POSH: A Profiler-Enhanced TLS Compiler that Leverages Progam Structure *

Wei Liu, James Tuck, Luis Ceze, Karin Strauss, Jose RemadiJosep Torrellas

Department of Computer Science T Computer Engineering Department
University of lllinois at Urbana-Champaign University of California, Santa Cruz
{liuwei,jtuck,luisceze kstrauss,torrellg@cs.uiuc.edu renau@soe.ucsc.edu
Abstract compiler often plays a major role. The compiler does not

need to prove the absence of dependences across tasks. How-
As Thread-Level Speculation (TLS) architectures are be-ever, the compiler’'s choices of how to break the code into
coming better understood, it is important to focus on the rol tasks and when to spawn them have a major impact on the
of TLS compilers. In systems where tasks are generated irperformance of the resulting TLS system.
software, the compiler often has a major performance impact There are several instances of substantial TLS compiler
while it does not need to prove the independence of tasks, itsnfrastructure in the literature [25, 13, 5, 7, 2, 24, 28]. In
choices of where and when to generate speculative tasks arsome of these compilers, tasks are built exclusively out of
key to overall TLS performance. loop iterations [7, 28]. The reason is that loops are often th
This paper presents POSH, a new, fully automated TLSbest source of parallelism. In other compilers [25, 13, 5], a
compiler built on top ofgcc- 3. 5. POSH is based on two dependence analysis pass tries to identify the most likatly d
design-decisions. First, to partition the code into tasks, dependences in the code and partitions the code into tasks
does not rely on a sophisticated data-dependence analysi® minimize cross-task dependences. In general, identjfyi
pass, but on the structure of the code (subroutines or loops)ikely dependences, often interprocedurally, is hard ideso
and a profiling pass. Second, the profiler takes into accountwith pointers.
both the parallelism and the data prefetching effects plexVi In this paper we present POSH, a new, fully automated
by the speculative tasks. With the code generated by POSH, LS compiler that we have developed. The compiler adds
TLS chip multiprocessor with 4 3-issue cores delivers an av-several passes to gcc-3.5These TLS passes operate on a
erage speedup of 1.28 for whole Specint 2000 applicationsstatic single assignment (SSA) tree used as the high-level i
Moreover, the profiler increases its effectiveness by 18% if termediate representation in gcc-3.5 [18]. Building on-gcc
considers the data prefetching effects of speculativestask 3.5 allows us to leverage a complete compiler infrastruc-
. ture. Moreover, since gcc has various front-ends for diffier
1 Introduction languages and various back-ends for different architestur
Although parallelizing compilers have made significant ad- POSH is very portable. At this point, POSH only accepts C
vances [3, 11], they still fail to parallelize many codes.- Ex programs, although it will soon be able to work with Fortran
amples of hard-to-parallelize codes are those with acsesseand C++ programs.
through pointers or subscripted subscripts, possiblegrie In the design of POSH, we have made two main design
cedural dependences, or input-dependent access patterns. decisions. First, to partition the code into tasks, we do not
One way to parallelize these codes is to use Thread-Levelely on any sophisticated data-dependence analysis patss th
Speculation (TLS) (e.g. [1, 6, 9, 10, 12, 14, 16, 20, 21, 22, identifies code boundaries with minimal cross-task depen-
23]). The approach is to build tasks from the code, and specdences. Instead, we rely on the code structures written by
ulatively run them in parallel, hoping not to violate sequen the programmer (subroutines or loops), and a profiling pass
tial semantics. As tasks execute, special support cheeks th that prunes some of these tasks if they are not estimated to
no cross-task dependence is violated. If any is, the offend-be beneficial. This decision simplifies the compilation algo
ing tasks are squashed, the polluted state is repairedhand t rithms significantly.
tasks are re-executed. The second design decision is that our profiling pass takes
In most of the proposed systems, tasks are generated iinto account both the parallelism and thata prefetching
software rather than built in hardware. In such cases, theeffects provided by the speculative tasks. This profilingspa

- " e in oart by the National Sci Eatiod is performed with a very small input data set.
* IS wWork was supported In part by the National science Fauoa un- . .
der grants EIA-0072102, EIA-0103610, CHE-0121357, and @3R5603; To enhance parallelism and data prefetching, POSH also

DARPA under grant NBCH30390004; DOE under grant B347886;gifts
from IBM and Intel. 1itis an early version of latest gcc-4.0.

performs aggressive hoisting of task spawns. Moreover, it A task isspeculativewhen it may perform or may have
supports software value prediction. However, to maximize performed operations that violate data or control depen-
applicability, POSH assumes a simple target Chip Multipro- dences with its predecessor tasks. When a non-speculative
cessor (CMP) architecture, without any architectural supp task finishes execution, it is ready tommit The role of
for direct register-to-register data transfer. commit is to inform the rest of the system that the data gener-
The contributions of this paper are as follows: ated by the task are now part of the safe, non-speculative pro
gram state. Among other operations, committing always in-
e We show that a TLS compiler that, rather than form- volves passing the non-speculative status to a succesgor ta
ing tasks based on a data-dependence pass that tries fiasks must commit in strict order from predecessor to suc-
minimize cross-task dependences, uses instead the codeessor. If a task reaches its end and is still speculative, it
structure (subroutines and loops) and a profiler, can de-cannot commit until it acquires non-speculative status.
liver very good speedups. Specifically, a TLS CMP with Memory accesses issued by a speculative task must be
4 3-issue cores delivers an average speedup of 1.28 fohandled carefully. Stores generate speculative statedmat
whole (i.e. not only the loops) Specint 2000 applica- not be merged with the non-speculative state of the program.
tions. Such state is typically stored in a speculative buffer oheac
local to the processor running the task. Only when the task
e We show that, for higher effectiveness, the profiler has becomes non-speculative can the state be allowed to merge
to take into account both the parallelism and the datawith the non-speculative program state.
prefetching effects provided by speculative tasks. In As tasks execute in parallel, the system must identify any
particular, the profiler increases its effectiveness by 18%violations of cross-task data dependences. Typicallg, ithi
if it considers the data prefetching effects. done with special hardware support that tracks, for each in-
dividual task, the data written and the data read without firs
e We show the performance impact of several important yriting it. A data dependence violation is flagged when a task
design decisions in the compiler. Specifically, we ex- modifies a version of a datum that may have been loaded ear-
amine the impact of generating tasks out of only sub- jier by a successor task. At this point, the consumer task is
routines, only loop iterations, or combinations of them; squashedind all the state that it has produced is discarded.
the impact of the profiling pass, and the effect of value Then, the task is re-executed. Note that, thanks to the spec-
prediction. ulative buffers, anti and output dependences across tasks c

. not cause squashes.
Ideally, we would have liked to compare the performance

of POSH to other existing TLS compiler infrastructures in 3 Qverview of POSH

thg literature. However, the s_heer implementation effert "' The POSH framework is composed of two parts closely tied
quired to reproduce the algorithms of another TLS compiler together: a compiler and a profiler (Figure 1). The compiler

has prevented us from doing itin this paper. Also the exgstin e forms task selection, inserts task spawn points, anergen
dependence-based analysis can be easily applied to POSgyeq the code. The profiler is an execution environment that

and be beneficial for POSH. , _ provides feedback to the compiler to improve task selection
This paper is organized as follows. Section 2 gives some

background; Section 3 gives an overview of POSH; Section 4 Compiler Passes
describes the main design issues in POSH; Section 5 and Seg-
tion 6 evaluate POSH; Section 7 discusses related work, and
Section 8 concludes.

Task Selection Spawn Hoisting Refinement

Program ||
Structure

Profiler

Small Tasks

P

2

5
o ©
2 =
s 8
[s
=
w

Placement
Parallelism

Value Prediction
Reg. Dependence

2 Background on Thread-Level
Speculation (TLS)

TLS consists of extracting tasks of work from sequential
code and executing them in parallel, hoping not to violate
sequential semantics (e.g. [1, 6, 9, 10, 12, 14, 16, 20, 21, 22 Figure 1:Flowchart of the POSH framework.
23]). The control flow of the sequential code imposes a con-

trol dependence relation between the tasks. This relaten e

tablishes an order of the tasks, and we can use the terms pre8.1 TLS Hardware Assumptions

decessor and successor to express this order. The sefjuentiftosH makes several assumptions on the target TLS hard-
code also yields a data dependence relation on the memoryare including how live-ins are passed to tasks, how depen-

accesses issued by the different tasks that parallel égecut gences are enforced between tasks, and how tasks are created
cannot violate.

c
S
k]
@
o
o
@
3
<
3
3
2
3
2
oy
a

and terminated. The live-ins of a task are those variabbgs th in the figure as th®ependence Restrictigubpass.
the task uses without defining them. In particular, POSH as- In the refinement phase, POSH makes the final decisions
sumes that there is no hardware support to transfer regiisterabout which tasks will make it into the final binary. This
between tasks — all live-ins to a task must be passed througiphase is composed of a number of passes, whose goal is to
memory. This model corresponds to a standard CMP, wheramprove the quality of the final set of tasks chosen for exe-
the different cores only communicate through memory. Con-cution. From the perspective of the compiler, the profiler is
sequently, it is the responsibility of POSH to guarantee tha part of this task refinement process.
any value in a register is written to memory if that value may Refinement phase includes tRarallelism Small Tasks
needed by any successor task. On the other hand, POSH aRegister Dependencesd Profiled passes. The first three
sumes that the hardware will detect dependence violationgpasses eliminate tasks that have certain characteristics,
through memory and will squash and restart tasks accordnamely they are not spawned farther than some thresh-
ingly, as in conventional TLS architectures. old number of instructions from their begin point, they are
The ISA provides apawnand acommitinstruction to ini- smaller than certain threshold static task size, and theg ha
tiate and to successfully complete a task, respectivelyy Th too many live-ins, respectively. And the last p&sefiledac-
spawn instruction takes as an argument the address of theepts input from the profiler and uses it to eliminate a final
first instruction in the task. Execution of the spawn instruc set of tasks.
tion initiates a new task in an idle processor. Executiomef t In the Finalize-Taskpass, the compiler inserts all instruc-
commit instruction indicates to the hardware that the task h tions and code needed to correctly spawn, execute, and com-
completed its work. The compiler inserts spawn and commitmit tasks, as well as to perform value prediction. The final

instructions. code generation varies depending on whether we plan to pro-
. file or not. If we do, then extra information (e.g. task id) is

3.2 Compiler Phases encoded into each task to allow the profiler to communicate

There are three main compiler phaséask SelectiorSpawn back to the compiler.

Hoisting andTask RefinemergEFigure 1). In the task selec- We built these phases as a part of gcc-3.5, allowing us

tion phase, the compiler identifies as tasks all subroutinds to leverage a complete compiler infrastructure. We use the
all loop iterations in the code. For each task, the compiler newly available SSA tree as the high-level intermediate rep
identifies the instruction where it beginsegin poinj. The resentation [18].

compiler inserts spawn instructions in the begin points; cr

ating what we calspawn pointsBecause the begin point of 3-3 Profiler

one task is thend pointof another, it adds commit instruc- The profiler provides a list of tasks that are beneficial far pe
tions before each begin point. The output of the task sellecti formance. The compiler uses this information to eliminate
phase is a set of begin points. other non-beneficial tasks. Note that the profiler also mfor

Immediately after task selection, the compiler invokes the the compiler of which tasks are not beneficial because the
Value Predictionpass. This pass predicts the values of cer- value predictions that they rely on are usually incorretie™
tain kinds of variables that cross task boundaries, hoping t the compiler also eliminates these tasks.
reduce the number of dependence violations. In POSH, we To perform profiling, we run the applications with the
predict function return values and loop induction varigble Train input set. The execution of the taskssisrial, with-

In the spawn hoisting phase, POSH considers each of theut assuming any TLS architectural support, and modeling
spawn instructions inserted, and tries to hoist them as muclonly some rudimentary timing. While the tasks run, the pro-
as possible in the intermediate representation of the progr filer collects information about each task that can be used to
The goal of hoisting the spawn points is to enhance paral-make a decision regarding the amount of parallelism the task
lelism and prefetching as much as possible. Given the spawrhas to offer, the likelihood the task is squashed, and whethe
point for a task, we hoist it as much as possible subject tothe task may offer benefits due to prefetching. A more de-
two constraints. First, the spawn should be after the defini-tailed explanation of the profiler algorithms is given in Sec
tion of all variables used in the task that, according tothe i tion 4.3. On average, a profiler run takes about 5 minutes on
termediate representation, are likely to assign to thestegs. an Intel P4 3GHz machine.

The exception is when value prediction is used. Second, the
spawn should be in a location that is execution equivalent 4 Algorithms and Design Issues
with the start of the task. These constraints are repredente4.1 Task Selection

2w - sasic blocks andb _ Calentif both Task selection is easier for TLS compilers than for conven-
e say that two basic blocks andb, are execution equivalent if bot : P : : _
conditions are satisfied: (2 is only executed afteb; is executed and tional parallellzmg compllers_. The reason |s_that depen
beforeb; gets executed again, and (ii) afteris executedb: is notexecuted ~ d€Nces are allowed to remain across tasks, since the hard-

again beforé, is executed, or vice versa. To be clear, this is a static ptppe ~ ware ultimately guarantees correct execution. In practice
of the control flow graph alone.

a variety of heuristics can be used to choose tasks. Thdask. Recall that, the commit statements are placed just be-
resulting tasks should ideally have few cross-task depenfore each task’s begin point.
dences, enough work to overcome overheads, and few live- Finally, Figure 2(d) shows the code from Chart (c) after
ins. Choosing tasks that provide the optimal performanceperforming spawn hoisting. As in Chart (b), POSH intro-
improvement is NP-hard [2]. duces a volatile variable to ensure that variab$ewritten to
POSH's heuristic to select good tasks is to rely on the memory every iteration and read from memory by the succes-
structure that the programmer gave to the code. Specificallysor iteration. Note that the spawn féask 1can be hoisted
POSH can use the following modules as potential tasks: subonly up to the beginning of the loop body because of the
routines from any nesting level, their continuations, aapl execution equivalence constraint. POSH also introduces th
iterations from one or more loops in a nest. commit statement.
As an example, Figure 2 shows how POSH generates tasks)
out of a subroutine and its continuation (Chart (a)), as well 4-2 Prefetching Effects
as out of a loop iteration (Chart (c)). Chart (a) shows a code m Task 1
segment with a call to subroutirgl POSH identifies two
tasks: the call t&&1and its continuation code (the code that ras:
follows the call). Consequently, it inserts the begin p®int spawn
BP2andBP1, respectively. L
Chart (c) shows a loop as it is typically represented in the
intermediate representation of gcc-3.5. The representati - Do
typically places the update of the induction variabla(the e inia
chart) right before the backward jump. POSH identifies loops exeeuton
in the program by computing the set of strongly connected , ... execuion (o) Parallism (0 Prefetshing
components (SCC) in the control flow graph. Then, it tries to
identify the update to the induction variable, and it platbes
task begin point for iteration (BP in the figure), right before
the update of the induction variable in iteratiorl. With this While POSH targets task parallelism, it is also specifically
approach, induction variables neither need to be predictecdesigned to reap the benefits of prefetching in TLS. Fig-
nor cause dependence violations. In the cases where gcc-39e 3 shows the two potential benefits of TLS: parallelism
does not follow this pattern, POSH does predict the values ofand prefetching. Giveifask landTask 2(Chart (a)), TLS

Task 1 spawn Task 2

Task 2

T
squash! |

| degeno !

re—execution

Figure 3:The two potential benefits of TLS: parallelism and
prefetching.

induction variables. exploits parallelism by allowing the overlapped executién
o the two tasks (Chart (b)). However, when violations cause
4.1.1 Spawn Hoisting tasks to be squashed and restarted, TLS can speed up the

With spawn hoisting, we place the spawn of the task as earlyprogram through automatic data prefetching.
as possible before the begin point of the task, given the con- This effect is illustrated in Figure 3(c). In its first exe-
straints indicated before. Figure 2(b) shows the code fromcution, Task 2suffers a miss on variabld. After Task 2is
Chart (a) after performing spawn hoisting. Note that the squashed, its new accessAdinds the data already in the
continuation task in Chart (a) (the one starting3®1) had cache. Consequently, while there is little parallelisnwizetn
the live-in variabley. Consequently, we need to ensure that Task landTask 2 TLS speeds up the program becaliask
y is written to memory before the continuation task is in- 2 benefits from automatic data prefetching.
voked, and it is read from memory inside the continuation Figure 4 shows a code snippet from the Specint 2000 gap
task. POSH ensures this by declaring a volatile variabfe application that illustrates prefetching. The while loggsh
(Chart (b)). Updates to such variable will always be prop- clear loop-carried dependenceshdP, hdL, andi. Conse-
agated to memory. Then, before the continuation task isquently, existing TLS compilers are unlikely to paralleliz
spawned, POSH copies the liveyito v_y. Inside the contin- this loop. However, parallelizing this loop yields signéfit
uation tasky_y is read from memory and copiedyoFinally, performance gains due to prefetching. Specific&lpdint()
as Chart (b) shows, the spawn for the continuation taakk calculates the product of two integer numbers. The numbers
1) is hoisted all the way up to after the updatevtp (spawn are stored in memory in a tree data structure. As a result,
point SPJ). ProdInt() has poor locality and suffers many L2 misses. For-
On the other hand, the spawn for the subroutine thakK tunately, the squashed tasks bring in lines into the cadte th
2) can be hoisted all the way to the beginning of the code are very likely to be needed in the re-execution.
section, since the task has no live-ins. It will only be heiist POSH tries to leverage prefetching through its profiler. We
further up if we find a point in the code that is execution describe the profiler algorithms next.
equivalent to the call to the subroutine.
Figure 2(b) also includes the commit statements for the

int i=0; . .
volatile int v_i;

v_i=ig

. . | oop:
t X,y .
{/gl a?l e int v_y,; i f(i>99)
spawn Task_2; o SP2 goto | end;
: int i=0; spawn Task_1; o SP
V_Y=Y; 3 <LOOP BODY>
spawn Task_1; o SP1 | oop: conmit:
commit; CE (i . '
Task_2: - BP2 : f(ngtgg)l end: Task_1: oy i - BP
it X,y S0 <LOOP BODY> | i =i +1;
BP2 o comm t =i+l -~ v_i=i;
BP1 S1(); Task_1: - BP1 !) ==
™ =y _ goto | oop; goto | oop;
=y yzv_y))
X=y; | end: | end:
(@) (b) () (d)
Figure 2:Generating tasks out of a subroutine, its continuation thadterations of a loop.
i = HD_TOINT(hdR); of Task 2 it rewinds the time back to when the task would be
while (10 1=0) { spawned lus the spawn overhea@{hd .
if (i %2==1) hdP = Prodint(hdP, hdL); P Tﬂp P (hdspawn)
if (i > 1) hdL = Prodlnt(hdL, hdL); Task 1
=il 2 Ty —={ =] spawn
} .

Task 1 | Tspaun
Figure 4:Code snippet from the Specint 2000 gap applica- '

tion that illustrates prefetching. CurTime

T, —*

" T,+Ovhdspawn—] | Tsr™ST X b Task 2
1 pawn
4.3 Profiler Tend !

The profiler runs the applications with ti@ain input set. L ox NewCurrTime

The execution of the tasks ierial, does not assume any Task2 -

TLS architectural support, and models only some rudimen- exeouion

tary timing. We feel that constraining the profiling runs in . oexecution

this way makes the framework widely usable in a variety of @ ®)

circumstances. The profiler also models a simple L2 cache _ _ _

(without cycle-accurate timing model) to estimate the num- Figure 5:Example of profiler execution.

ber of misses. The latter are used for our analysis of pfefetc For each spawn instruction, the profiler records the time

ing. Simulating a cache without modeling time introduces and the target task. For each store, it records the time and

practically negligible profiling overhead. Overall, aneage the address stored to. When the profiler encounters a load to

profiler run takes about 5 minutes. an address, it checks the table of recorded stores to find the
To make the profiler as general as possible, its computadiatest store that wrote to that address. If the time of thd loa

tions assume unlimited processor cores. The code optimizeds less than the time of the store, the profiler has detected a

based on unlimited processor cores is able to expose mor@ependence violation. At this point, the profiler conceptu-

parallelism and is more likely to perform well on chips with ally squashes the consumer task and updates the times of its

various number of cores. instructions.

i , An example is shown in Figure 5-(b). In the figure, the

4.3.1 Profiler Execution profiler executed th& T X in Task land assigned timé,

In its sequential execution of the program, the profiler es-to it. Later, the profiler encounters tHeD X in Task 2at a

timates L2 cache misses. Moreover, it assumes that everyime that we callCurrTime. SinceCurrTime < Ty, it

instruction executed takeS; cycles, except for loads and means that thé&. DX happens before the7 X andTask 2

stores that miss in the L2 cache, which t&Kesiss Cycles. needs to be squashed. As a result, the profiler updates the

It also assumes some constant overhead for each squash afithes of all store instructions ifiask 2 In particular, the new

spawn operationQuhdsquqsn and Ovhdgpawn). With all LDX timeisNewCurrTime. NewCurrTimeis obtained
this information, the profiler can build a rudimentary model by the following formula:

of the TLS execution that allows it to estimate cross-task de
pendences and squashes. NewCurrTime =Ts; + Ovhdgguash

Let us consider an example (Figure 5-(a)). As the pro- + CurrTime — Tapawn
filer executes the code sequentially, it assigns a time to
each instruction as if the tasks were executed in parallel.
Specifically, when the profiler executes the first instructio

— Nromiss X (Cramiss — Cr)

In this formula,Ts,q.n is the time associated with the initial defined in Section 4.3.2) higher than a squash benefit thresh-
spawn ofTask 2 and Nyzoasiss 1S the number of L2 misses old Thyy, the task is not eliminated.

suffered by the first execution dfask 2until it reached .

LDX. With this method, the profiler models the squash and4-4 Software Value Predictor

re-execution with a single sequential run. A general approach for deciding when value prediction
_ should be used is difficult for a compiler, but there are some
4.3.2 Benefit of a Squashed Task specific locations that have been shown profitable in previou

Based on the previous discussion, we can roughly estimatestudies (e.g., [19, 15, 27]). In POSH, we use value predictio
the expected performance benefit of squashed tasks. Théorthree cases: function return variables, loop inductiai-
benefit is a combination of the remaining task overlap, andables, and cross-iteration dependences on variablesabhat h

of prefetching effects, as follows: a behavior similar to induction variables.
For these cases, POSH uses a software value prediction
Bene fit =Overlap + Prefetch scheme similar to the one in [7]. Such scheme leverages the
=(Tend — Tst — Ovhdgquash) TLS dependence tracking hardware to squash a task that used
+ (Cransiss — C1) X Nionsiss a wrong prediction.

In the formula, 7,4 andT}; are the times of the squashing © Methodology
task end, and of the squashing store, respectively (Figure 55.1 Simulated Architecture

(b)). A cycle accurate execution-driven simulator is used to-eval
433 Task Elimination uate POSH. The simulator models ou_t-of-oro_ler superscalar
o) _ processors and memory subsystems in detail. The TLS ar-
The output of the profiler is the list of tasks that are benefi- cjtecture configuration modeled is shown in Table 1. Itis a
cial for performance. To generate this list, the profilersrun four-processor CMP with TLS support. Each processor is a
as described, and it identifies the tasks that need to be-elimig_jssue core and has a private L1 cache that buffers the spec-
nated. There are three elimination criteria: task siz&sti@ | |ative data. The L1 caches are connected through a crossbar
distance, and squash frequency. We describe these ciiteria {; gp on-chip shared L2 cache. The CMP uses a TLS co-
this section. herence protocol with lazy task commit and speculative L1

_ Due to the overhead of task spawning, small tasks are un¢aches similar to [14]. Since the L1 caches need to manage
likely to provide much benefit. Consequently, we use a taskgpecylative data, we set their access time to a higher value:
size criteria, where a task is eliminated if its size is sarall

X cycles.
than threshold'h,, and it spawns no other task. We treat
. 1] Frequency 4 GHz ROB 126

small tasks that spawn other tasks with care. The reason i§ retch width 5 l-window 68
that if such small tasks can be hoisted significantly (se¢ nex|| Issue width 3 LD/ST queue 48/42

. . ! . Retire width 3 Mem/Int/Fp unit 1/2/1
criteria), their callees would benefit substantially. Branch predictor: Spawn Overhead | 12 cycles

The number of instructions between the spawn point of a|| Mspred. Penalty) 14 Czygg Squash Overhead 20 cycles
task and the begin point of that task is called the hoistisg di [Ticache: [2Cache:
tance. Short hoisting distances do not expose much overla Pre#s5og e | 1665 4 48 || Bize, assoc. ine) 1113, 8. 528
between tasks, while long hoisting distances are likelyito i 'Ef}t'tW/o T "f L tI2c¥cgles | ant]ory: 500 cvel
troduce too many data dependences. Consequently, with thg 0 €Toe =t | AEaSIEYEes) et Tocns”

hoisting distance criteria, we eliminate the tasks thatehav
a hoisting distance smaller thahh,,,;, nq Or larger than
Thmaena- Recall that one compiler pass eliminates those
tasks that have small hoisting distance. The reason we still
have the hoisting distance criteria is that compiler cary onl

determine the hoisting distance statically, so the compis o o _ .
to be conservative. plication binaries on a single-processwon-TLSarchitec-

Finally, task squashes are very expensive. Consequentl)},ure' Suchon-TLSarchitecture has one aggressive 3-issue

with the squash frequency criteria, we eliminate the tasksCOr€: one L1 cache, and one L2 cache like the ones in Ta-

with an average number of squashes per task commit thaple 1. Qne difference is that the_Ll cache has the shorter
access time of 2 cycles because it does not have to manage

is higher than a squash threshdld;,. However, based on :

the discussion in Section 4.3.2, some squashes may result ifiPeculative data.
a net positive performance effect due to prefetching. Con-

sequently, we apply &refetching Correctiorto this rule.

Specifically, if the task has a performance ben&@refitas

Table 1: Architecture configuration. All cycle counts are
in processor cycles. In our comparison, we diterentL1
cache access times for TLS and non-TLS.

In our evaluation, we report the speedups of this TLS CMP
architecture over the execution of the originabQ-TLS ap-

5.2 Profiler Parameters 6 Evaluation

Table 2 shows the parameters used to configure the profilerTo evaluate POSH, we examine several issues: different task
We assume 1 cycle per instruction and a 200-cycle penaltyselection algorithms, task characteristics, effectigsrod the

per L2 cache miss. We set the L2 miss penalty lower thanprofiler, and effectiveness of value prediction. In the eval
the time to get to memory because the architecture we modeétion, we select subroutine continuations and loop itenati

is a 3-issue out-of-order processor that can hide some of thas tasks.

latency by executing independent instructions.)))
6.1 Different Task Selection Algorithms

Cr Icycle Thsz 30 instructions . .

ClrLoniss 200 cycles || Thyinna | 120 instructions To evaluate the performance provided by selecting as tasks
Ovhd 12 cycles gzmmhd SMinstrictions only particular code structures, we conducted three experi
Ovhdugunen, | 20 cycles || Thuy 0 ments in which (1) we only selected the subroutine continua-

tions Subj), (2) we only selected the loop iteratiorisofp),
and (3) we selected a combination of baBubr+Loop. Fig-

In the rightmost columns of Table 2, we show the thresh- ure 6 shows the speedup obtained by these three selection al-
old values used to guide our profiling algorithm&h,. is gorithms. In all three experiments, we used the profilingpas
set to 30 to prevent selecting tasks too small to overcomeand enabled value prediction.
the overhead of spawning a thread. The minimum and maxi-
mum spawn distance threshold$y,,,;,_nq andT h,, g4 _na re- -
spectively, are set to conservative values. The squassithre 5
old Th, is set to 0.75, which means that a task squash%d 14
more than 3 time out of 4 commits will be eliminated. Fi3 “f
nally, for the case of detecting benefits from squashing, wie 08
setThg, = 0, which means that a task will not be eliminated os

if there is any benefit from squashing at all. 2‘2‘

Table 2:Profiler parameters.

2 Subr ——
Loop s
Subr+Loop m—

5.3 App“cations Eva|uated 0 bzip2 crafty gap gzip mcf parser twolf vortex vpr Geo.Mean

The simulated architectures are evaluated with the Specint '9ure 6:Comparison of different task selection algorithms:
2000 applications running tiRefdata set. The profiler uses zg?;g;t;rt];s;‘c:)nflgﬁ;qtt:}tgmljc;gﬂtséatnons onlyl(oop), and the
theTrain data set. All of the Specint 2000 codes are included '
except three that fail our compilation pags¢ perlbmk and As shown in Figure 6Subr+Loopdelivers speedups that
eon— the latter because C++ is not currently supported). reach 2.02 irmcf and have a geometric mean of 1.28. The
The non-TLS binary we compare against is generated bylatter is 15.3% more than iBubrand 10.3% more than in
the same compilegcc-3.5 with -O2 optimization enabled. Loop. For six of the applications (bzip2, crafty, gzip, parser,
Note that there are no TLS or other additional instructions twolf, and vortex), theSubr selection algorithm performs
added to the baseline binary. For the TLS binaries, POSHbetter than the.oop one. For the other three benchmarks,
rearranges the code into tasks and adds extra instructions f gap, mcf and vpr, theoopselection algorithm performs bet-
spawn, commit, passing live-ins through memory, and valueter. Due to the irregular code structure, selecting onlyegit
prediction. subroutines or loop iterations is not enough to get the best
In both the TLS and non-TLS compilations, we first run speedup. Instead, using both subroutines and loop itastio
the SGI's source-to-source optimizer (copt from MIPSPro) is a simple and the best way to select tasks.
on the Specint code. This pass performs PRE, loop unrolling, These significant speedups make POSH an attractive TLS
inlining, and other optimizations. compiler infrastructure, especially given that POSH is a
To accurately compare the performance of the different bi- fully-automated compiler that speculatively paralletize
naries, simply timing a fixed number of instructions cannot regular Specint programs.
be used. Instead, “simulation markers” are inserted in the .
code, and simulations are run for a given number of markers 8-2 Task Characteristics
After skipping the initialization (typically 1-6 billionristruc- ~ Table 3 shows the characteristics of the tasks selected by
tions), a certain number of markers are executed, so that th€OSH after all the passes, including the profiler. The second
baseline binary graduates from 500 million to 1 billion in- column shows the static number of subroutine tasks, while
structions. the third column shows the static number of loops whose it-
erations will be given out as tasks. The average figures for
these parameters are 27.0 and 7.4, respectively. Their rela
tive value is not surprising, given that Specint applicagio
usually have many subroutine calls, and loops do not domi-

Speedup

nate the program execution timepr is an interesting case,
with only two loops, yet yielding a speedup of 1.20 (as shown

by 18%.
An especially remarkable case is thagaf If it uses only

in Figure 6). Finally, the last column shows that the dynamic Profiler_w/o_Prefetch it ends up 2% slower than the sequen-

task size ranges from 54 instructiongmefto 1851 invortex

tial run. The profiler eliminates tasks with obvious data de-
pendences, thus losing the opportunity to leverage pitefetc

H caton H Subroutine Tasks|_Loop Tasks | " per Task H ing. By considering the prefetching factor in the profitgap
grzalmrf)ti 5 5 887 boosts its speedup to 1.27.
a 5 6 288
?izég ea 3 gel 6.3.1 Characterization of Task Profiling
ol £t % %0 Table 4 characterizes our task profiling. The second column
o 2 2 181 and the last column show the total static number of subrou-
Average 270 74 645 tine and loop tasksbefore and after profiling, respectively.

We can see that a large number of tasks are eliminated by the
profiler. On average, 139.7 tasks are selected by the com-
piler and only 35.4 tasks survive the elimination process, o
6.3 Effectiveness of the Profiler around 75% of tasks are eliminated on average.

The profiler plays an important role in POSH. According _C(_)Iumns 3-6 of Table 4 show the numbe_r of static_ tasks
to our design philosophy, the compiler aggressively sslect eliminated due to each of the reasons discussed in Sec-
tasks based on code structure, and lets the profiler eliminat ion 4-3.3. Specifically, on average 14.8 tasks are eliramhat
tasks that are detrimental to performance. because of their small size (Column 3), 31.9 tasks because of
Figure 7 shows the effectiveness of the profiler. We con- & Small hoisting distance (Column 4), 1.8 tasks because of a
duct three experiments: (1) no profiler is usétProfiles, large hoisting distance (Column 5), and 55.8 tasks be_cafuse o]
(2) we use the profiler without the Prefetching Correction de Trequent squashes (Column 6). The latter effect dominates.
scribed in Section 4.3.3¢ofiler.w/o_Prefetch), and (3) we Column 7 of Table 4 shows the number of static tasks re-
use the complete profileP¢ofiler w/_Prefetch). The only maining aftgr profllmgthat were retained due to Brefetch-
difference in the latter two experiments is the inclusion of INg Correctionof Section 4.3.3. We can see that, on average,
prefetching awareness. In both cases, the profiler appies t 2-1 tasks were retained because of their prefetching capabi
other elimination rules, namely elimination of small tasks ties. While 2'1_ tgsks is a small fragho_n_of the total 35'4(95_
tasks with too-short or too-long hoist distance, and tasis w that are remaining, they have a significant performance im-

frequent squashes. In all three experiments, we select botlfct as discussed in Section 6.3. _ _
subroutines and loop iterations, and have the value predic- 92P benefits the most from prefetching, with 7 prefetch
tion turned on. tasks out of a total of 12 selected tasks. The 7 prefetch tasks

help to improve the speedup from 0.98 to 1.27 (Section 6.3).
Some applications, such &gzip2, vortexand vpr have no
prefetch task selected. In these three applications, ypis t
of prefetching offers no benefits.

Table 3:Task characteristics.

NoProfiler ——
Profiler_w/o_Prefetch s
Profiler_w/_Prefetch

2.0
1.8

1.6

1.4
1.2

1.0
0.8 -
0.6 -

0.4

6.4 Effectiveness of Value Prediction

Figure 8 shows the effectiveness of our value predictioh-tec
nigue. We compare the application speedups with and with-
out the value prediction. In both runs, we use the profiler to
get high-quality TLS binaries.

On average, 5% more speedup is delivered by POSH when
value prediction is enabled. In particulaspr gains 43%
more speedup. According to Table 3, there are only two loop-

As shown in Figure 7, without profiler support we obtain a based static tasks sele_cted‘mr. T_he induction variables of
negligible average speedup of 1.02. After applying the pro-these two loops are highly predictable and the loops show
filing pass and without considering prefetching effectg, th Very good parallelism. Prediction is needed in these two
average speedup increases to 1.24. Finally, when we includé@Ses because the induction variable updates occur within a
prefetching-awareness, we reach the final average speeddfythen-else statement (a solution like that in Figure 2tc)
of 1.28. From these results, we see that adding prefetch!'0t feasible).
awareness to the profiler is important for boosting the per-
formance: on average, the profiler increases its effeatisen

mom |

bzip2 crafty

gap gzip mcf parser twolf vortex vpr Geo.Mean

Figure 7: Comparison of POSH without the profiler, with
the profiler but without the prefetch correction, and with th
full profiler.

3Recall that a loop whose iterations are going to be given stasks is
counted as a single static task.

Percent Improvement(%)

50%

40%

30%

20%

10%

0%

App. #Tasks Before| #Tasks Eliminated] #Tasks Eliminated Due fo #Tasks Eliminated| #Tasks Saved | #Tasks After
H ‘ Profiling Due to Task Size | SmallHoisting | Large Hoisting | Due to Squashes| Due to Prefetch Profiling
bzip2 115 2 44 1 51 0 17
crafy 376 70 99 3 160 1 44
gap 36 0 11 2 11 7 12
gzip 55 1 9 0 30 2 15
mcf 17 2 6 0 4 1 5
parser 464 47 68 10 158 6 181
twolf 75 0 30 0 27 2 18
vortex 98 11 20 0 43 0 24
vpr 21 0 0 0 18 0 3
Average 139.7 14.8 31.9 1.8 55.8 2.1 354

Table 4:Characterization of task profiling. Note that the stati&saafter the profiling pass (last column) are always one
more than the sum of the static subroutine tasks and the ésqs tn Table 3. The reason is there is always one initial task
in the program execution.

- A n

dence graphs and estimate the probability that misspecula-
tion will occur along different paths in the graph. The cost
graph, in addition to a set of criteria, determine which ®op
in a program deserve speculation.

Bhowmik et al [2] have built a framework for speculative
multithreading on the SUIF-MachSUIF platform. Within this
framework they consider dependence-based task selettion a

-10%

gorithms and, like our work, consider a spawn instructioth an
look at thread spawning strategies. Like Multiscalar, tfeey
cus on compiling the whole program for speculation but al-
low the compiler to specify a spawn location as in SPSM.
Some benchmarks are hurt by value predictiqrarser In each of the above techniques, the compiler statically
loses around 3% speedup with value prediction. The over-splits the program into tasks leveraging varying degrees of
head of inserting extra instructions to support value gredi dependence analysis. In addition, all of these approacees u
tion can not be compensated by the low gains in this appli-profiling to guide their task selection by collecting probbab
cation. Sinceparserhas frequent squashes, we are left to jties for common execution paths. In POSH, we use the pro-
conclude that the dependences between tasks in parser haygam structure to identify tasks. In addition, we use prugjili
lower predictability than anticipated by our profiler. information to eliminate some tasks after the compiler has
identified the tasks and the profiler is prefetching-aware.
7 Related Work Some work has used dynamic selection of tasks for
Several compiler infrastructures for TLS have been progpose TLS [4, 17]. Jrpm [4] decomposes a Java program into
but differ significantly in their scope. Multiscalar proregt threads dynamically using a hardware profiler called TEST.
many compiler efforts for TLS [20, 26]. The Multiscalar While the program runs in TEST, they identify important
compiler selects tasks by walking the Control Flow Graph loops that will provide the most benefit due to speculative
(CFG) and accumulating basic blocks into tasks using a va-parallelization and recompile them with dynamic compila-
riety of heuristics. The task selection methodology for the tion support. POSH is different from Jrpm in three aspects.
Multiscalar compiler was recently revisited by Johnson et First, POSH doesn't rely on a hardware profiler. Second,
al [13]. Instead of using a heuristic to collect basic blocks POSH considers both loops and subroutines. Third, POSH
into tasks, the CFG is now annotated with weights and bro-takes into account prefetching effects in the profiling pass
ken into tasks using a min-cut algorithm. These compilers Marcuello et al [17] use profiling to identify tasks but are pr
assume special hardware for dispatching threads and; theramarily interesting in thread-spawning policies. While RDS
fore, do not specify when a thread should be launched. uses the post-profiling pass to refine a set of tasks already
A number of compilers focus only on loops [7, 8, 24, 28]. selected by the compiler.
In SPSM [8], loop iterations are selected by the compiler as Many other works have looked at optimizations for specu-
speculative threads. The more interesting part of the worklative threads. Chen et al [5] calculate a probability fortea
is the use of thdork instruction, very similar to our spawn points-to relationship that might exist for a pointer at\zegi
instruction, that allows the compiler to specify when tasks point in the program. This probability can be used to deter-
begin executing. In addition, SPSM recognized the poten-mine whether a squash is likely to occur due to a memory
tial benefits from compile-time prefetching but proposed no carried dependence. Zhai et al [28] were concerned with task
techniques to exploitit. Du et al [7] recently presentedstco selection but primarily for replacing dependences with-syn
driven compilation framework to statically determine whic chronization and alleviating the associated synchroiuizat
loops in a program deserve speculative parallelizatioryTh overheads. Oplinger et al. [19] looked for the best places
compute a cost graph from the control flow and data depen-within an application to speculate. One important contribu

bzip2 crafty gap gzip vpr Geo.Mean

Figure 8:Improvement of the speedups with value predic-
tion over without value prediction.

mcf parser twolf vortex

tion was the use of value prediction to speculate past foncti
calls. We have incorporated some of the techniques from [28] [8]
to move data dependences as far apart in time as possible, and
we have exploited the benefits of return value prediction as
reported in [19]. 9]

8 Conclusions

This paper presented POSH, a new TLS compiler built on[10]
top ofgcc- 3. 5. The paper made three contributions. First,
it showed that a TLS compiler that, rather than forming [11]
tasks based on a data-dependence pass that tries to mini-
mize cross-task dependences, uses instead the code ructu
(subroutines and loops) and a profiler, can deliver very good[12]
speedups. Specifically, a TLS CMP with 4 3-issue cores de-
livers an average speedup of 1.28 for whole Specint 2000
applications. [13]
Second, the paper showed that, for higher effectiveness,
the profiler has to take into account both the parallelism and

the data prefetching effects provided by speculative tdsks [14]
particular, the profiler increases its effectiveness by 1fd¢o
considers the data prefetching effects. [15]

Finally, the paper showed the impact of several important
design decisions in the compiler, including task typesigies
parameters in the profiler, and value prediction.

Our future work will involve comparing the effectiveness
of POSH and other existing TLS compilers. We plan to com- [7]
pare the performance of each individual application untler a
least two different compilers, to identify the strengthsian
weaknesses of different approaches. We are also improving!®!
the models used by the profiler. In particular, we are improv- 19
ing the cache models, which should make it possible to gain
more from prefetching.

[16]

20
References 120
[1] H. Akkary and M. Driscoll. A Dynamic Multithreading Pressor.
In International Symposium on Microarchitecturpages 226—-236,
November 1998.
[2] A. Bhowmik and M. Franklin. A General Compiler Framewdid
Speculative Multithreading. IRroceedings of 14th ACM Symposium
on Parallel Algorithms and Architectures (SPAAugust 2002.
[3] W.Blume, R. Eigenmann, K. Faigin, J. Grout, J. HoeflingerPadua,
P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu, and Sh/éad.
Effective Automatic Parallelization with Polarigsiternational Journal
of Parallel ProgrammingMay 1995.
M. Chen and K. Olukotun. The Jrpm System for Dynamicalbr-P
allelizing Java Programs. I|Rroceedings of the 30th International
Symposium on Computer Architectudeine 2003.
P. S.Chen, M. Y. Hung, Y. S. Hwang, R. D. Ju, and J. K. LeemPiter
Support for Speculative Multithreading Architecture wittobabilistic
Points-to Analysis. IfProceedings of the 2003 Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’0Bages 25-36,
June 2003.
M. Cintra, J. F. Marinez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-Memonjtikbtoces-
sors. InProceedings of the 27th Annual International Symposium on
Computer Architecturepages 13-24, June 2000.
[7] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-Fgdi. A
Cost-Driven Compilation Framework for Speculative Paiahtion
of Sequential Programs. In Proceedings of SIGPLAN 2004 Confer-
ence on Programming Language Design and ImplementatioD(RPL

[21]

[22]

[23]
[4] [24]
[5] [25]

[26]

[6] [27]

(28]

] J. T. Oplinger, D. L. Heine, and M. S. Lam.

June 2004.

P. Dubey, K. O'Brien, K. M. O'Brien, and C. Barton. SingRrogram
Speculative Multithreading (SPSM) Architecture. Pmoceedings of
the IFIP WG 10.3 Working Conference on Parallel Architeetiand
Compilation Techniques, PACT '95995.

M. Frank, W. Lee, and S. Amarasinghe. A Software Framé&wor
Supporting General Purpose Applications on Raw Computdtab-
rics. Technical report, MIT/LCS Technical Memo MIT-LCS-F819,
July 2001.

S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Spedwtatersioning
Cache. InProceedings of the 4th International Symposium on High-
Performance Computer Architectyngages 195—-205, February 1998.
M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-Wad,
E. Bugnion, and M. Lam. Maximizing Multiprocessor Performa
with the SUIF Compiler.IEEE Computer29(12):84-89, December
1996.

L. Hammond, M. Willey, and K. Olukotun. Data SpeculatiSupport
for a Chip Multiprocessor. 18th International Conference on Archi-
tectural Support for Programming Languages and Operatipst&ns
pages 58-69, October 1998.

T. Johnson, R. Eigenmann, and T. Vijaykumar. Min-cuigram de-
composition for thread-level speculation. lim Proceedings of SIG-
PLAN 2004 Conference on Programming Language Design and Im-
plementation (PLDL)2004.

V. Krishnan and J. Torrellas. A Chip-MultiprocessorcAitecture with
Speculative MultithreadinglEEE Trans. on Computerpages 866—
880, September 1999.

X. F. Li, Z. H. Dui, Q. Y. Zhao, and T. F. Ngai. Software \é& Predic-
tion for Speculative Parallel Threaded Computations.Fiist Value
Prediction Workshoppages 18-25, June 2003.

P. Marcuello and A. Gonzalez. Clustered Speculativdtithueaded
Processors. liProceedings of the 1999 International Conference on
Supercomputingpages 365-372, June 1999.

P. Marcuello and A. Gonzalez. Thread-Spawning ScheioeSpec-
ulative Multithreading. InProceedings of the Eighth International
Symposium on High-Performance Computer Architecture (NBE),
February 2002.

D. Novillo. Design and implementation of the treessaPtoceedings
of the GCC Developer’'s Summitne 2004.

In Search of @pe
lative Thread-Level Parallelism. IRroceedings of the 1999 Inter-
national Conference on Parallel Architectures and Contpla Tech-
nigues (PACT’99)October 1999.

G. Sohi, S. Breach, and T. Vijayakumar. Multiscalar ¢&ssors. In
22nd International Symposium on Computer Architectpeges 414—
425, June 1995.

J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A ScalaBlgproach
to Thread-Level Speculation. IRroceedings of the 27th Annual In-
ternational Symposium on Computer Architectypsages 1-12, June
2000.

M. Tremblay. MAJC: Microprocessor Architecture fovdaComput-
ing. Hot Chips, August 1999.

J. Tsai, J. Huang, C. Amlo, D. Lilja, and P. Yew. The Superaded
Processor ArchitecturelEEE Trans. on Computer#8(9):881-902,
September 1999.

J. Y. Tsai, Z. Jiang, and P. C. Yew. Compiler Techniguestiie Su-
perthreaded Architecture. limternational Journal of Parallel Pro-
gramming pages 27(1):1-19, 1999.

T. Vijaykumar and G. Sohi. Task Selection for a MultissaProces-
sor. InProceedings of the 31th Annual International Symposium on
Microarchitecture pages 81-92, November 1998.

T. N. Vijaykumar. Compiling for the Multiscalar ArchitecturePhD
thesis, University of Winsconsin-Madison, 1998.

F. Warg and P. Sten&tm. Limits on Speculative Module-Level Par-
allelism in Imperative and Object-Oriented Programs on CRA&-
forms. InProceedings of the 10th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT,®¢ptember
2001.

A. Zhai, C. Colohan, J. Steffan, and T. Mowry. Compileptiiniza-
tion of Scalar Value Communication Between Speculative@tis. In
ASPLOS X ProceedingSan Jose, CA, October 2002.

