global Gnd, we plot the
local voltage difference, which is more meaningful. Voltage
for each stack level stays within 10% the expected voltage
for compensation, showing a very good balance. This also
implies that the minimum voltage for our technique to
work is Vth +10%.

Another concern regarding the PDN is lateral current
and IR drop. The main concern here is that if stacked lanes
are further apart within the chip, there will be increased
resistance for current to traverse that distance.

The total current for Vdd in GPU Stacking is roughly
half the current than the conventional case, therefore, one
would expect decreased voltage droop. On the other hand,
given a fixed budget for power delivery, the insertion of
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Fig. 14. GPU Stacking reduces the IR drop by reducing the total
current flowing through Vdd. The stacked configuration is feed with
1.2V , while the conventional was scaled up for better comparison.

new power rails requires that some of the resources used
by Vdd and Gnd in the conventional scenario be used
to Shared Nets instead. Since the current in this rails is
expected to be much smaller, the resource reduction in
Vdd and Gnd is small. We consider that 1/3 of the metal
used to power delivery is used to Shared Nets. Figure 14
shows a 2D color map of the IR drop for Vdd, both in
the conventional configuration and in GPU Stacking for
the BFS benchmark from our SPICE simulations, already
considering the reduced resources for Vdd, the contour lines
are traced every 0.02V . The conventional configuration
was scaled up from 0.6V to 1.2V for better comparison.

For Vmid, we start by finding the worst case from
the variation maps, i.e., the case with maximum power
difference between stack levels. We note that, since we
are stacking lanes, within an SM, and given the spatial
correlation of the variation, in most cases the variation is
well below this maximum. To estimate the resistance, we
use the IBM Power Grid Benchmark (ibmpg1t), which
is properly scaled to estimate the equivalent grid of
one Shared Net. The transient simulation considers the
maximum variation case. The maximum observed IR drop
in Vmid was 65mV in our simulations for all benchmarks,
which is 5% of the whole supply voltage (1.2V ), or 10% of
the NTC voltage of 0.6V , since we are using over 200mV
from Vth, this is well within acceptable margins.

E. Stacking FinFETs vs. Planar CMOS
Now that we looked into the benefits of GPU Stacking

and have analyzed the stability and the impacts on the
PDN, we look into how FinFETs affect the trade-offs
observed for GPU Stacking. We want to make sure that
our proposal is still useful in newer technology nodes.

The first observation is that FinFETs seem to be less
sensitive to PV effects than CMOS devices. Figure 15
shows the Energy vs. Delay for both CMOS and FinFETs,
with Leff variation from -15% to 15%. As we increase
Leff variation in FinFETs, the effect on energy-delay is
much smaller than planar CMOS, which indicates that the
effect of PV in energy consumption of FinFETs is not as
significant as it is in planar CMOS. Since GPU Stacking
relies on the difference of power to shift Vmid and mitigate
PV, it cannot be directly applied in that case. Also, there
is intrinsically less PV to compensate in this case.

Nevertheless, it is still possible to use GPU Stacking
to compensate for PV effects on FinFET devices. To do
so, we propose the use of the extra VRs to force the Vmid
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Fig. 15. Delay increases more rapidly for Planar CMOS than FinFET
as we vary Leff .

voltage to a beneficial level. GPU Stacking is designed and
evaluated in the same way, but during the binning process,
a voltage level is chosen for each Shared Net based on the
variation of the lanes assigned to it.

Now, we look into how much PV compensation can
be obtained by applying GPU Stacking to a FinFET
based GPU design. We start from the variation maps
and calculate the expected performance and power for
each chip, considering the best forced voltage for each
Shared Net. Figure 16 shows histograms for performance
and power. The y-axis is the percentage of chips (out of
50K) and the x-axis is performance/power.

In Figure 16 performance and power are normalized
to the values of the no-process-variation case. We note
that in this case, the no stacking version already presents
performance and power numbers very close to nominal
(≈ 90%), still GPU Stacking is able to shift the curve
above to 95% performance, on average. Although these
results are less impressive than the CMOS counterpart, the
compensation effect is still observed with FinFET devices.
The multi-clock region experiment yielded very similar
results and was omitted for the sake of space.
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Fig. 16. The proposed techniques shift the performance and power
towards the ideal scaling with no process variation.

F. GPU Stacking Practicality Issues
Finally, we finish our evaluation by looking into some

practical aspects regarding fabrication, design, power-
gating. We briefly discuss those issues in this section.

1) Extreme variation cases: In some extreme cases, the
difference in variation between the stack levels may be
significantly elevated, reducing the voltage in one of the
levels to non-acceptable levels (compared to VTH). After
fabrication, chips are divided in performance/power grades
or discarded according to the variation. This should also be
the case in the GPU Stacking case. In practice, this is done

during binning, where timing characteristics of the chip
are assessed. In this paper, to evaluate how GPU Stacking
affects yield, we use VARIUS-NTV [4] to calculate the
expected Vmid for each stack. We then compare this value
to the Vth of each lane in the stack. If the supply voltage
in the lane is smaller than 1.2·Vth for at least one of the
lanes, we consider the chip discarded. Our simulations
show that, in such scenario, 1.8% of the chips would be
discarded. A more aggressive approach would be to disable
lanes which do not meet such requirement, but we do not
consider this case.

2) In-Rush current and power gating: GPU Stacking
reduces the current drawn from the PDN by roughly
half during the regular operation and start-up phase. Our
SPICE models were simulated for both stacked and non-
stacked configurations, and showed that in-rush is indeed
smaller in GPU Stacking (data is not included).

Power gating can be applied in addition to the GPU
Stacking. The only requirement is that pairs of lanes need
to be powered off together (one in the head and one in
the foot group), but there is no need to power gate one
entire SM at a time.

3) Implementation flow: GPU Stacking operates in the
physical level only and does not make changes in the RTL
level. But the physical implementation flow needs to be
altered. GPU Stacking creates voltage rails that will be
connected to the “local” GND rail of some portions of logic
and to the “local” Vdd rail of others. The idea of having
multiple power rails is similar to multiple power domains.
Power transistors can then be used to open or close the
circuit and choose which Shared Net each core will tap.
Another option is to crack open some connections, since
the clustering decision do not change after fabrication.

GPU Stacking also requires isolated wells to avoid
unwanted body bias effects between stack levels, thus
either Fully-Depleted SOI or triple-well technology are
needed [8]. Although this is restrictive, FD-SOI has high
availability and triple-well only requires an extra mask
during fabrication.

Sign-off of the stacked configuration may also be a
concern. However, we note that a corner based approach
can be used to determine the possible ranges of power
and timing of a stacked system. The procedure should
take into account what happens when stacking clusters of
different types, i.e., FF and SS, FF and FF, SS and SS.
Although this increases the effort for sign-off, it can be
trivially implemented in EDA flows. This may be a bit
of a pessimistic approach, since it will show worst-case
configurations that will likely not happen.

VII. Conclusion
We present GPU Stacking as a method to manage

the effects of process variation. We show that the stack-
ing of cores with opposite variations tend to balance
the variation effects that would have appeared in a
conventional configuration. To maximize the balancing
effect, cores with opposite variations should be stacked,
which requires post-silicon configurability. We propose
a clustering technique to make such a configurability
feasible. The homogeneous nature of GPGPU applications
make them suitable candidates for GPU stacking. Previous
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voltage stacking publications only analyzed multicores and
required complex circuitry to stabilize the voltage. This
work is the first to use stacking in the context of process
variation, and to propose a floating middle rail. We show
that the stable nature of GPGPUs allows for the use of
only decoupling capacitors to stabilize the power delivery.

This research provides a detailed evaluation of NTC
with GPGPUs, and the idea of GPU stacking. We first
carefully size a GPU for NTC operation, achieving 43%
power savings, with only 4.8% performance degradation.
We then apply GPU Stacking to manage process varia-
tion, which impacts NTC circuits more than circuit in
the super-threshold region. The homogeneous nature of
GPGPU architectures and applications, make them a very
interesting candidate for exploration in the extreme do-
mains, with both low voltages and small feature sizes. We
show that stacking can increase performance under process
variation at near threshold, on average, by 37% compared
to the traditional (not stacked) configuration, delivering
80% of the performance compared to the no variation
(ideal) conditions. Even when using multi-frequency do-
main, GPU Stacking is able to further improve PV com-
pensation by about 30%. Although this technique is more
suited to GPUs due to their homogeneous nature, it could
be adapted to use in a scheme similar to CoreUnfolding [9],
where authors leverage power consumption correlation
among parts of a single core.
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