
Programming the FlexRAM
Parallel Intelligent Memory System∗

Basilio B. Fraguela Jose Renau† Paul Feautrier‡ David Padua† Josep Torrellas†

Dept. de Electrónica e Sistemas, Universidade da Coruña, Spain
basilio@udc.es

†Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{renau,padua,torrellas}@cs.uiuc.edu

‡LIP, Ecole Normale Supérieure de Lyon, France
paul.feautrier@ens-lyon.fr

ABSTRACT
In an intelligent memory architecture, the main memory of
a computer is enhanced with many simple processors. The
result is a highly-parallel, heterogeneous machine that is able
to exploit computation in the main memory. While several
instantiations of this architecture have been proposed, the
question of how to effectively program them with little effort
has remained a major challenge.

In this paper, we show how to effectively hand-program an
intelligent memory architecture at a high level and with very
modest effort. We use FlexRAM as a prototype architecture.
To program it, we propose a family of high-level compiler di-
rectives inspired by OpenMP called CFlex. Such directives
enable the processors in memory to execute the program in
cooperation with the main processor. In addition, we pro-
pose libraries of highly-optimized functions called Intelligent
Memory Operations (IMOs). These functions program the
processors in memory through CFlex, but make them com-
pletely transparent to the programmer. Simulation results
show that, with CFlex and IMOs, a server with 64 simple
processors in memory runs on average 10 times faster than
a conventional server. Moreover, a set of conventional pro-
grams with 240 lines on average are transformed into CFlex
parallel form with only 7 CFlex directives and 2 additional
statements on average.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;

∗This work was supported in part by the National Science
Foundation under grants EIA-0081307, EIA-0072102, and
CHE-0121357; by DARPA under grant F30602-01-C-0078;
by the Ministry of Science and Technology of Spain under
contract TIC2001-3694-C02-02; and by gifts from IBM and
Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages

Keywords
Intelligent memory architecture, compiler directives, pro-
gramming heterogeneous computers, parallel languages.

1. INTRODUCTION
The integration of processors and main memory in the

same chip is a promising approach to address the processor-
memory communication bottleneck [6, 10, 11, 12, 13, 15,
19, 20]. In these chips, processors enjoy short-latency and
high-bandwidth communication with memory. One way to
use these chips is as intelligent memories that replace all
or some of the standard main-memory chips in a server or
workstation. This is the approach followed by the Active
Pages [15], FlexRAM [10], and DIVA [6] intelligent memory
systems.

This use of processor-memory chips as intelligent memory
is very appealing because it requires relatively few changes
to general-purpose computers, and it supports the execution
of applications without modifications. Indeed, applications
could be gradually modified or compilers gradually improved
to take advantage of intelligent memory capabilities.

Unfortunately, the question of how to effectively program
these machines with little effort has remained a major chal-
lenge. There are some proposals where the programmer
identifies and isolates the code sections to run on the pro-
cessors in memory [6, 10, 15]. However, these proposals typ-
ically require low-level programming. Indeed, the program-
mer is expected to directly manage low-level operations such
as communication via messages, cache management, data
layout, or computation and data collocation. As a result,
programming these machines is often significantly harder
than conventional machines.

An alternative approach has been to use a compiler that
automatically partitions the code into loops and other sec-
tions and then schedules each section on the appropriate
processor [2, 17]. However, this approach has only been

tried for simple codes or for simple architectures; it has not
been shown for a general heterogeneous system with many
memory processors and a main processor. Moreover, it is
well known that compilers fail to parallelize a wide range of
programs.

In this paper, we present a set of compiler directives and
necessary operating and run-time system support to hand-
program an intelligent memory architecture at a high level
and with very modest effort. The resulting applications are
also well-tuned and easy to understand and modify. Our
proposal is based on CFlex, a family of high-level compiler
directives resembling those of OpenMP [14]. The CFlex en-
vironment gives the programmer high-level control over the
assignment of computation to the main and memory pro-
cessors, the layout of the data, and the synchronization be-
tween processors in a single-address space. By exposing the
high-level architecture to the programmer, it unlocks the
performance potential of the system. Moreover, the use of
directives makes the programs easy to migrate to other plat-
forms.

Applications can also profit from intelligent memory with-
out the programmer having to be concerned with the ar-
chitecture organization. This is possible with libraries of
highly-optimized functions called Intelligent Memory Oper-
ations (IMOs). These functions program the processors in
memory using CFlex, but make them transparent to the
programmer.

Our discussion and evaluation of CFlex and IMOs are
made in the context of FlexRAM [10]. Our simulation re-
sults show that, with CFlex and IMOs, a server with 64
simple processors in memory runs on average 10 times faster
than a conventional server. Moreover, a set of conventional
programs with 240 lines on average are transformed into
CFlex parallel form with only 7 CFlex directives and 2 ad-
ditional statements on average.

The rest of this paper is organized as follows: Section 2
outlines FlexRAM; Section 3 describes the operating and
run-time system support; Section 4 describes CFlex; Sec-
tion 5 presents IMO libraries; Section 6 discusses how CFlex
can be applied to other intelligent memory architectures;
Section 7 presents the environment that we use to evaluate
CFlex and IMOs; Section 8 presents the evaluation; Sec-
tion 9 discusses related work; and Section 10 concludes.

2. FLEXRAM ARCHITECTURE
A FlexRAM system is an off-the-shelf workstation or server

where some of the DRAM chips in the main memory are
replaced by FlexRAM processor-memory chips [10]. Each
FlexRAM chip contains DRAM memory plus many simple,
general-purpose processing elements called PArrays. To the
main processor of the system, which we call PHost, the re-
sulting memory system appears as a versatile accelerator
that can off-load memory-intensive or highly-parallel com-
putation. While the machine can have multiple PHosts, in
this paper we consider a single PHost system. Each PArray
can be programmed independently and, therefore, PArrays
can execute MIMD code. PHost and all PArrays share a
single address space. Finally, if the PHost runs legacy ap-
plications, the memory system appears as plain memory. A
FlexRAM system is shown in Figure 1.

The architectural parameters of a FlexRAM chip have
been upgraded from [10]; the new parameters are described
in [22]. In this upgraded design, each FlexRAM chip has 64

FlexRAM Chip Controller FlexRAM Chip Controller

PHost + Cache Hierarchy

FlexRAM Bus

Off−the−Shelf Memory System InterconnectPArray

FlexRAM Chip

Figure 1. A FlexRAM intelligent memory system.

PArrays, a FlexRAM chip controller (FXCC) that interfaces
the PArrays to the PHost, and 64 Mbytes of DRAM orga-
nized in 64 banks. Each PArray has an 8-Kbyte write-back
data cache and a 2-Kbyte instruction cache (Figure 2). A
FlexRAM chip has a 2-D torus that connects all the on-chip
PArrays. Moreover, all the FlexRAM chips are connected to
a communication bus called the FlexRAM bus. With these
links, a PArray can access any of the memory banks in its
chip and in other FlexRAM chips.

Router

DRAM

2KB ICache 8KB DCache

Local
Controller

PArray processor

2 issue in−order

Bank (1MB)

Figure 2. Structure of a PArray and a memory bank inside
a FlexRAM chip.

PArrays use virtual addresses in the virtual address space
of the application run by the PHost. Each PArray has a
small TLB that contains some entries from the PHost’s page
table. PArrays serve their own TLB misses. However, they
invoke the PHost OS for page faults and migrations.

2.1 Interprocessor Communication
Since the memory system interconnect of a FlexRAM ma-

chine is off-the-shelf, FlexRAM chips cannot be masters of
it. As a result, any communication between PArrays and
PHost has to be done in one of two ways: through memory
or via memory-mapped registers in the FXCCs. Memory
communication involves writing and reading a memory lo-
cation, and is typically used to pass the input arguments
and outputs of the tasks executed on the PArrays. FXCC
register communication involves writing and reading special
registers in the FXCCs, and is used for commands and ser-

vice requests. We consider FXCC register communication
next.

The PHost communicates with the PArrays to spawn tasks
on them, answer service requests, and order maintenance op-
erations such as flushing cached pages or invalidating TLB
entries. In all cases, the PHost issues a command to an
FXCC register and passes two words, namely the address of
the routine to execute and a pointer to the input argument
buffer. The FXCC stores this information and passes it to
the corresponding PArray(s).

A PArray communicates with the PHost to request a ser-
vice, such as the handling of a page fault. In this case,
the PArray writes to a register in its FXCC. The FXCC
cannot deliver this request to the PHost because FlexRAM
chips cannot be masters of the memory system interconnect.
Consequently, the PHost has to periodically poll the FXCCs
to check for requests.

2.2 Synchronization
Each FXCC manages a set of locks that can be acquired

and released by the PHost and by the on- and off-chip PAr-
rays. Upon a request for a free lock, the FXCC where the
lock resides grants ownership to the requester. If the lock
is currently taken, the FXCC is able to queue up a cer-
tain number of requests, and reply to each of them when it
can grant ownership. If the number of requesters exceeds
a certain threshold, the FXCC replies back with a “busy”
message.

2.3 Data Coherence
A FlexRAM system lacks hardware support for cache co-

herence between the PHost and PArrays. Data coherence is
maintained by explicit (total or partial) cache writeback and
invalidation commands [17]. Specifically, before the PHost
initiates a PArray task, it writes back the dirty lines in its
caches that contain data that may be read by the PArray
task. This ensures that the PArray sees the correct ver-
sion of the data. Moreover, before the PHost executes code
that may use results from a task executed by a PArray, the
PHost invalidates from its caches the lines with data that
may have been updated by the PArray. This ensures that
the PHost does not use stale data. As for a PArray, when
it completes a task, it writes back its dirty cache lines and
invalidates its small cache. The PArray caches also include
a dirty bit per word, so that only the modified words actu-
ally update memory. This is done to tolerate false sharing
between PArrays.

3. OPERATING & RUN-TIME SYSTEM
To use the FlexRAM system, we need several extensions

to the OS of the PHost and a small per-PArray kernel. In
general, the PHost OS is in charge of all the I/O opera-
tions, PHost CPU scheduling, and virtual memory manage-
ment. The PArray kernel manages the PArray’s TLB, and
the spawn and termination of local tasks. In addition, we
wrote a library-based user-level run-time system for both
PHost and PArrays that improves the programmability of
the machine. In the following, we describe the management
of virtual memory and the user-level run-time system.

3.1 Managing Virtual Memory
PHost and PArrays share a common view of the address

space of the tasks that cooperate in the execution of an

application. The PArray kernel reads the page table of the
process and updates its local TLB. However, only the PHost
OS can update the page table, perform page swapping, or
migrate pages.

To maximize access locality, the PHost OS tries to map
the virtual pages that a PArray references, to physical pages
located in the PArray’s local memory bank. Currently, we
support this approach with a “first-touch” mapping policy,
where the first PArray to reference a given page becomes its
owner and allocates it locally.

The PHost OS cooperates with the PArray kernels to keep
the PArray TLBs coherent when the page table changes.
Specifically, there is a shared software structure that con-
tains, for each page mapping, the list of PArrays that cache
it in their TLBs. This structure is updated by the PArray
kernels as they update their TLBs. Before the PHost OS
moves a page to disk, it informs all the PArrays that cache
the mapping of that page in their TLBs. Then, the corre-
sponding kernels invalidate that TLB entry and the relevant
cache lines. The structure described is also used in other sit-
uations when the PHost OS modifies the page table, such as
when it migrates pages.

3.2 User-Level Run-Time System
The PHost and PArray user-level run-time system per-

forms task management, synchronization, heap memory man-
agement, and polling. We consider these functions in turn.

Tasks are spawned by the user-level run-time system. Each
task has an associated software buffer that contains the task
input data that is not shared and, sometimes, the results of
the task. The former includes private copies of global vari-
ables that the task needs; the latter is not necessary if all the
results are stored in shared memory structures. To start a
task in a PArray, the PHost run-time system fills the inputs
in this buffer and then sends a spawn message to the FXCC
of the FlexRAM chip where the task is to run. The PHost
can then use the run-time system to spin on a location in
the buffer that the PArray task will set when it finishes.
PArrays cannot spawn tasks.

The run-time system also includes synchronization rou-
tines that use the FXCC locks, often building higher-level
constructs such as barriers.

The run-time system also performs heap memory man-
agement, including parallel allocation and deallocation of
heap space by the PArray tasks. Standard malloc and free

functions are used, both in the PHost and PArrays. Those
in the PArrays operate on local pages of the heap that the
PHost run-time system has allocated, assigned to that par-
ticular PArray, and requested that the OS map them in that
particular PArray’s local memory bank. When the PArray
task runs out of local heap, it asks for more to the PHost
run-time system.

Finally, another function of the run-time system in the
PHost is to poll the FXCCs to detect PArray requests.

Note that the run-time system exports its functions and
variables not only to the compiler but also to the program-
mer. The complete description of its interface is found in [5].

4. CFLEX
To exploit the functionality of FlexRAM while keeping

the portability of the programs, we program the FlexRAM
system using a family of compiler directives. Our computa-
tional model requires these directives to be able to express

the task partitioning between the PHost and the PArrays,
and the synchronization between the generated tasks. Other
desirable properties are scalability as the number of pro-
cessors available in memory increases, and hiding as much
system details as possible from the programmer. It is also
important that the directives be powerful and flexible, so
that they allow the generation of parallel programs that are
easy to read and modify for a wide class of problems.

The last objective is essential for our environment because
of the nature of the applications that are most suitable for
our kind of architecture. Specifically, the PArrays are much
simpler than the PHost, have a lower clock rate, and lack
floating-point units. This means that they are not partic-
ularly well suited to speed up typical parallel applications
based on floating-point operations and loops that use reg-
ular, cache-friendly data structures. Instead, the PArrays’
most valuable property is their low memory access time,
which allows them to accelerate irregular, memory-intensive
applications. This is an interesting challenge for the design
of our family of directives. Indeed, currently available par-
allelization directives such as OpenMP [14] or HPF [8] are
especially oriented to loop-parallel codes, and are not well
suited for irregular applications like those using pointers or
indirect accesses.

CFlex is a family of directives that addresses these is-
sues. The structure of CFlex directives is similar to that
of OpenMP directives. We implemented CFlex as annota-
tions to the C language, and use C in the discussion below.
However, CFlex can be easily used with other languages like
FORTRAN.

The general structure of a CFlex directive is

#pragma FlexRAM directive-type [clauses]

CFlex directives may be classified in three groups:

• Execution modifiers indicate how a given segment of
code should be executed. These are the most widely
used directives. They include the requests to spawn a
given portion of the program for execution on a given
processor or group of processors.

• Data modifiers request that data structures satisfy cer-
tain conditions. An example are directives to pad one
of the dimensions of an array to make its size a multi-
ple of the page size.

• Executable directives are instructions that must be ex-
ecuted by the parallel program. Examples of this class
include barriers or prefetch operations.

In the following, we briefly discuss the three kinds of direc-
tives and then show some examples of their use. A complete
description of CFlex can be found in [5].

4.1 Execution Modifiers
These directives partition the computation into PHost

and PArray tasks, and synchronize tasks. The most im-
portant execution modifier directives are phost and parray,
which specify the kind of processor where the statements
that immediately follow them should be executed. Since
PArrays cannot spawn new tasks, these directives may only
appear in the code executed by the PHost, and they will
spawn either a new PHost task or a PArray task. A series
of optional clauses enrich the semantics of the directive:

• on home(x) specifies that the task should be executed
on the PArray whose local memory bank contains the x
data structure. If the directive-type is phost, then this
clause only has effect when the target computer is a
NUMA machine. In this case, it specifies that the new
task should be run on the PHost whose local memory
contains x.

• sync/async specifies whether the task spawning the
new task must stop until the new task finishes (sync)
or it can continue (async). The default is sync. A task
does not finish until all the tasks that it has spawned
have finished. CFlex only allows the creation of asyn-
chronous tasks inside the syntactical scope of a syn-
chronous task. The end of a sync task T can there-
fore be used as a synchronization point of all the tasks
spawned inside T . This approach is powerful, flexible,
and simple as will be illustrated in Section 4.4.

• if(cond) controls the execution of the directive where
it appears. The directive is executed only if cond is
true.

• else also controls the execution of a directive. The
directive is executed if the cond in the if clause in
the immediately preceding directive is false. Note that
execution modifiers cannot be nested for the very same
piece of code. Therefore, there is no need to implement
symmetric conditionals.

• shared, private, lastprivate, firstprivate, reduc-
tion have the same semantics as the directives of the
same name in OpenMP. In contrast to OpenMP, CFlex
allows them to apply to only one part of a structure,
such as one field of a struct or one element of a vector.

• flush specifies variables such that, if their correspond-
ing lines are dirty in the PHost cache, the lines are
written back to memory. This is done so that the PAr-
ray(s) executing the task(s) have access to the latest
version of the data they require in memory. If the task
is to run on a PArray and this clause is not present, the
compiler writes back to memory all the dirty lines in
the PHost cache. The programmer can use this clause
to restrict the writeback to a certain set of variables.

Note that the ability to spawn new PHost tasks allows
CFlex to express parallelism in systems without processing
in memory. In this case, the on home clause is useful to
control locality of execution when the PHosts belong to a
NUMA machine.

A migrate clause could be added in the future to designate
shared data structures whose pages should migrate to the
first PArray or PHost that touches them after the task(s)
created by this directive begin their execution. However,
page migration can be very costly.

A third execution modifier is critical, which declares a
code segment as a critical section with a given name. All
the critical sections with the same name are mutually ex-
clusive. This is accomplished through the use of the same
FXCC lock for all of them. This directive can take the sin-
gle optional clause flushinval that specifies the variables
that may be written within the critical section, or read in
the critical section and written somewhere else. In this case,
the cache lines with such variables are written back from the

processor’s cache (if dirty) and invalidated before entering
the critical section. This forces the processor to read the
latest version of the variables in the critical section. More-
over, these cache lines are written back to memory (if dirty)
when the processor exits the section. This enables the next
processor that will enter the critical section to access the
new version of the variables. If the flushinval clause is
not present, the operations described are performed on the
whole cache.

4.2 Data Modifiers
We propose three directives of this kind, namely aligna-

ble, page aligned, and align. The first two directives can
precede the declaration of a C struct or union and instruct
the compiler to pad the data structure to align it. Specifi-
cally, the alignable directive increases the size of the data
structure until it becomes a power of two; the page aligned

directive increases the size until it becomes a multiple of the
page size. Finally, the align(array name[][]. . .) directive
aligns a dimension of the array array name to a page bound-
ary. The dimension is specified by the number of square-
bracket pairs in the directive.

4.3 Executable Directives
CFlex has several executable directives that perform a

variety of functions. As an example, the barrier directive
implements a barrier for n processors using FXCC locks.
As another example, the flush directive specifies a series of
variables to write back to memory if the corresponding lines
are dirty in the cache of the processor. This directive takes
the optional invalidate clause, which additionally causes
these lines (or a subset of them) to be invalidated after the
potential writeback.

4.4 Examples
To gain more insight into the CFlex directives, we now

show several simple examples of their use. A first example
involves traversing a linked list and performing some pro-
cessing on each of its nodes in parallel (Figure 3). The first
directive in the figure generates a synchronous (sync) task
in the PHost that will execute a whole loop. Note that gen-
erating a synchronous task in the same processor has no
overhead. The purpose of this directive is simply to provide
a context for synchronization of the tasks that are spawned
by each iteration the loop. Each one of these tasks executes
on the PArray whose local memory bank contains p->data.

#pragma FlexRAM phost sync
for(p = head; p != NULL; p = p->next)

#pragma FlexRAM parray async on_home(*(p->data)) \
firstprivate(p)

process(p->data);

Figure 3. Parallelized linked-list processing using the sync
and async clauses.

Each one of these asynchronous tasks receives a privatized
copy of the value of pointer p for the corresponding itera-
tion, and processes a node from the list. Since these tasks
are asynchronous, the PHost task continues to iterate the
loop and spawn tasks until it reaches the end of the loop.
Then, the synchronous task waits for all of the asynchronous
(async) tasks to complete. When they do, the synchronous
task finally completes.

In this example, we have illustrated the general scheme
used to parallelize a loop: declare the loop as a synchronous
task and each of its iterations as an asynchronous one. Since
loops are the most common source of parallelism, we have
extended CFlex with a pfor clause that tells the compiler
to break the loop following it into a series of asynchronous
tasks and wait for their completion before continuing. Thus,
the previous loop can be re-written using a pfor clause as
shown in Figure 4. Note that although OpenMP is largely
designed for loop parallelism, a parallel version of this loop
in OpenMP would require the use of the ordered clause
and/or a rearrangement of the code, which would be less
readable and efficient.

#pragma FlexRAM parray pfor on_home(*(p->data)) \
firstprivate(p)

for(p = head; p != NULL; p = p->next)
process(p->data);

Figure 4. Parallelized linked-list processing using the pfor
clause.

A more complex parallelization scheme is required when
there are portions of code that must be run sometimes in the
PHost and sometimes in the PArrays. An example is shown
in Figure 5. The example implements the routine that allo-
cates the tree in the TreeAdd application from the Olden
suite [16]. The routine allocates a binary tree of height
level. Our parallelization strategy selects a level cutlevel.
The nodes below that level are allocated by the PArrays and
the nodes in that level and up to the root (highest level) are
allocated by the PHost. Recall that the runtime system al-
lows the PArrays to allocate and deallocate heap memory in
parallel (Section 3.2).

tree_t *TreeAlloc (int level) {
if (level == 0) return NULL;
else {

struct tree *new, *right, *left;

new = (struct tree *) malloc(sizeof(tree_t));
#pragma FlexRAM phost if (level >= cutlevel)

{
#pragma FlexRAM parray async if (level == cutlevel)
#pragma FlexRAM phost async else

left = TreeAlloc(level-1);

#pragma FlexRAM parray async if (level == cutlevel)
right=TreeAlloc(level-1);

}
new->val = 1;
new->left = (struct tree *) left;
new->right = (struct tree *) right;
return new;

}
}

Figure 5. Parallelized tree allocation.

The tree is allocated top down starting at the root. As
long as the level == cutlevel condition is not satisfied,
TreeAlloc is called by the PHost. Under these conditions,
however, the PHost spawns a new task on the PHost to build
the left subtree of each node. We follow the approach of cre-
ating multiple PHost tasks to avoid modifying the original
code. When cutlevel is reached, both the left and right
subtree allocation tasks are run on PArrays. Note that a

single PArray task allocates a whole subtree. This is be-
cause PArrays ignore the phost and parray directives, since
they cannot spawn new tasks. With this support, a whole
subtree is allocated in a local memory bank. The resulting
partitioning of the work is shown in Figure 6. In the figure,
the dashed lines represent the spawn of a new task on the
PHost. If there is not enough space in a memory bank to
keep a whole subtree, some pages are allocated from another
bank, and the PArray accesses them remotely. To avoid
these remote accesses, it is better to choose a cutlevel that
guarantees that a subtree built by a PArray fits in its local
memory bank.

PArray2 PArray3PArray1PArray0

cutlevel

Figure 6. Partition of the work between the PHost (level
cutlevel and above) and the PArrays for the code in Figure 5.

This work-partitioning strategy may be applied to any
parallel processing of tree data structures. For example,
the second step of the TreeAdd application is a reduction
that adds the values stored in all the nodes of the tree; we
have parallelized it in the same way as the allocation. As
an additional optimization, the task that adds the values in
a subtree built by a PArray is spawned using the on home

clause to ensure that the reduction is performed by the PAr-
ray that owns the subtree. This approach exploits locality.

Our compiler generates two versions of the routine in Fig-
ure 5, one for the PHost and one for the PArrays. While
the PHost version includes the code associated with the di-
rectives, the PArray version does not. The reason is that
PArrays cannot create new tasks, so these directives do not
apply. Recall also that PHost and PArrays have different
ISAs. Consequently, the back-end compiler has to generate
two versions anyway, even if the high-level code is exactly
the same for both kinds of processors.

Finally, we consider an example where several data struc-
tures need to be processed together. In this case, while
we can use the on home clause to ensure that accesses to
one data structure are local, the accesses to the other data
structures may end up being remote. To address this prob-
lem, we could use a migrate clause to migrate the pages of
the remote data structures, but the overhead could be high.
Instead, an approach that often works is to make use of
the first-touch page-placement policy of our OS. With this
support, we may implicitly align at the page level the data
structures that are used together throughout the code.

As an example, Figure 7 shows two loops in the Swim
application from the SPEC OMP2001 suite. In the figure
we use the FORTRAN form of the CFlex directives. The
first loop is from the INITAL routine and contains the first
accesses in the program to vectors UOLD, VOLD and POLD.
The on home clause forces iteration J to be executed by the
PArray that holds element (1,J) of matrix U. This PArray
is also the first processor in the system to access column J of
UOLD, VOLD, and POLD. As a result of our first-touch policy,

the OS places the pages that contain such columns in the
local memory bank of the same PArray. The same strategy
was used in previous loops to place the pages containing
the columns of matrices U, V, and P. If the column sizes are
(or can be made) such that the columns can be aligned to
page boundaries, and each matrix starts at a page boundary,
then all the accesses in the code end up being local. Figure 8
shows the resulting data layout assuming that each memory
bank ends up allocating 8 columns from every matrix. In
the figure, each box inside a memory bank represents a page-
aligned chunk of memory that extends over several pages.

C$FlexRAM parray pfor on_home(U(1,J)) private(I)
DO J=1, NP1

DO I=1, MP1
UOLD(I,J) = U(I,J)
VOLD(I,J) = V(I,J)
POLD(I,J) = P(I,J)

END DO
END DO
...

C$FlexRAM parray pfor on_home(U(1,J)) private(I)
DO J=1,N

DO I=1,M
UOLD(I,J) = U(I,J) + ALPHA * ...
VOLD(I,J) = V(I,J) + ALPHA * ...
POLD(I,J) = P(I,J) + ALPHA * ...
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)

END DO
END DO

Figure 7. Alignment of data structures using the on home

clause and the first-touch page-placement policy.

POLD(:,1:8)

U(:,1:8)

V(:,1:8)

P(:,1:8)

UOLD(:,1:8)

VOLD(:,1:8)

PArray 0 bank

POLD(:,9:16)

U(:,9:16)

V(:,9:16)

P(:,9:16)

VOLD(:,9:16)

PArray 1 bank

UOLD(:,9:16)

...

POLD(:,NP1−7:NP1)

U(:,NP1−7:NP1)

V(:,NP1−7:NP1)

P(:,NP1−7:NP1)

UOLD(:,NP1−7:NP1)

VOLD(:,NP1−7:NP1)

PArray n bank

Figure 8. Alignment of the matrix columns from the first
loop in Figure 7. In the figure, each box inside a memory bank
represents a page-aligned chunk of memory that extends over
several pages.

When related data structures are referenced later in the
code, we have to distribute the corresponding loop among
the PArrays following the same policy. This is illustrated in
the second loop of Figure 7, taken from the CALC3 routine.

Overall, note that none of the examples in this section re-
quired adding or modifying any line of the original sequential
code. All the parallelization semantics have been expressed
by means of compiler directives. This is fairly typical of the
codes that we have parallelized using CFlex.

5. INTELLIGENT MEMORY OPERATIONS
The family of compiler directives presented in the previous

section enables the parallelization of a large set of codes and

Function Description Abstract Expression Syntax

Apply func f with arg a exec f(v(i),a), 0 ≤i< N Vector apply(v,f,a)

Search element that fulfills ret any v(i) such that Vector search(v,f,a)
condition f with arg a f(v(i),a)6= 0, 0 ≤i< N

Generate vector with the result v2(i)=f(v(i),a) v2=Vector map(v,f,a)
of applying func f with arg a 0 ≤i< N

Reduce vector applying func f, ret f(...f(f(a,v(0)),v(1))...) Vector reduce(v,f,a)
whose neutral element is a where f(a,x)=x

Process together two vectors and v3(i)=f(v(i),v2(i),a) v3=Vector map2(v,v2,f,a)
an arg a, generating a new vector 0 ≤i< N

Table 1. Examples of IMOs for vector containers.

the exploitation of locality while hiding many of the system
details from the programmer. However, to develop efficient
programs, the programmer must be aware of the existence
of the FlexRAM chips and must decide how to partition and
coordinate the work between the PHost and the PArrays.

All these details can be hidden and performance can be
improved with the use of library routines. Specifically, we
propose the use of a library of Intelligent Memory Opera-
tions (IMOs). IMOs are encapsulated operations that make
use of the PArrays. IMOs perform common operations on
data structures that are often used in programs.

Simple examples of IMOs are finding the minimum value
in a vector of numbers or adding two matrices. Other, more
structured examples of IMOs are STL classes [18]. Such
IMOs may define and operate on containers such as vec-
tors, lists, hash tables, or sets. They may make use of the
intelligent memory to perform parallel allocations and deal-
locations, searches, insertions, retrievals, and other compu-
tations on the elements in the containers. Some examples
of IMOs for vector containers are proposed in Table 1.

To make code containing IMO calls portable to conven-
tional machines, IMO libraries implement two versions of the
functions provided to the programmer: one to be used when
no FlexRAM chips are detected in the system, and another
one programmed in CFlex that exploits the capabilities of
the FlexRAM chips. Both versions should be highly opti-
mized and completely hide from the programmer issues such
as task partitioning, scheduling, and synchronization.

6. OTHER ARCHITECTURES
There are other architectures that, like FlexRAM, have

many simple processors in main memory that cooperate with
the main processor. Examples of such architectures are Ac-
tive Pages [15] and DIVA [6]. For these architectures, CFlex
and IMOs can provide appropriate programming support.

CFlex provides a solution to the computational issues in-
volved in the programming of Active Pages [15]. These is-
sues are: partitioning between processor and memory, coor-
dination, computational scaling with the number of memory
processors and their associated memory, and data manipu-
lation. The last issue is particularly related to the use of
IMOs. In fact, [15] illustrates the advantages of Active Pages
for data manipulation using an implementation of the STL
array class that exploits Active Page functions, very much
in the line of our IMOs.

DIVA [6] can also be programmed using explicitly-parallel
programming languages that permit some programmer con-
trol of locality, as is the case for CFlex. Besides, like Flex-
RAM, DIVA also needs support from the language/compiler
to keep the host cache coherent with the memory processors

using write-backs and invalidations, although the processors
in memory lack data cache.

However, there are differences that seem to make Active
Pages and DIVA more sensitive than FlexRAM to the data
placement. Thus, extensions of CFlex to specify placement
and alignment of data structures would be very useful for
both architectures when the implicit alignment used in this
paper is not enough. In the case of Active Pages, the prob-
lem is that all the communications between the memory pro-
cessors are serialized through the PHost. As a result, the
PHost may become a bottleneck when poor data placement
results in many non-local accesses.

In DIVA, the exchange of data between memory chips re-
quires the use of messages called parcels. Passing a parcel
involves software processing by either user- or supervisor-
level code at both ends [7], which makes it slower than the
hardware approach followed by FlexRAM. Consequently, it
would also be important for a CFlex programmer to max-
imize locality. Moreover, a CFlex compiler may improve
performance by inserting efficient code required to manage
the message passing when the communication between tasks
is regular enough. If this is not the case, an implicit mecha-
nism such as an interrupt with its service routine, could be
provided by the run-time system to request non-local data
each time that it is needed.

7. EVALUATION ENVIRONMENT
For our evaluation, we use an execution-driven simulation

infrastructure that can model aggressive out-of-order super-
scalar processors and complete memory subsystems.

7.1 Architecture Modeled
Our baseline architecture is a workstation with a high-

performance 1.6 GHz five-issue PHost processor similar to
IBM’s Power4 [3]. The performance of this workstation is
compared to that of two upgraded versions of it: one where
the plain main memory is replaced by a single FlexRAM
chip, and one where it is replaced by two FlexRAM chips.

The main architectural parameters of the system modeled
are shown in Table 2. In the table, the times for each proces-
sor are measured in terms of that processor’s cycles. Note
that the PHost is very powerful, has a large L2 cache, and is
able to sustain many simultaneous memory accesses. Conse-
quently, the baseline architecture is very aggressive. On the
other hand, recent advances in merged logic-DRAM tech-
nology have enabled the integration of high-speed logic with
high-density memory in the same chip [9]. Consequently, we
have set the frequency of the PArrays to be 75% of that of
the PHost. Recall that each FlexRAM chip has 64 PArrays.
As shown in Table 2, these PArrays are much simpler than

the PHost. Specifically, each PArray has a single integer
adder and shares an integer multiplier with 3 other PArrays.
Moreover, PArrays lack floating-point hardware, which they
emulate in software. We assume that the latencies of emulat-
ing a floating-point add/subtract, multiply, and divide/sqrt
operation are 3, 10, and 80 cycles, respectively.

PHost Processor PHost Caches Bus & Memory

Freq: 1.6 GHz L1 Size: 32 KB Bus: Split Trans
Issue Width: 5 L1 OC,RT: 1,3 Bus Width: 8 B
Dyn Issue: yes L1 Assoc: 2 Bus Freq: 400 MHz
I-Window Size: 64 L1 Line: 128 B Mem RT: 180
Ld,St Units: 2,1 L1 MSHR: 16 (112.5 ns)
Int,FP Units: 5,4 L2 Size: 1 MB
Ld Queue: 32 L2 OC,RT: 4,12
St Queue: 32 L2 Assoc: 8
BR Penalty: 12 L2 Line: 128 B
TLB Entries: 128 L2 MSHR: 8

PArray Processor PArray Cache FlexRAM Torus, Bus

Freq: 1.2 GHz L1 Size: 8 KB Avg Torus RT: 14
Issue Width: 2 L1 OC,RT: 1,2 Torus Freq: 1.2 GHz
Dyn Issue: no L1 Assoc: 2 Bus: Split Trans
Ld,St Units: 1,1 L1 Line: 32 B Bus Width: 8 B
Int,FP Units: 1,0 Blocking Bus Freq: 400 MHz
Ld,St Queue: 2,2
BR Penalty: 6
TLB Entries: 32
PArrays/Chip: 64

Table 2. Parameters of the architecture modeled. In the
table, BR, OC, RT, and MSHR stand for branch, occupancy,
latency of a round trip from the processor, and miss status
handling register, respectively. Each PArray has a single
integer adder and shares an integer multiplier with 3 other
PArrays.

We also simulate the parts of the OS and run-time sys-
tem that are most likely to be exercised. For the OS, this
includes building and keeping a two-level page table, allocat-
ing physical pages, mapping virtual pages to physical ones,
maintaining the TLBs in both PHost and PArrays, and per-
forming task scheduling. As for the run-time system, we
model it completely, including task spawning, memory allo-
cation by both the PHost and PArrays, and periodic polls
and other accesses to synchronize PHost and PArrays. The
size of the pages used is 16 Kbytes.

7.2 Applications Used
To evaluate the programmability and performance of a

FlexRAM system using CFlex or IMOs, we select eight ap-
plications. These applications have a wide variety of char-
acteristics, which can help us discover which attributes are
most suitable for FlexRAM, and what problems arise in
FlexRAM programming. These applications have been an-
notated by hand with CFlex directives or with calls to an
IMO library that we created. We have also modified the
SUIF compiler [21] to accept CFlex pragmas and compile
the applications. The resulting executable file is passed to
our simulator infrastructure.

The IMO library contains operations to handle singly-
linked lists. It includes both STL-like operations such as in-
sertion, retrieval, or search, and many high-level operations.
Examples of the latter include those in Table 1 applied to
linked lists. Another example is to process with a function

all the pairs of elements taken from two lists. The library
uses a linked list that is distributed across the PArrays. It
makes extensive use of the run-time system functionality
that enables PArrays to allocate and deallocate portions of
heap memory in parallel. All the operations are used in our
applications. Overall, the library contains 714 lines of source
code, including the CFlex directives.

Table 3 lists the applications used. TSP and TreeAdd
are taken from the Olden suite of pointer-intensive sequen-
tial applications [16], Swim and Mgrid are from the SPEC
OMP2001 suite, Dmxdm and Spmxv are numerical kernels,
and Distance and Path were written from problem descrip-
tions in [4]. Distance and Path are coded with IMO library
calls, while the other applications use CFlex directives.

We use four axes to broadly classify the behavior of each
application. Specifically, the access patterns may be irreg-
ular due to pointers (Ptr) or due indirections in the form
of subscripted indices (Ind), or regular (Reg). The compu-
tation may use mostly integer (Int) or floating-point (FP)
operations. When several data structures are involved in
the computation, we are able to align all of them (Yes), only
some of them (Part), or none of them (No). Finally, the typ-
ical number of instructions in the tasks sent to the PArrays
may be tens of thousands (Small), hundreds of thousands
(Med), or over one million (Large). The tasks in Mgrid have
a variety of sizes. Overall, we can see that our applications
cover a wide variety of behaviors.

The table also lists the data set size of the applications,
and the average Instructions Per Cycle (IPC) of the applica-
tions running on the architecture without FlexRAM chips.

The last three columns of the table attempt to estimate
the effort required to map the applications to the FlexRAM
system. From left to right, they list the original number
of lines of code, the number of CFlex directives inserted,
and the additional lines required to map the code to the
FlexRAM system. For the two applications coded with IMO
calls, the last two columns have a slightly different meaning:
number of CFlex directives in the IMO functions used, and
the static number of calls to IMO functions, respectively.
The original code size reflects the number of lines of the
applications without including the IMO library. Note that
rather than attempting to heavily modify the code in order
to exploit as much parallelism as possible, we have focused
on the simplicity of the mapping process by making as few
modifications as possible, as the figures in the table show.
For example, the six applications with CFlex directives orig-
inally have 240 lines of code on average, and are transformed
into CFlex parallel form with only 7 CFlex directives and 2
additional statements on average.

7.2.1 Details on Individual Applications
To help understand the mapping better, we now give some

details on individual applications. We start with TSP and
TreeAdd, which operate on trees built with pointers. Tree-
Add is parallelized and mapped as discussed in Section 4.4.
TSP follows a similar approach but has some differences.
Specifically, subtrees in TreeAdd are processed independently
by different PArrays, while the PHost performs the compu-
tation above a certain tree level. In TSP, instead, processing
a node of the tree requires accessing the whole subtree be-
low the node. Thus, assigning the processing of the upper
levels of the tree to the PHost would leave much parallelism
unexploited. In our parallelization, we let PArrays work at

Applic. Coding Application Characteristics Data Set Baseline Original Number Additional
Access Data Align Task Size Size (MB) IPC Lines Directives Lines

TSP CFlex Ptr FP - Large 22 0.85 485 12 5
TreeAdd CFlex Ptr Int - Large 40 1.01 71 8 4
Swim CFlex Reg FP Yes Med 28 0.95 272 8 0
Mgrid CFlex Reg FP Yes Var 55 2.35 470 13 0
Dmxdm CFlex Reg FP Part Large 23 3.47 81 1 2
Spmxv CFlex Ind FP No Med 36 0.59 47 1 0
Distance IMOs Ptr Int - Large 1 2.04 108 17 7
Path IMOs Ptr Int - Small 13 0.33 165 17 9
Average 27.3 1.45 212.4 9.6 3.4

Table 3. Characteristics of the applications used.

all levels of the tree and only reserve the root for the Phost.
As the processing moves up the tree, there are fewer sub-
trees, which means both fewer active PArrays and that those
PArrays have to access data in more memory banks.

Swim and Mgrid use the test input data set. Their access
patterns are very regular and floating-point operations dom-
inate the computation. We exploit the vast loop-level par-
allelism in these applications by simply replacing the orig-
inal OpenMP directives by the corresponding CFlex ones.
Note that, although the data set size of Swim uses about
28 Mbytes, its memory footprint is larger than 64 Mbytes
because of internal page fragmentation. As a result, Swim
requires at least two FlexRAM chips to execute without in-
tensive swapping. Consequently, we did not perform exper-
iments with Swim using a single FlexRAM chip.

Dmxdm and Spmxv are floating-point kernels. Dmxdm
multiplies two 1000 × 1000 dense matrices with blocking in
the three dimensions. Each submatrix is copied into con-
secutive locations to improve the locality. One of the loops
is also unrolled and jammed. Spmxv multiplies a sparse
10000 × 10000 matrix with three million entries to a vector.
The matrix is stored in Compressed Row Storage (CRS) for-
mat [1]. Column indices and non-zero values are not aligned
because of their different size (four and eight bytes, respec-
tively). These two kernels are parallelized by assigning a
different PArray to compute a block of rows of the destina-
tion matrix (in Dmxdm) or a set of consecutive elements of
the destination vector (in Spmxv). In both kernels, a single
directive is required to parallelize the outer loop.

Finally, Distance and Path work with singly-linked lists
using our IMO library of operations on these data struc-
tures. Distance takes a set of points in a two-dimensional
space and finds all pairs of points that are closer than given
distance; Path finds the shortest path between two given
points in a graph. The IMO functions are designed to be
very efficient for both the sequential (no FlexRAM) and the
parallel (FlexRAM) execution of these applications. Still,
there are some cases where the performance of the sequen-
tial execution can be hindered by IMO code structure that is
better suited for parallel execution. In those cases, we wrote
versions of these IMO functions that are optimized for the
sequential execution, and we use them when evaluating the
no-FlexRAM architecture.

8. EVALUATION
To evaluate the impact of the intelligent memory, we mea-

sured the execution speedups of the FlexRAM system over
the baseline workstation. In the following, we first examine

the initial speedups obtained, and then evaluate compiler,
run-time, and hardware optimizations.

8.1 Application Speedups
In our evaluation, we examine FlexRAM systems with

one or two FlexRAM chips. Figure 9 shows the result-
ing speedups for each application and their geometric mean
(GMean). Recall that, to accommodate the working set
of Swim, we need two FlexRAM chips. In the figure, the
speedups correspond to the execution of the complete ap-
plications. All applications spend more than 99% of their
original execution time in the section of the code parallelized
with CFlex.

 TSP TreeAdd Swim Mgrid Dmxdm Spmxv Distance Path GMean
0

10

20

30

40

50

60

S
p

ee
d

u
p

1 FlexRAM Chip
2 FlexRAM Chips

Figure 9. Execution speedups obtained using the FlexRAM
system.

The figure shows that, for one FlexRAM chip, the speedup
figures are quite good: while there is significant variability
across applications, the geometric mean is about 9. In gen-
eral, the applications with the highest speedups are those
with irregular access patterns and those with integer com-
putation. This was to be expected because dense numer-
ical applications tend to make better use of large caches
and good floating-point support of the PHost-only baseline
workstation. In addition, applications such as Path, where
PArray tasks largely use data located in the local memory
bank, obtain better speedups than applications such as Sp-
mxv where PArrays require data from other banks.

The locality of PArray accesses also affects the changes

in speedups as we go from one to two FlexRAM chips. In
applications with good locality, the speedups go up, while in
those with poor locality, the opposite occurs. In the second
class of applications, the FlexRAM bus becomes a bottle-
neck for accesses to banks in other chips. Overall, without
considering the contribution of Swim, the geometric mean of
the speedups for two FlexRAM chips is not higher than for
one. In general, contention in the FlexRAM bus and over-
heads due to synchronization and task spawning will grow
with the number of FlexRAM chips. Consequently, unless
the application requires little data movement and synchro-
nization, it is generally advisable to use the smallest number
of FlexRAM chips required to hold its data set.

8.2 Compiler and Run-Time Optimizations
The CFlex versions of our applications often use on home

clauses to leverage our first-touch page allocation policy and
align data structures for local computation. We call these
versions Opt, and have used them to calculate the speedups
shown in Figure 9. Surprisingly, we found that CFlex ver-
sions of Swim and Mgrid without any on home clauses are
faster than their corresponding Opt versions. In these new
versions, which we call NoOpt, tasks are scheduled following
the default policy when the on home clause is missing: cycli-
cally across chips and then, within a chip, cyclically across
PArrays. Pages are still allocated using the first-touch pol-
icy. The difference in speedups between the NoOpt and Opt
versions is shown in the first two bars of Figure 10. Note
that this effect only occurs for Swim and Mgrid.

 Swim 2 FlexRAM Chips Mgrid 1 FlexRAM Chip Mgrid 2 FlexRAM Chips
0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NoOpt
Opt
Opt+H
Opt+H+C
Opt+H+C+L

Figure 10. Impact of compiler and run-time optimizations
for task spawning and mapping in Swim and Mgrid.

These experiments helped us identify at least three com-
piler or run-time inefficiencies in spawning and mapping
tasks. The first inefficiency results from the way tasks are
spawned under the on home clause. Therefore, it only affects
the Opt version. It occurs when the computation segments
to be assigned to consecutive tasks access consecutive pages
in the memory bank of the same PArray. The compiler gen-
erates one task for each page and assigns all the tasks to the
same PArray. Unfortunately, the creation of so many tasks
causes significant spawning and synchronization overheads.
Moreover, assigning them all to the same PArray may re-
duce parallelism. The reason is that our run-time system

can only spawn a task when all the previous tasks gener-
ated by the PHost have already been spawned. Moreover, if
the destination PArray is busy executing another task, the
spawn request is queued up in a register of the chip’s FXCC.
If the FXCC runs out of registers, the spawn request cannot
be queued up and the run-time system has to wait for tasks
to finish.

To eliminate this inefficiency, we changed our compiler
as follows. Instead of generating different tasks that access
consecutive pages of the same memory bank, the compiler
combines all the work into a single task. This approach
eliminates overheads and the potential run-time stall prob-
lem mentioned above. We call this optimization H for Home-
allocation, and apply it to the Opt versions to obtain Opt+H.
Figure 10 shows that Opt+H delivers higher speedups, es-
pecially for Swim.

The second inefficiency occurs in machines with more than
one FlexRAM chip when tasks are mapped without the
on home clause. Recall that, in this case, tasks are mapped
cyclically among the FlexRAM chips. This is done for two
reasons: to balance the usage of the chips and to reduce
the likelihood of run-time stall due to running out of FXCC
registers. Unfortunately, consecutive task spawns generate
tasks that usually access related pieces of data, and often
share the same data. Spawning these tasks on different
chips often causes our first-touch page allocator to map the
pages of consecutive portions of vectors and arrays on dif-
ferent chips. As a result, if tasks want to access information
that is near in the virtual space, they are forced to use the
FlexRAM bus and go across chips. Note that this prob-
lem still affects our Opt versions, since some of their code
sections do not use the on home clause.

To eliminate this inefficiency, we change the mapping pol-
icy for consecutive tasks when the on home clause is not
present. We perform cyclic mapping of tasks within a chip
before moving to mapping tasks to the next chip. Conse-
quently, each chunk of 64 consecutive tasks is mapped in the
same chip. We call this optimization C for Consecutive-on-
chip, and apply it to the Opt+H versions to obtain Opt+H+C.
Figure 10 shows the resulting speedups, which are now sig-
nificantly higher. Note that Opt+H+C does not apply to
single-chip systems.

Finally, there is a third, potential inefficiency that is in-
trinsic to the use of the on home clause. When assigning the
computation to the PArray(s) on whose bank the data is
located, we certainly obtain better locality. Unfortunately,
we also restrict the number of PArrays that cooperate in the
computation and, therefore, restrict parallelism.

Addressing this inefficiency involves distributing the data
among as many PArrays as possible, which has negative ef-
fects on locality. Besides, we are limited by the fact that
the granularity of the distribution in our system is the page.
Therefore, computation to be parallelized using the on home

clause that operates on small pieces of data can only be
split among a few PArrays. This effect hurts Mgrid’s per-
formance. Consequently, we optimize task spawning and
mapping as follows: on home clauses are applied only on
loops that have more than 60 iterations. Otherwise, the
loop is parallelized without applying the clause, thus losing
locality but gaining in parallelism. This optimization at-
tempts to ensure that the number of PArrays that execute
the loop iterations is not too small despite the restriction
that on home imposes.

We call this optimization L, for Limited on home. This
optimization is only needed in Mgrid. The last bar in Fig-
ure 10 shows the small improvements obtained when apply-
ing it to the Opt+H+C version of Mgrid, to obtain version
Opt+H+C+L.

8.3 Hardware Optimizations
In several applications, the PHost spawns many small

tasks. Unfortunately, task spawning has overhead, as the
PHost first stores the data needed by the task in a memory
buffer, and then notifies the corresponding chip’s FXCC,
passing a pointer to the buffer and to the code to execute.
Furthermore, the PHost must then poll the FXCC to ensure
the task spawn has been successful, and repeat the operation
if this has not been the case. In many cases, these tasks are
spawned on the same chip and they execute the same code
on different data. Consequently, we could significantly re-
duce the overhead by adding special hardware in the FXCC.
That hardware could spawn the multiple tasks that execute
the same code on the same chip in a single action. It could
also queue the tasks that cannot be spawn immediately be-
cause the corresponding PArray is busy. The PHost would
only have to fill the several buffers and then pass, with a
single message, an array of buffer pointers and a pointer to
the code. Moreover, if the buffers are placed in memory
with a fixed stride, the PHost would only need to pass a
single buffer pointer that points to the first buffer and the
stride. Of course, in all cases, if the tasks need to execute
different codes, the PHost would have to pass an array of
code pointers.

We have simulated the optimization where the PHost
passes to an FXCC a single buffer pointer, the stride, the
number of buffers, and a single code pointer, and the FXCC
then spawns all the tasks. The FXCC latency of the ac-
tual spawn does not change: it is the sum of the FXCC
latencies of all the spawns. We call this optimization M for
Multi-spawn, and apply it to the Opt+H+C+L versions of
the codes to obtain Opt+H+C+L+M.

Figure 11 shows the speedups of all the applications for
Opt+H+C+L+M. The figure also includes the original speed-
ups of Figure 9 (Opt) and Opt+H+C+L. The H, C, and L
optimizations mostly affect Swim and Mgrid. Overall, the
figure shows that the multi-spawn optimization significantly
speeds up Path and, to a lesser degree, TreAdd. Conse-
quently, it is a useful improvement.

In summary, with all the software optimizations, a Flex-
RAM system with 1 or 2 FlexRAM chips delivers an aver-
age speedup of 10 and 11, respectively, over a conventional
server. If we include the multi-spawn hardware optimiza-
tion, the average speedups become 11 and 12, respectively.

8.4 Other Optimizations
Recall from Table 3 that we deliberately minimized the

number of directives and additional lines added to our codes.
In this final experiment, we show that high-speedup versions
of the applications can be written with additional code tun-
ing. For example, we have developed a version of Dmxdm
with 148 lines of code and 12 CFlex directives. This is in
contrast to the version used up until now, which has 81 lines
and 1 directive. The tuned version chooses a leader PArray
in each FlexRAM chip to manage the movements of data to
and from other FlexRAM chips. The other PArrays in the
chip synchronize with the leader using FXCC locks, before

 TSP TreeAdd Swim Mgrid Dmxdm Spmxv Distance Path GMean
0

10

20

30

40

50

60

70

S
p

ee
d

u
p

1 FlexRAM Chip Opt
1 FlexRAM Chip Opt+H+C+L
1 FlexRAM Chip Opt+H+C+L+M
2 FlexRAM Chips Opt
2 FlexRAM Chips Opt+H+C+L
2 FlexRAM Chips Opt+H+C+L+M

Figure 11. Impact of compiler, run-time, and hardware
optimizations for task spawning and mapping.

consuming the data from the leader’s buffer. The resulting
code doubles the speedup of Dmxdm in Figure 11 for two
chips. Overall, therefore, much higher speedups than those
in Figure 11 can be obtained if we are willing tune the codes.

9. RELATED WORK
Some proposals for programming intelligent memories [6,

10, 15] force the programmer to directly manage low-level
operations such as communication via messages, cache man-
agement, data layout, or computation and data collocation.
As a result, programming these machines is hard. Other
proposals use a compiler to automatically partition the code
into sections and then schedule each section on the appro-
priate processor [2, 17]. However, this approach has only
been tried for simple codes and architectures.

More recently, Gilgamesh [19] proposes a middleware to
simplify the programming of a machine with homogeneous,
processor-memory nodes. This middleware supports object-
based management, allowing locality and load balancing
with dynamic control. Some differences between Gilgamesh
and CFlex are that Gilgamesh lacks support for heteroge-
neous processors, it targets a different system (a highly-
parallel NUMA) and, because of the size of the expected
system, it tolerates and requires major code re-writing.

Let us consider now OpenMP [14] and HPF [8], the most
widely-known parallelization directives. CFlex is inspired
by OpenMP. There are, however, several important differ-
ences. One is that the OpenMP machine model is UMA
and, as a result, OpenMP lacks the locality-related clauses
found in CFlex. As for HPF, local memories are meaningful
to HPF, but it uses replication and alignment to take ad-
vantage of them. While this strategy may be adequate for
relatively regular codes, data structures enabled by C point-
ers and structs, which are the focus for our work, cannot
be partitioned with these directives. Note that CFlex pro-
vides mechanisms for implicitly distributing and even align-
ing both regular and irregular data structures (Section 4.4).

Task definition and synchronization is also more powerful
in CFlex than in OpenMP or HPF. The sync/async clauses
enable the spawn of new tasks dynamically outside loops. In

this way, it is possible to parallelize recursive algorithms and
the processing of lists, trees, and other pointer-based struc-
tures using our family of directives. This is particularly in-
teresting for FlexRAM, as intelligent memory architectures
are particularly well suited for codes with irregular access
patterns. This gives CFlex a very important advantage over
OpenMP, which can only parallelize iterative constructs of
the for/do type and the statically nested parallelism of the
sections and section directives. HPF is also primarily
designed to exploit loop level parallelism, although version
2.0 [8] includes the TASK REGION directive, which enables it
to implement parallel sections, nested parallelism, and data-
parallel pipelines. Still, it is less powerful than CFlex, as the
generated tasks have several restrictions. For example, all
the data that they access must be mapped locally to the
active processor subset.

10. CONCLUSIONS
We presented an environment that enables the effective

hand programming of intelligent memory architectures at a
high level and with very modest effort. We used FlexRAM
as a prototype architecture, but our approach is suitable
for other, similar architectures. Our proposal is based on
CFlex, a family of high-level compiler directives inspired
by OpenMP. The CFlex environment gives the programmer
high-level control over the assignment of computation to the
main and memory processors, the layout of the data, and
the synchronization between processors in a single-address
space. We also proposed the use of IMO libraries. These
functions program the processors in memory through CFlex,
but make the processors transparent to the programmer.

Our experiments showed that CFlex and IMOs enable
the low-effort generation of well-tuned parallel programs.
Specifically, a set of conventional programs with 240 lines
on average were transformed into CFlex parallel form with
only 7 CFlex directives and 2 additional statements on av-
erage. Moreover, programs run on a single-chip FlexRAM
system about 10 times faster on average than on a conven-
tional server. Still, further improvements may be obtained
by careful optimization of the codes, which suggests that the
use of IMOs needs to be explored more.

11. REFERENCES
[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato,

J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM
Press, 1994.

[2] J. Chame, J. Shin, and M. Hall. Code Transformations for
Exploiting Bandwidth in PIM-Based Systems. In Solving
the Memory Wall Problem Workshop, June 2000.

[3] K. Diefendorff. Power4 Focuses on Memory Bandwith.
Microprocessor Report, 13(13), October 1999.

[4] C. Foster. Content Addressable Parallel Processors. Van
Nostrand Reinhold Co, New York, 1976.

[5] B. Fraguela, J. Renau, P. Feautrier, D. Padua, and
J. Torrellas. CFlex: A Programming Language for the
FlexRAM Intelligent Memory Architecture. Technical
Report UIUCDCS-R-2002-2287, Department of Computer
Science, University of Illinois at Urbana-Champaign, July
2002.

[6] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCoss, J. Granacki, J. Brockman,
A. Srivastava, W. Athas, V. Freeh, J. Shin, and J. Park.
Mapping Irregular Applications to DIVA, a PIM-Based

Data-Intensive Architecture. In Supercomputing, November
1999.

[7] M. Hall and C. Steele. Memory Management in PIM-Based
Systems. In Proceedings of the Workshop on Intelligent
Memory Systems, November 2000.

[8] High Performance Fortran Forum. High Performance
Fortran Language Specification, Version 2.0. 1997.

[9] S. Iyer and H. Kalter. Embedded DRAM Technology:
Opportunities and Challenges. IEEE Spectrum,
36(4):56–64, April 1999.

[10] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam,
P. Pattnaik, and J. Torrellas. FlexRAM: Toward an
Advanced Intelligent Memory System. In International
Conference on Computer Design, pages 192–201, October
1999.

[11] P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha.
Pursuing a Petaflop: Point Designs for 100 TF Computers
Using PIM Technologies. In Proceedings of the 1996
Frontiers of Massively Parallel Computation Symposium,
1996.

[12] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovic, N. Cardwell, R. Fromm, J. Golbus,
B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and
K. Yelick. Scalable Processors in the Billion-Transistor Era:
IRAM. IEEE Computer, September 1997.

[13] K. Mai, T. Paaske, N. Jayasena, R. Ho, and M. Horowitz.
Smart Memories: A Modular Reconfigurable Architecture.
In 27th Annual International Symposium on Computer
Architecture, June 2000.

[14] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface Version 2.0. March
2002.

[15] M. Oskin, F. Chong, and T. Sherwood. Active Pages: A
Computation Model for Intelligent Memory. In
International Symposium on Computer Architecture, pages
192–203, June 1998.

[16] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren.
Supporting Dynamic Data Structures on
Distributed-Memory Machines. ACM Transactions on
Programming Languages and Systems, 17(2):233–263,
March 1995.

[17] Y. Solihin, J. Lee, and J. Torrellas. Automatic Code
Mapping on an Intelligent Memory Architecture. IEEE
Transactions on Computers, 50(11):1248–1266, November
2001.

[18] A. A. Stepanov and M. Lee. The Standard Template
Library. Technical Report X3J16/94-0095, WG21/N0482,
ISO Programming Language C++ Project, May 1994.

[19] T. Sterling and H. Zima. The Gilgamesh MIND
Processor-in-Memory Architecture for Petaflops-Scale
Computing. In 4th International Symposium on High
Performance Computing, pages 1–5, 2002.

[20] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it All to Software:
Raw Machines. IEEE Computer, pages 86–93, September
1997.

[21] R. Wilson, R. French, C. Wilson, S. Amarasinghe,
J. Anderson, S. Tjiang, S. Liao, C. Tseng, M. Hall,
M. Lam, and J. Hennessy. SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers.
SIGPLAN Notices, 29(12):31–37, 1994.

[22] S. Yoo, J. Renau, M. Huang, and J. Torrellas. FlexRAM
Architecture Design Parameters. Technical Report
CSRD-1584, Department of Computer Science, University
of Illinois at Urbana-Champaign, October 2000.
http://iacoma.cs.uiuc.edu/papers.html.

