
2

To speed up nonnumerical applica-
tions that are hard to parallelize, designers
build sophisticated out-of-order processors
with carefully tuned execution engines and
memory subsystems. Unfortunately, these sys-
tems tend to have highly complex designs and
yield diminishing performance returns—
motivating the search for design alternatives.
One such alternative is thread-level specula-
tion (TLS) on a chip multiprocessor (CMP).
CMPs are attractive because they are more
energy efficient, more scalable, and less com-
plex than wide-issue superscalar processors.
With TLS, they can also execute in parallel
challenging sequential codes, such as
SPECint. TLS partitions hard-to-analyze
applications into tasks that the processors
optimistically execute in parallel, hoping to
avoid any cross-task dependence violation.
Special hardware support monitors the tasks’
data accesses and detects runtime violations.
If such a violation occurs, the hardware trans-
parently rolls back the incorrect tasks and,
after repairing the state, restarts them. The
“Principles of Thread-Level Speculation” side-
bar describes TLS foundations in more detail.

Although a TLS CMP offers major bene-
fits, many contend that its energy efficiency
is too low to seriously challenge convention-
al processors. The rationale is that aggressive

speculative execution is not the best course
when energy and power consumption are a
processor’s primary constraints.

We argue otherwise, and have identified
simple energy-saving optimizations that make
a TLS CMP an attractive option for high-per-
formance, power-constrained processor
design, even running SPECint codes. Our
TLS CMP design relies on an efficient
microarchitecture with out-of-order task
spawning and a novel TLS compiler. When
we evaluated this design, we found that TLS’s
energy consumption remained modest and
that our TLS CMP provided a better energy-
performance trade-off than a wider issue
superscalar processor. 6,9

Reducing energy consumption
Enhancing an N-issue superscalar to make

it a CMP with several N-issue cores and TLS
support naturally increases energy consump-
tion. Part of this increase comes from the inef-
ficiencies of parallel execution, and from
having multiple on-chip cores and caches, but
most of it is due directly to TLS. As Table 1
shows, this increase, ∆ETLS, stems from four
main sources:

• task squashing,
• hardware structures in the cache hierar-

Jose Renau
University of California at

Santa Cruz

Karin Strauss
Luis Ceze

Wei Liu
Smruti R. Sarangi

James Tuck
Josep Torrellas

University of Illinois at

Urbana-Champaign

CHIP MULTIPROCESSORS WITH THREAD-LEVEL SPECULATION HAVE BECOME

THE SUBJECT OF INTENSE RESEARCH. THIS WORK REFUTES THE CLAIM THAT

SUCH A DESIGN IS NECESSARILY TOO ENERGY INEFFICIENT. IN ADDITION, IT

PROPOSES OUT-OF-ORDER TASK SPAWNING TO EXPLOIT MORE SOURCES OF

SPECULATIVE TASK-LEVEL PARALLELISM.

ENERGY-EFFICIENT
THREAD-LEVEL SPECULATION

Published by the IEEE Computer Society 0272-1732/05/$20.00 © 2005 IEEE

3JANUARY–FEBRUARY 2006

Because sequential code imposes a task order, TLS looks at tasks as
predecessors and successors, and the safe (or nonspeculative) task pre-
cedes all speculative tasks. As tasks execute, special hardware support
checks that no cross-task dependence is violated. If violations occur, the
special hardware squashes incorrect tasks, repairs any polluted state,
and reexecutes the tasks.

Cross-task data dependence violations
The cache controller typically monitors data dependences by tracking,

for each task, the data written and the data read with exposed reads. An
exposed read is a read that is not preceded by a write to the same loca-
tion within the same task. A data dependence violation occurs when a
task writes a location that a successor task has read with an exposed
read. Dependence violations lead to task squashes, which involve dis-
carding the work the task produced.

State buffering
Stores from a speculative task generate speculative state that cannot

merge with the program’s safe state because it could be incorrect. Typi-
cally, the cache of the processor running the task stores such state. If the
cache controller detects a violation, the cache discards the state. Other-
wise, when the task becomes nonspeculative, the cache controller lets the
state propagate to memory. When a nonspeculative task finishes execu-
tion, it commits. Committing informs the rest of the system that the state
the task generated is now part of the safe program state.

Data versioning
A task has at most a single version of any given variable. However, dif-

ferent speculative tasks that run concurrently in the machine can write to
the same variable and thus produce different versions of the variable. The
cache must buffer such versions separately and provide readers with the
correct versions. Finally, as tasks commit in order, they must be able to

merge data versions with the safe memory state, also in order.

Multiversioned caches
A cache that can hold state from multiple tasks is called multiver-

sioned.1-3 Such caches enhance performance because they avoid proces-
sor stall when tasks are imbalanced, and they enable lazy commit.

If tasks have load imbalance, a processor may finish a task and the
task still be speculative. If the cache can hold state only for a single spec-
ulative task, the processor must stall until the task becomes safe.4 An
alternative is to move the task’s state to some other buffer, but this com-
plicates the design. Instead, the cache can retain the old task’s state and
let the processor execute another speculative task. Thus, the cache must
be multiversioned.

In lazy commit,5 when a task commits, it does not eagerly merge its
cache state with main memory through ownership requests3 or write
backs.6 Instead, the task simply passes the commit token to its successor.
Its state remains in the cache and lazily merges with main memory later,
usually because of cache line replacements. This approach improves per-
formance because it speeds up the commit operation, but it requires mul-
tiversioned caches.

Multiversioned caches, in turn, require tagging each cache line with a
version ID, which records what task the line belongs to. The version ID
could be the long global task ID, but to save space, it is best to translate
global task IDs into some arbitrary local IDs (LIDs) that are much shorter.3

The LIDs are used only locally in the cache, to tag cache lines. Their trans-
lations into global IDs are kept in a small, per-cache LID table. Each cache
has a different LID table.

Architecture and environment
Although support for TLS could take many forms,3,6-11 we use a CMP

because it is a low-complexity, energy-efficient platform. To maximize the

Principles of Thread-Level Speculation

Table 1. Sources of energy consumption from TLS and energy-saving optimizations

Energy source Reasons for consumption Optimization
Task squashing Work of the tasks that get squashed StallSq, TaskOpt

Tasks squash operations

Hardware structures in the cache hierarchy for Storage and logic for data version IDs and access bits Indirect*
data versioning and dependence checking Tag group operations NoWalk

Traffic due to data versioning and Evictions and misses due to higher cache pressure None
dependence checking Selection and combination of multiple versions TrafRed

Fine-grained data dependence tracking

Additional dynamic instructions induced by TLS Side effects of breaking the code in tasks TaskOpt
TLS-specific instructions

*Already in the TLS baseline system.

continued on p. 4

chy needed for data versioning and
dependence checking,

• additional traffic in the memory system
from the previous two effects, and

• additional dynamic instructions induced
by TLS.

The optimizations we developed reduce con-
sumption from all four sources. Our focus is on
energy-centric optimizations, not on optimiza-
tions that reduce energy by first improving per-
formance—we assume that these would already
be present in a baseline TLS design. Although
our optimizations do not noticeably increase
performance (and can even slightly reduce it),
they significantly reduce energy consumption.

Our optimizations are based on three
guidelines: reduce the number of checks,
reduce the cost of individual checks, and elim-
inate work with low performance returns.

Task squashing
A TLS source of energy consumption is the

work of tasks that ultimately get squashed. In
the TLS CMP we evaluated, 22.6 percent of
all graduated instructions belong to such
tasks. Not all such work is wasted, however,
since a squashed task can bring useful data
into the caches.

The actual squash operation also consumes
energy. However, in our system, the frequen-
cy of squash operations is only 1 per 3,211
instructions on average. Consequently, the
total energy that the actual squash operations
consume is negligible.

As Table 1 shows, the optimizations that
address task squashing are StallSq (task
stalling) and TaskOpt (eliminating energy-
inefficient tasks). The aim of StallSq is to
decrease the number of instructions in
squashed tasks. We do this by limiting the
times that a task is permitted to restart after a
squash. With StallSq, when a task has been
squashed N times, the hardware does not give
the task a CPU again until it becomes non-
speculative. To select N, we performed exper-
iments while always restarting tasks after they
were squashed. We found that 73.0 percent
of the dynamic tasks are never squashed; 20.6
percent are squashed once; 4.1 percent, twice;
1.4 percent, three times; and 0.9 percent, four
times or more. Restarting a task after its first
squash can be beneficial, since the cache has
warmed up. Restarting after further squashes
delivers diminishing returns. Consequently,
we reset and stall a task after its second squash.

The aim of TaskOpt is to not spawn ineffi-
cient tasks. A profiler pass in our compiler

4

MICRO TOP PICKS

IEEE MICRO

use of commodity hardware, our CMP has no special hardware support
for interprocessor register communication. Processors communicate only
through the memory system.

References
1. M. Cintra, J.F. Martínez, and J. Torrellas, “Architectural

Support for Scalable Speculative Parallelization in Shared-
Memory Multiprocessors,” Proc. 27th Int’l Symp. Computer
Architecture (ISCA 00), IEEE CS Press, 2000, pp. 13-24.

2. S. Gopal et al., “Speculative Versioning Cache,” Proc. Int’l
Symp. High-Performance Computer Architecture (HPCA 98),
IEEE CS Press, 1998, pp. 195-205.

3. J. Steffan et al., “A Scalable Approach to Thread-Level
Speculation,” Proc. 27th Int’l Symp. Computer Architecture
(ISCA 00), IEEE CS Press, 2000, pp. 1-12.

4. M.J. Garzarán et al., “Tradeoffs in Buffering Memory State for
Thread-Level Speculation in Multiprocessors,” Proc. Int’l
Symp. High-Performance Computer Architecture (HPCA 03),
IEEE CS Press, 2003, pp. 191-202.

5. M. Prvulovic et al., “Removing Architectural Bottlenecks to

the Scalability of Speculative Parallelization,” Proc. 28th Int’l
Symp. Computer Architecture (ISCA 01), IEEE CS Press, 2001,
pp. 204-215.

6. V. Krishnan and J. Torrellas, “A Chip-Multiprocessor
Architecture with Speculative Multithreading,” IEEE Trans.
Computers, no. 48, vol. 9, Sept. 1999, pp. 866-880.

7. L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,” Proc. 8th Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS VIII), ACM Press, 1998, pp. 58-69.

8. P. Marcuello and A. Gonzalez, “Clustered Speculative
Multithreaded Processors,” Proc. Int’l Conf. Supercomputing
(SC 99), IEEE CS Press, 1999, pp. 365-372.

9. G.S. Sohi, S.E. Breach, and T.N. Vijayakumar, “Multiscalar
Processors,” Proc. 22nd Int’l Symp. Computer Architecture
(ISCA 95), IEEE CS Press, 1995, pp. 414-425.

10. M.Tremblay, J.Chan, S.Chaudhry, A.R. Conigliaro, and S.S. Tse,
“The MAJC Architecture: A Synthesis of Parallelism and
Scalability” IEEE Micro, vol 20, No.6 Nov/Dec 2000, p12-25.

11. J. Tsai et al., “The Superthreaded Processor Architecture,”
IEEE Trans. Computers, vol. 48, no. 9, Sept. 1999, pp. 881-
902.

continued from p. 3

includes a simple model that identifies tasks
that are often squashed and do not help by
warming the cache. Such tasks are not
spawned. For the baseline TLS architecture,
the model tries to minimize the overall pro-
gram running time. The energy-centric opti-
mization is to change the model into one that
tries to minimize the product of the energy
and the square of the running time of the pro-
gram. On average, the profiler eliminates 39.9
percent of the static tasks in the baseline TLS,
and 49.2 percent in energy-centric mode—a
significant change.

We also enhanced TaskOpt with a static
compilation pass that aggressively prunes tasks
that are either very small or whose spawn
point has not been moved up very far in the
code (such tasks offer little parallelism). We
use threshold values to decide the size and
spawn hoist distance of the tasks to prune;
thresholds are more aggressive in energy-cen-
tric mode than in baseline TLS. This static
pass eliminates 36.1 percent of the static tasks
in energy-centric mode and 34.7 percent in
performance-centric mode.

Versioning and dependence checking structures
TLS systems require data versioning

because the cache hierarchy must often hold
multiple versions of the same datum, such as
when speculative tasks have write-after-write
(WAW) and write-after-read (WAR) depen-
dences with predecessor tasks. The system
buffers the version that the speculative task
creates, typically in the processor’s cache. If
multiple speculative tasks coexist in a single
processor, a cache might have to hold multi-
ple versions of the same datum. In such cases,
the cache can identify data versions using a
version ID on the cache line—in our case, a
local ID (LID).

TLS systems must also be able to perform
dependence checking, which means that
caches must record how the processor accessed
each datum. Typically, support for dependence
checking augments each cached datum with
two access bits—write and exposed-read—
which set a bit on a write and exposed read.

A variety of cache access operations read or
update the hardware LID and access bits. On
an external access to the cache, for example,
dependence checking compares the LID of an
address-matching line in the cache to the ID

of the incoming message. From the compar-
ison and the value of the access bits, the cache
can conclude that a violation has occurred, or
it can instead supply the data normally.

A distinct use of these TLS structures is in tag
group operations, which involve changing the
tag state of cache line groups. There are three
main cases. The first is when a task is squashed,
and its cache lines must be invalidated. The sec-
ond is when a task commits in eager-commit
systems;1 all the task’s dirty cache lines merge
with main memory through write backs2 or
ownership requests.3 Finally, in lazy-commit sys-
tems,1 when a cache has no free LIDs left, it
must recycle one, typically by selecting a long-
committed task and writing back all its dirty
cache lines to memory. That task’s LID then
becomes free, and the cache can reassign it.

These TLS tag group operations often
induce significant energy consumption, how-
ever. For some operations, schemes might use
a hardware finite state machine (FSM) that
periodically and repeatedly walks the cache
tags. In one scheme,4 to recycle LIDs, a FSM
periodically selects the LID of a committed
task from the LID table, walks the cache tags
writing that task’s dirty lines back to memo-
ry, and finally frees up the LID. The FSM
operates in the background using free cache
cycles. In another scheme,3 to commit a task,
a special hardware module sequentially
requests ownership for a group of cache lines
whose addresses are stored in a buffer. In the
meantime, the processor stalls. Execution thus
takes longer and consumes more energy.
Finally, some schemes use one-shot hardware
signals that can change the tag state of a large
group of lines in a handful of cycles, for exam-
ple, to invalidate the lines of a squashed task.
Such hardware is reasonable when the cache
can hold data for only a single or very few
speculative tasks.5 In caches with many ver-
sions, however, it is likely to adversely affect
the cache access time. For example, the cache
in our design uses 6-bit LIDs per cache line.

To address these sources of energy consump-
tion, our TLS CMP design extends each LID
table entry with use information on the corre-
sponding task: the number of lines that the task
still has in the cache, and whether the task has
been killed or committed. These bits are never
accessed in the critical path of an L1 cache hit.6

With this extra information, the TLS CMP

5JANUARY–FEBRUARY 2006

can perform all the tag group operations lazily
and efficiently. A task squash or commit
involves only setting a killed or committed bit
in the LID table. As replacements eliminate the
lines belonging to a squashed or a committed
task, the cache controller decrements the cor-
responding count in the LID table. When the
count reaches zero, its associated LID becomes
unused and is ready for recycling. Conse-
quently, LID recycling is also very fast.

This energy-efficient design of the LID
table is the essence of our NoWalk optimiza-
tion, so called because it largely avoids the
eager walk of the cache tags in any tag group
operation. It only activates a background walk
of the cache tags when there is only one free
LID left. With this optimization, a processor
might occasionally have to stall because of a
temporary lack of LIDs. However, NoWalk
eliminates many tag checks. In contrast, the
baseline TLS architecture aggressively recycles
LIDs;4 a hardware FSM periodically walks the
tags of the cache in the background when the
cache is idle. It invalidates lines of killed tasks
and writes back dirty lines of long-commit-
ted tasks, therefore eagerly freeing up LIDs.
This design never runs out of LIDs but con-
sumes energy with many checks.

The second optimization, Indirect reduces
the cost of tag checking by using short LIDs
for cache lines rather than global task IDs. As
a result, each tag check consumes less energy.
Because baseline TLS already uses this opti-
mization,3 we did not evaluate its impact on
energy consumption.

Additional traffic
A TLS CMP system generates more traffic

beyond the private L1 caches than does a super-
scalar processor. Although some of the increase
is from parallel execution, there are three main
TLS-specific sources of additional traffic.

First, caches must often retain lines from
older tasks that ran on the processor and are
still speculative. Only when such tasks become
safe can the lines be evicted. Consequently,
there is less cache space for the currently run-
ning task, which causes additional misses.

Second, multiple versions of the same line
in the system can cause additional messages.
Specifically, when a processor requests a line,
multiple versions of it might be provided, and
the coherence protocol then selects the ver-

sion to use. Similarly, when a committed ver-
sion of a line is to be evicted from a cache, the
protocol first invalidates all the other cached
versions of the line that are older—they can-
not remain cached anymore.

Finally, speculative cache-coherence proto-
cols should track dependences at a fine grain,
typically by using the write and exposed-read
bits. If these bits are kept per line, lines that
exhibit false sharing might appear to be involved
in data dependence violations and, as a result,
cause squashes.7 For this reason, many proposed
TLS schemes keep access information at a finer
grain, such as per word. Unfortunately, per-
word dependence tracking can come at the cost
of higher traffic, since the cache controller might
need to send a distinct message (such as an inval-
idation) for every word of the line.

One of the aims of the TrafRed optimization
is to decrease the version-ID checks needed, and
therefore the traffic. TrafRed extends cache lines
with a Newest and an Oldest bit. Every time a
cache loads a line, the cache controller sets the
Newest bit if the line contains the latest cached
version of the corresponding address. Likewise,
it sets the Oldest bit if the line contains the ear-
liest cached version of the corresponding
address. As execution proceeds, an access by
another task might reset the Newest bit.

This support eliminates many messages.
When a processor writes to a line cached in a
nonexclusive state, the baseline TLS checks all
the caches with a version of the requested line.
The goal is to detect any exposed read to the
line from a more speculative task. Such an event
would cause a squash. With TrafRed, however,
if the written line has the Newest bit set, there
is no need to check other caches for exposed
reads. Moreover, when a processor displaces
from its cache a committed line, the baseline
TLS checks all the caches with a version of the
line to invalidate the line’s older versions, which
cannot remain cached. With TrafRed, if the
displaced line has the Oldest bit set, there is no
need to check other caches for older versions.

Additional instructions
TLS systems with compiler-generated tasks

such as ours often execute more dynamic
instructions than non-TLS systems. This is the
case even counting only tasks that are not
squashed. In our system, the increase is 12.5
percent. These additional instructions come

6

MICRO TOP PICKS

IEEE MICRO

from two sources. The first, low quality code
due to side effects of breaking the code into
tasks, accounts for 88.3 percent of the increase.
The quality of TLS code is lower than non-TLS
code in part because conventional compiler
optimizations are not very effective at optimiz-
ing code across task boundaries. In addition, in
CMPs such as the ones we consider, where
processors communicate only through memo-
ry, the compiler must spill registers across task
boundaries, adding instructions.

The remaining 11.7 percent instruction
increase is from TLS-specific instructions,

including task spawn and commit. TaskOpt
helps reduce these additional TLS-specific
dynamic instructions.

POSH compiler
We have developed POSH, a novel, fully-

automated compiler that generates TLS code
from sequential integer applications.8,9 By
default, POSH generates code with out-of-
order task spawning, although it can also
restrict code generation to in-order task spawn-
ing. The “Out-of-Order Task Spawning” side-
bar describes this approach in more detail.

7JANUARY–FEBRUARY 2006

Most proposed TLS systems form tasks with iterations from a single
loop level,1,2 with the continuation of calls to subroutines that do not spawn
other tasks,3 or with execution paths out of the current task.4 In these pro-
posals, an individual task can spawn at most one correct task in its lifetime.
A correct task is one that is in the program’s sequential execution rather
than in a wrong branch path. Consequently, the processor spawns correct
tasks in-order—the same order as in sequential execution.

Figures A1 and A2 show examples of in-order task spawning. In Figure
A1, when parallelizing a loop, each task spawns the next iteration. The left-
most task is safe (or nonspeculative); the more a task is to the right, the
more speculative it is. Figure A2 shows the tree when a task finds a leaf
subroutine. The original task continues execution into the subroutine, while
the processor spawns a more speculative task to execute the continuation.

In contrast, Figure A3 shows an example of out-of-order task spawn-
ing as supported by POSH. The figure shows nested subroutines. The safe
task first spawns a task for the continuation of subroutine S1 and then
enters S1, spawns a new task for the continuation of S2, and executes S2
until its end. In this case, an individual task spawns multiple correct tasks,
and the order of spawning is strictly the reverse of sequential execution.
The task order from less to more speculative is S2 Cont. and then S1 Cont.,
but these tasks are spawned in reverse order. The same effect occurs in
tasks built from iterations of nested loops.

Enabling more parallelism
The main advantage of out-of-order spawning is that it enables more

task parallelism. Two code sections that are far-off in sequential execu-
tion can execute in parallel before the program has even spawned the
tasks in the code between the two sections. The main disadvantage is
that, since all tasks can potentially spawn multiple times, parallelism
expands in unexpected parts of the task tree dynamically. As a result, in
decentralized architectures such as CMPs, it is hard to support out-of-
order spawning and maintain task ordering and efficient resource allo-
cation—two cornerstones of TLS.

Several time-critical TLS operations require task ordering. A task must
know its immediate successor to communicate the commit token or prop-

Out-of-Order Task Spawning

(a)

T
im

e

More Speculative Task

Spawn

i=0
i=1

i=2

S
af

e

M
os

t S
pe

cu
la

tiv
e

i=3

…
for (i=0;i<n;i++) {

Spawn Iter
…

}

More Speculative Task

Spawn

S
af

e S
pe

cu
la

tiv
e

S1 S1
Cont

(b)

…
Spawn S1Cont
S1();
…
…

S1Cont:

More Speculative Task

(c)

S1() {
 …
 Spawn S2 Cont
 S2();

S2

S1

Spawn

S
2

C
on

t S1
Cont

S
af

e

…
Spawn S1Cont
S1();

…

…
…

…

S1Cont:

S2Cont:
}

Figure A. Examples of task trees: when parallelizing a
loop (a), finding a leaf subroutine (b), and nested subrou-
tines (c). Cont and Iter denote continuation and iteration.

continued on p. 8

POSH adds several passes to gcc 3.5, which
uses a static single assignment (SSA) tree as the
high-level intermediate representation.10 By
building on this software, we were able to lever-
age a complete compiler infrastructure. Also,
by working at the intermediate representation
level, we have better information, and it is eas-
ier to perform pointer and dataflow analysis
than if we worked at register-transfer level.

Task generation and hoisting
POSH uses four modules as potential tasks:

subroutines from any nesting level, their con-
tinuations, loop iterations from any loop-nest-
ing level, and loop continuations. It also
handles recursion seamlessly. In out-of-order
task spawning mode (default), it can select all

subroutines and loop iterations that are larg-
er than a certain size. In in-order task spawn-
ing mode, POSH is more careful, since a task
can have only one child. Consequently, the
in-order pass analyzes all the files in the pro-
gram and generates a complete task call graph.
Then, using heuristics about task size and
overheads, POSH eliminates tasks from the
graph until it can guarantee that each task has
only one child.

In either case, once it has selected the tasks,
POSH inserts spawn instructions and tries to
hoist them to boost parallelism. It hoists a
spawn as far as possible, but not above state-
ments that can cause data or control depen-
dence violations. A final task-cleanup pass
looks for spawns that POSH hoisted above

8

MICRO TOP PICKS

IEEE MICRO

agate a squash signal. Moreover, any communication between two tasks
requires knowing the tasks’ relative order. Unfortunately, with out-of-
order spawning, high-speed task ordering is difficult.

Efficiently allocating resources such as CPU or cache space is crucial
for TLS performance. Such resources should ideally be assigned to tasks
with a high chance to commit. With out-of-order spawning, however,
highly speculative tasks might have been running for a long time. If a
processor must spawn a less speculative task but there are no free CPUs,
should it kill one of the highly speculative tasks?

Microarchitectural mechanisms
We propose three architectural mechanisms to enable high-speed task

ordering with out-of-order spawning in a TLS CMP: splitting timestamp
intervals, immediate-successor list, and dynamic task merging.5

Splitting timestamp intervals
Under in-order task spawning, recording task order is easy; tasks are cre-

ated in order, so a parent gives its child its timestamp plus one. Under out-
of-order task spawning, recording is more complex. To address this, we
represent a task with a timestamp interval, given by a base and range time-
stamp: {B,R}. When a task spawns, it splits its timestamp interval in two,
giving the higher range subinterval to its child (since it is more speculative)
and keeping the lower range subinterval. With this support, the parent task
can successively provide timestamps to less and less speculative children.

Immediate-successor list
Under in-order task spawning, a task can easily find its immediate suc-

cessor because the task has spawned it. Under out-of-order task spawn-
ing, identifying the immediate successor is not straightforward. In Figure
A3, if task S2 Cont. is squashed, it is not trivial for it to identify and squash
its successor task S1 Cont., which was spawned before and indepen-
dently of it. Consequently, we propose that tasks dynamically link them-
selves in hardware in a list according to their sequential order. We call this

list the immediate successor (IS) list. To build the IS list, each task has a
pointer in hardware to its IS. On a spawn, the child gets the value of the
parent’s IS pointer, and the parent sets its IS pointer to point to the child.

Dynamic task merging
Under out-of-order task spawning, highly speculative tasks can hog

resources and starve less speculative tasks that are spawned later. To
address this issue, we propose dynamic task merging, which consists of
the transparent, hardware-driven merging of two consecutive tasks at
runtime on the basis of dynamic load conditions. With task merging, run-
ning tasks can merge, therefore freeing resources for less speculative
tasks. Alternatively, a task can skip the spawn instruction for a child,
therefore merging with its child.

References
1. V. Krishnan and J. Torrellas, “A Chip-Multiprocessor

Architecture with Speculative Multithreading,” IEEE Trans.
Computers, vol. 48, no. 9, Sept. 1999, pp. 866-880.

2. J. Steffan et al., “A Scalable Approach to Thread-Level
Speculation,” Proc. 27th Int’l Symp. Computer Architecture
(ISCA 00), IEEE CS Press, 2000, pp. 1-12.

3. M Chen and K. Olukotun, “Exploiting Method-Level Parallelism
in Single-Threaded Java Programs, Proc. 7th Int’l Conf. Parallel
Architectures and Compilation Techniques (PACT 98), IEEE
CS Press, 1998, pp. 176-184.

4. T. Vijaykumar and G. Sohi, “Task Selection for a Multiscalar
Processor,” Proc. 31st Ann. Int’l Symp. Microarchitecture
(Micro-31), IEEE CS Press, 1998, pp. 81-92.

5. J. Renau et al., “Tasking with Out-of-Order Spawn in TLS Chip
Multiprocessors: Microarchitecture and Compilation,” Proc.
Int’l Conf. Supercomputing (SC 05), IEEE CS Press, 2005,
pp. 179-188.

continued from p. 7

only a handful of instruc-
tions. In this case, it elimi-
nates the spawn and
integrates the two corre-
sponding tasks, thus reducing
overhead.

Figure 1 shows how POSH
generates out-of-order tasks
from a subroutine and its
continuation. Figure 1a
shows the dynamic execution
into and out of the subrou-
tine. POSH marks the sub-
routine and continuation as
tasks, and inserts two spawn
instructions in the caller (Fig-
ure 1b). It then hoists the
spawn for the continuation
(Figure 1c) and subroutine
(Figure 1d). In Figure 1e, the
clean-up pass eliminates the
subroutine spawn because it
had little hoisting.

Task profiling
POSH includes a profiling

pass that uses a simple model
to identify additional tasks
for elimination, such as those that, because of
squashes, are not likely to be beneficial. The
profiler runs the binary sequentially, using the
Train data set for SPECint codes. As the pro-
filer executes a task, it records the variables
written. When it executes tasks that would be
spawned earlier, it compares the addresses read
against those that predecessor tasks have writ-
ten. With this, it can detect potential runtime
violations. The profiler also models a very sim-
ple cache to estimate the number of cache
misses. The model does not include cache
timing. On average, the profiler takes around
5 minutes to run on a 3-GHz Pentium 4.
Details on the profiler are available else-
where.8,9

Evaluation
We compared a TLS CMP to a non-TLS

chip with a single processor of the same or larg-
er issue width. We used the SESC execution-
driven simulator,11 enhanced with models of
dynamic and leakage energy from Wattch,12

Orion,13 and HotLeakage.14 The TLS CMP
that we modeled—the TLS4-3i—has four

three-issue cores with private L1 caches and a
shared L2 cache. The non-TLS chips have a
single superscalar core with on-chip L1 and L2
caches. We considered two such chips—one
with a six-issue superscalar (Uni-6i) and the
other with a three-issue superscalar (Uni-3i)
core. The TLS4-3i and Uni-6i chips have
approximately the same area.15,16 We also sim-
ulate a TLS CMP with only in-order task
spawning—TLS4-3i InOrder.

We measured SPECint 2000 applications
with the Reference data set. Uni-3i and Uni-
6i ran the binaries compiled with our TLS
passes disabled.

Energy cost of TLS
Figure 2 characterizes the energy cost of

TLS (∆ETLS), which is the difference between
the energy consumed by our TLS CMPs and
Uni-3i. For each application, the bars are nor-
malized to the energy consumed by Uni-3i.
Consequently, the difference between the top
of the bars and 1.00 is ∆ETLS.

Each bar is broken into the contributions
of the TLS-specific energy consumption

9JANUARY–FEBRUARY 2006

D
yn

am
ic

 e
xe

cu
tio

n

Caller

Caller

Caller

Subroutine
Subroutine

SubroutineContinuation
Continuation

Continuation

(a) (b) (c)

Spawn
Spawn

Spawn

Spawn

(d) (e)

Caller

Subroutine
Continuation

Spawn

Caller

Subroutine Continuation

Spawn

Spawn

More speculative task

Figure 1. How POSH generates tasks out of a subroutine and its continuation: dynamic exe-
cution in and out of the subroutine (a), marking of the subroutine and continuation as tasks
and insertion of two spawn instructions in the caller (b), hoisting of the spawn for the contin-
uation (c) and for the subroutine (d), and result of the cleanup pass that eliminates the sub-
routine spawn because it had little hoisting (e).

sources in Table 1: task squashing (∆ESquash),
additional dynamic instructions in tasks that
are not squashed (∆EInst), hardware for data
versioning and dependence checking (∆EVer-

sion), and additional traffic (∆ETraffic). The rest
of the bar (Non-TLS) is energy that we do not
attribute to TLS.

Ideally, non-TLS should equal 1. In prac-
tice, this is not exactly the case. One of the
main reasons is that a given program runs on
the TLS CMP and on Uni-3i at different
speeds and temperatures. As a result, the non-
TLS dynamic and leakage energy varies across
runs, causing non-TLS to deviate from 1.

The NoOpt bars show that ∆ETLS is signif-
icant. On average, unoptimized TLS adds
70.4 percent to the energy that Uni-3i con-
sumed. Moreover, all four TLS energy con-
sumption sources contribute noticeably, with
∆ESquash consuming the most.

Impact of optimizations
The other bars in Figure 2 show that our

optimizations effectively reduce the TLS ener-
gy sources in Table 1. TaskOpt reduces both
sources it aimed to reduce, namely ∆ESquash and
∆EInst. It minimizes ∆ESquash by reducing the
fraction of squashed instructions from 22.6
to 17.6 percent on average. It minimizes ∆EInst

by reducing the additional dynamic instruc-
tions in tasks that are not squashed from 12.5
to 11.9 percent on average.6

NoWalk’s target was ∆EVersion. It reduced the
number of tag accesses relative to Uni-3i from

3.3 to 2.2 times on average.6 TrafRed also
addressed its target, ∆ETraffic, reducing traffic
from 19.6 to 5.6 times on average, relative to
Uni-3i.6 Finally, StallSq addresses ∆ESquash ,
although it has a smaller impact relative to the
other optimizations.

Thus, TaskOpt, NoWalk, and TrafRed
effectively reduce different energy sources and,
combined, cover all the energy-consumption
sources considered. When we combined all
four optimizations into TLS4-3i, we elimi-
nated on average 64 percent of ∆ETLS. Com-
pared to the overall on-chip energy that
NoOpt consumed, this is a very respectable
energy reduction of 26.5 percent.

The section of the resulting TLS4-3i bar
that is over 1.00 shows TLS’s energy cost with
the four optimizations, which is on average
only 25.4 percent—a remarkably low figure.
Moreover, the application slowdown over
NoOpt was less than 2 percent on average. 6

Overall speedup and power consumption
We also evaluated the speed and power con-

sumption of TLS4-3i, comparing it to Uni-
3i, Uni-6i, and to our TLS CMP with
in-order spawning (TLS4-3i InOrder). Fig-
ure 3a shows the application speedup of these
architectures relative to Uni-3i. Figure 3b
shows the average power consumed during
execution. As a reference, the arithmetic mean
of the average instructions per cycle of the
applications on TLS4-3i is 1.38.

As Figure 3a shows, POSH successfully

10

MICRO TOP PICKS

IEEE MICRO

N
or

m
al

iz
ed

 e
ne

rg
y

0.0

0.4

0.8

1.2

1.6

2.0

2.4

bzip2
A B C D E F

crafty
A B C D E F

gap
A B C D E F

gzip
A B C D E F

mcf
A B C D E F

parser
A B C D E F

twolf
A B C D E F

vortex
A B C D E F

vpr
A B C D E F

Geo. mean
A B C D E F

∆ETLS 0% 4%
 1

9%
 2

4%
 2

0%
 6

4%

A: NoOpt
B: StallSq
C: TaskOpt
D: NoWalk
E: TrafRed
F:TLS4-3i

∆ESquash
∆EInst
∆EVersion
∆ETraffic
Non-TLS

Figure 2: Energy cost of TLS for our four-core TLS CMP chip with and without energy-centric optimizations. The percentages
written above the average bars represent the decrease in ∆ETLS (energy cost of TLS) when we applied the optimizations. For
each application, the six bars refer to the total energy the chip consumed without any of our energy optimizations (NoOpt);
with individual optimizations enabled (StallSq, TaskOpt, NoWalk, or TrafRed); and with all four optimizations applied (TLS4-3i).

extracts good tasks from these irregular codes,
and TLS4-3i is on average slightly faster than
Uni-6i. The speculative parallelism that
TLS4-3i enables in these hard-to-parallelize
codes is more effective than doubling the issue
width. This is a good result because it conser-
vatively assumes the same frequency for both
chips. Comparing TLS4-3i to TLS4-3i
InOrder shows that an environment with in-
order spawning handicaps TLS. TLS only
obtains a 1.05 average speedup. For that rea-
son, we favor supporting out-of-order task
spawning.

The TLS4-3i speedup for mcf is very large
because mcf benefits from TLS tasks that
implicitly prefetch data for other tasks. With-
out considering mcf, the geometric mean of
TLS4-3i’s speedup is 1.18, which is still com-
parable to Uni-6i’s speedup.

Figure 3b shows that the on-chip power
TLS4-3i consumed is on average 15 percent
lower than Uni-6i’s consumption. Moreover,
it never reaches the high values that Uni-6i
dissipates in some applications, which shows
that a TLS CMP is energy-efficient. On aver-

age, TLS4-3i is slightly faster than Uni-6i
while consuming 15 percent less power.

Our work has demonstrated the feasibili-
ty of energy-efficient TLS CMPs. CMPs

offer advantages that are particularly attrac-
tive for running explicitly-parallel codes. With
TLS support, they can also run in parallel
challenging sequential codes such as SPECint
with energy and power efficiency.

Acknowledgments
This work was supported in part by the

National Science Foundation under grants
EIA-0072102, EIA-0103610, CHE-
0121357, and CCR-0325603; by DARPA
under grant NBCH30390004; by DOE
under grant B347886; and by gifts from IBM
and Intel.

References
1. M.J. Garzarán et al., “Tradeoffs in Buffering

Memory State for Thread-Level Speculation
in Multiprocessors,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA

11JANUARY–FEBRUARY 2006

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2

S
pe

ed
up

 o
ve

r
U

ni
-3

i

Uni-3i
TLS4-3i InOrder
TLS4-3i
Uni-6i

bzip2 crafty gap gzip mcf parser twolf vortex vpr Geo. mean

 1
.2

7
1.

23

 1
.0

5

(a)

(b)
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 p
ow

er
 (

w
)

bzip2 crafty gap gzip mcf parser twolf vortex vpr Arith. mean

39

51
60

32

Figure 3. Execution speedup relative to Uni-3i (a) and average power consumption (b) for different chips. The
mean for speedups is geometric. On average, TLS4-3i delivered a speedup of 1.27 over Uni-3i.

03), IEEE CS Press, 2003, pp. 191-202.
2. V. Krishnan and J. Torrellas, “A Chip-

Multiprocessor Architecture with
Speculative Multithreading,” IEEE Trans.
Computers, vol. 48, no. 9, Sept. 1999, pp.
866-880.

3. J. Steffan et al., “A Scalable Approach to
Thread-Level Speculation,” Proc. 27th Int’l
Symp. Computer Architecture (ISCA 00),
IEEE CS Press, 2000, pp. 1-12.

4. M. Prvulovic et al., “Removing Architectural
Bottlenecks to the Scalability of Speculative
Parallelization,” Proc. 28th Int’l Symp.
Computer Architecture (ISCA 01), IEEE CS
Press, 2001, pp. 204-215.

5. L. Hammond, M. Willey, and K. Olukotun,
“Data Speculation Support for a Chip
Multiprocessor,” Proc. 8th Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS VIII), ACM Press, 1998, pp. 58-69.

6. J. Renau et al., “Thread-Level Speculation
on a CMP Can Be Energy Efficient,” Proc.
Int’l Conf. Supercomputing (SC 05), IEEE CS
Press, 2005, pp. 219-228.

7. M. Cintra, J.F. Martínez, and J. Torrellas,
“Architectural Support for Scalable
Speculative Parallelization in Shared-
Memory Multiprocessors,” Proc.27th Int’l
Symp. Computer Architecture (ISCA 00),
IEEE CS Press, 2000, pp. 13-24.

8. W. Liu et al., “POSH: A TLS Compiler that
Exploits Program Structure,” Proc. ACM
SIGPLAN Symp. Principles and Practice of
Parallel Programming (PPoPP), March 2006.

9. J. Renau et al., “Tasking with Out-of-Order
Spawn in TLS Chip Multiprocessors:
Microarchitecture and Compilation,” Proc.
Int’l Conf. Supercomputing (SC 05), IEEE CS
Press, 2005, pp. 179-188.

10. “SSA for Trees—GNU Project,” May 2003;
http: //www.gccsummit.org/2003/view
abstract.php?talk=2.

11. J. Renau et al., “SESC Simulator,” Jan.
2005; http://sesc.sourceforge.net.

12. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. 27th Int’l Symp. Computer
Architecture (ISCA 00), IEEE CS Press, 2000,
pp. 83-94.

13. H.S. Wang et al., “Orion: A Power-
Performance Simulator for Interconnection

Networks,” Proc. 35th Ann. Int’l Symp.
Microarchitecture (Micro-35), IEEE CS Press,
2002, pp. 294-305.

14. Y. Zhang et al., “HotLeakage: A
Temperature-Aware Model of Subthreshold
and Gate Leakage for Architects,” Tech.
Report CS-2003-05, Univ. of Virginia, CS
Dept., 2003.

15. R. Kumar et al., “Single-ISA Heterogeneous
Multi-Core Architectures: The Potential for
Processor Power Reduction,” Proc. 38th
Int’l Symp. Microarchitecture (Micro-38),
IEEE CS Press, 2003, pp. 64-75.

16. P. Shivakumar and N. Jouppi, “CACTI 3.0:
An Integrated Cache Timing, Power and
Area Model,” Tech. Report 2001/2, Compaq
Computer Corp., 2001.

Jose Renau is an assistant professor of com-
puter engineering at the University of Califor-
nia, Santa Cruz. His research interests include
design effort and complexity estimators, CMPs,
energy-performance trade-offs, thread-level
speculation, processors in memory, and check-
pointed architectures. Renau has a PhD in
computer science from the University of Illi-
nois, Urbana-Champaign. He is a member of
the IEEE Computer Society and the ACM.

Karin Strauss is a PhD candidate in comput-
er science at the University of Illinois, Urbana-
Champaign. Her research interests include
multiprocessor systems and cache coherence
protocols. Strauss has a BEng and MEng in
electrical engineering from the University of
Sao Paulo, Brazil. She is a student member of
the IEEE, IEEE Computer Society, ACM,
and ACM SIGARCH and SIGMICRO.

Luis Ceze is a PhD candidate in computer sci-
ence at the University of Illinois, Urbana-
Champaign. His research interests include
memory system optimizations for large-win-
dow processors, speculative multiprocessor
architectures, and compiler support for such
systems. Ceze has a BEng and MEng in elec-
trical engineering from the University of Sao
Paulo, Brazil. He is a student member of the
IEEE, ACM, and ACM SIGARCH and SIG-
MICRO.

Wei Liu is a research scientist in the Depart-
ment of Computer Science at the University

12

MICRO TOP PICKS

IEEE MICRO

of Illinois, Urbana-Champaign. His research
interests include computer architecture, com-
pilers for thread-level speculation, and soft-
ware debugging and testing. Liu has a PhD in
computer science from Tsinghua University.
He is a member of the IEEE Computer Soci-
ety and the ACM.

Smruti R. Sarangi is a PhD student in com-
puter science at the University of Illinois,
Urbana-Champaign. His research interests
include thread-level speculation systems,
power management schemes, and processor
reliability. Sarangi has a BTech in computer
science and engineering from the Indian Insti-
tute of Technology, Kharagpur, and an MS in
computer science from UIUC. He is a student
member of the IEEE.

James Tuck is a PhD candidate in computer
science at the University of Illinois, Urbana-
Champaign. His research interests include
multiprocessor architectures, compilation for
speculative multiprocessor architectures, and
memory system optimizations. Tuck has a BE
in computer engineering from Vanderbilt
University and an MS in electrical and com-
puter engineering from UIUC. He is a stu-
dent member of the IEEE, IEEE Computer
Society, ACM, and ACM SIGARCH and
SIGMICRO.

Josep Torrellas is a professor of computer sci-
ence and Willett Faculty Scholar at the Uni-
versity of Illinois, Urbana-Champaign. He is
also chair of the IEEE Technical Committee
on Computer Architecture (TCCA). His
research interests include multiprocessor com-
puter architecture, thread-level speculation,
low-power design, reliability, and debugga-
bility. Torrellas has a PhD in electrical engi-
neering from Stanford University. He is an
IEEE Fellow and a member of the ACM.

Direct questions and comments about this
article to Jose Renau, Dept. of Computer
Engineering, University of California, Santa
Cruz, CA 95064; renau@soe.ucsc.edu.

13JANUARY–FEBRUARY 2006

