
POSH: A Profiler-Enhanced TLS Compiler that Leverages Program Structure ∗

Wei Liu, James Tuck, Luis Ceze, Karin Strauss, Jose Renau† and Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-Champaign
{liuwei,jtuck,luisceze,kstrauss,torrellas}@cs.uiuc.edu

† Computer Engineering Department
University of California, Santa Cruz

renau@soe.ucsc.edu

Abstract

As Thread-Level Speculation (TLS) architectures are be-
coming better understood, it is important to focus on the role
of TLS compilers. In systems where tasks are generated in
software, the compiler often has a major performance impact:
while it does not need to prove the independence of tasks, its
choices of where and when to generate speculative tasks are
key to overall TLS performance.

This paper presents POSH, a new, fully automated TLS
compiler built on top ofgcc-3.5. POSH is based on two
design-decisions. First, to partition the code into tasks,it
does not rely on a sophisticated data-dependence analysis
pass, but on the structure of the code (subroutines or loops)
and a profiling pass. Second, the profiler takes into account
both the parallelism and the data prefetching effects provided
by the speculative tasks. With the code generated by POSH, a
TLS chip multiprocessor with 4 3-issue cores delivers an av-
erage speedup of 1.28 for whole SpecInt 2000 applications.
Moreover, the profiler increases its effectiveness by 18% ifit
considers the data prefetching effects of speculative tasks.

1 Introduction
Although parallelizing compilers have made significant ad-
vances [3, 11], they still fail to parallelize many codes. Ex-
amples of hard-to-parallelize codes are those with accesses
through pointers or subscripted subscripts, possible interpro-
cedural dependences, or input-dependent access patterns.

One way to parallelize these codes is to use Thread-Level
Speculation (TLS) (e.g. [1, 6, 9, 10, 12, 14, 16, 20, 21, 22,
23]). The approach is to build tasks from the code, and spec-
ulatively run them in parallel, hoping not to violate sequen-
tial semantics. As tasks execute, special support checks that
no cross-task dependence is violated. If any is, the offend-
ing tasks are squashed, the polluted state is repaired, and the
tasks are re-executed.

In most of the proposed systems, tasks are generated in
software rather than built in hardware. In such cases, the

∗This work was supported in part by the National Science Foundation un-
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;
DARPA under grant NBCH30390004; DOE under grant B347886; and gifts
from IBM and Intel.

compiler often plays a major role. The compiler does not
need to prove the absence of dependences across tasks. How-
ever, the compiler’s choices of how to break the code into
tasks and when to spawn them have a major impact on the
performance of the resulting TLS system.

There are several instances of substantial TLS compiler
infrastructure in the literature [25, 13, 5, 7, 2, 24, 28]. In
some of these compilers, tasks are built exclusively out of
loop iterations [7, 28]. The reason is that loops are often the
best source of parallelism. In other compilers [25, 13, 5], a
dependence analysis pass tries to identify the most likely data
dependences in the code and partitions the code into tasks
to minimize cross-task dependences. In general, identifying
likely dependences, often interprocedurally, is hard in codes
with pointers.

In this paper we present POSH, a new, fully automated
TLS compiler that we have developed. The compiler adds
several passes to gcc-3.51. These TLS passes operate on a
static single assignment (SSA) tree used as the high-level in-
termediate representation in gcc-3.5 [18]. Building on gcc-
3.5 allows us to leverage a complete compiler infrastruc-
ture. Moreover, since gcc has various front-ends for different
languages and various back-ends for different architectures,
POSH is very portable. At this point, POSH only accepts C
programs, although it will soon be able to work with Fortran
and C++ programs.

In the design of POSH, we have made two main design
decisions. First, to partition the code into tasks, we do not
rely on any sophisticated data-dependence analysis pass that
identifies code boundaries with minimal cross-task depen-
dences. Instead, we rely on the code structures written by
the programmer (subroutines or loops), and a profiling pass
that prunes some of these tasks if they are not estimated to
be beneficial. This decision simplifies the compilation algo-
rithms significantly.

The second design decision is that our profiling pass takes
into account both the parallelism and thedata prefetching
effects provided by the speculative tasks. This profiling pass
is performed with a very small input data set.

To enhance parallelism and data prefetching, POSH also

1It is an early version of latest gcc-4.0.

performs aggressive hoisting of task spawns. Moreover, it
supports software value prediction. However, to maximize
applicability, POSH assumes a simple target Chip Multipro-
cessor (CMP) architecture, without any architectural support
for direct register-to-register data transfer.

The contributions of this paper are as follows:

• We show that a TLS compiler that, rather than form-
ing tasks based on a data-dependence pass that tries to
minimize cross-task dependences, uses instead the code
structure (subroutines and loops) and a profiler, can de-
liver very good speedups. Specifically, a TLS CMP with
4 3-issue cores delivers an average speedup of 1.28 for
whole (i.e. not only the loops) SpecInt 2000 applica-
tions.

• We show that, for higher effectiveness, the profiler has
to take into account both the parallelism and the data
prefetching effects provided by speculative tasks. In
particular, the profiler increases its effectiveness by 18%
if it considers the data prefetching effects.

• We show the performance impact of several important
design decisions in the compiler. Specifically, we ex-
amine the impact of generating tasks out of only sub-
routines, only loop iterations, or combinations of them;
the impact of the profiling pass, and the effect of value
prediction.

Ideally, we would have liked to compare the performance
of POSH to other existing TLS compiler infrastructures in
the literature. However, the sheer implementation effort re-
quired to reproduce the algorithms of another TLS compiler
has prevented us from doing it in this paper. Also the existing
dependence-based analysis can be easily applied to POSH
and be beneficial for POSH.

This paper is organized as follows. Section 2 gives some
background; Section 3 gives an overview of POSH; Section 4
describes the main design issues in POSH; Section 5 and Sec-
tion 6 evaluate POSH; Section 7 discusses related work, and
Section 8 concludes.

2 Background on Thread-Level
Speculation (TLS)

TLS consists of extracting tasks of work from sequential
code and executing them in parallel, hoping not to violate
sequential semantics (e.g. [1, 6, 9, 10, 12, 14, 16, 20, 21, 22,
23]). The control flow of the sequential code imposes a con-
trol dependence relation between the tasks. This relation es-
tablishes an order of the tasks, and we can use the terms pre-
decessor and successor to express this order. The sequential
code also yields a data dependence relation on the memory
accesses issued by the different tasks that parallel execution
cannot violate.

A task is speculativewhen it may perform or may have
performed operations that violate data or control depen-
dences with its predecessor tasks. When a non-speculative
task finishes execution, it is ready tocommit. The role of
commit is to inform the rest of the system that the data gener-
ated by the task are now part of the safe, non-speculative pro-
gram state. Among other operations, committing always in-
volves passing the non-speculative status to a successor task.
Tasks must commit in strict order from predecessor to suc-
cessor. If a task reaches its end and is still speculative, it
cannot commit until it acquires non-speculative status.

Memory accesses issued by a speculative task must be
handled carefully. Stores generate speculative state thatcan-
not be merged with the non-speculative state of the program.
Such state is typically stored in a speculative buffer or cache
local to the processor running the task. Only when the task
becomes non-speculative can the state be allowed to merge
with the non-speculative program state.

As tasks execute in parallel, the system must identify any
violations of cross-task data dependences. Typically, this is
done with special hardware support that tracks, for each in-
dividual task, the data written and the data read without first
writing it. A data dependence violation is flagged when a task
modifies a version of a datum that may have been loaded ear-
lier by a successor task. At this point, the consumer task is
squashedand all the state that it has produced is discarded.
Then, the task is re-executed. Note that, thanks to the spec-
ulative buffers, anti and output dependences across tasks can
not cause squashes.

3 Overview of POSH
The POSH framework is composed of two parts closely tied
together: a compiler and a profiler (Figure 1). The compiler
performs task selection, inserts task spawn points, and gener-
ates the code. The profiler is an execution environment that
provides feedback to the compiler to improve task selection.

Refinement

Structure
Program

P
ar

al
le

lis
m

S
m

al
l T

as
ks

R
eg

. D
ep

en
de

nc
e

P
ro

fil
ed

F
in

al
iz

e
T

as
ks

Spawn Hoisting

V
al

ue
 P

re
di

ct
io

n

D
ep

en
de

nc
e

R
es

tr
ic

tio
n

P
la

ce
m

en
t

Task Selection

Compiler Passes

Profiler

Figure 1:Flowchart of the POSH framework.

3.1 TLS Hardware Assumptions

POSH makes several assumptions on the target TLS hard-
ware, including how live-ins are passed to tasks, how depen-
dences are enforced between tasks, and how tasks are created

and terminated. The live-ins of a task are those variables that
the task uses without defining them. In particular, POSH as-
sumes that there is no hardware support to transfer registers
between tasks – all live-ins to a task must be passed through
memory. This model corresponds to a standard CMP, where
the different cores only communicate through memory. Con-
sequently, it is the responsibility of POSH to guarantee that
any value in a register is written to memory if that value may
needed by any successor task. On the other hand, POSH as-
sumes that the hardware will detect dependence violations
through memory and will squash and restart tasks accord-
ingly, as in conventional TLS architectures.

The ISA provides aspawnand acommitinstruction to ini-
tiate and to successfully complete a task, respectively. The
spawn instruction takes as an argument the address of the
first instruction in the task. Execution of the spawn instruc-
tion initiates a new task in an idle processor. Execution of the
commit instruction indicates to the hardware that the task has
completed its work. The compiler inserts spawn and commit
instructions.

3.2 Compiler Phases
There are three main compiler phases:Task Selection, Spawn
Hoisting, andTask Refinement(Figure 1). In the task selec-
tion phase, the compiler identifies as tasks all subroutinesand
all loop iterations in the code. For each task, the compiler
identifies the instruction where it begins (begin point). The
compiler inserts spawn instructions in the begin points, cre-
ating what we callspawn points. Because the begin point of
one task is theend pointof another, it adds commit instruc-
tions before each begin point. The output of the task selection
phase is a set of begin points.

Immediately after task selection, the compiler invokes the
Value Predictionpass. This pass predicts the values of cer-
tain kinds of variables that cross task boundaries, hoping to
reduce the number of dependence violations. In POSH, we
predict function return values and loop induction variables.

In the spawn hoisting phase, POSH considers each of the
spawn instructions inserted, and tries to hoist them as much
as possible in the intermediate representation of the program.
The goal of hoisting the spawn points is to enhance paral-
lelism and prefetching as much as possible. Given the spawn
point for a task, we hoist it as much as possible subject to
two constraints. First, the spawn should be after the defini-
tion of all variables used in the task that, according to the in-
termediate representation, are likely to assign to the registers.
The exception is when value prediction is used. Second, the
spawn should be in a location that is execution equivalent2

with the start of the task. These constraints are represented

2We say that two basic blocksb1 andb2 are execution equivalent if both
conditions are satisfied: (i)b2 is only executed afterb1 is executed and
beforeb1 gets executed again, and (ii) afterb2 is executed,b2 is not executed
again beforeb1 is executed, or vice versa. To be clear, this is a static property
of the control flow graph alone.

in the figure as theDependence Restrictionsubpass.
In the refinement phase, POSH makes the final decisions

about which tasks will make it into the final binary. This
phase is composed of a number of passes, whose goal is to
improve the quality of the final set of tasks chosen for exe-
cution. From the perspective of the compiler, the profiler is
part of this task refinement process.

Refinement phase includes theParallelism, Small Tasks,
Register Dependencesand Profiled passes. The first three
passes eliminate tasks that have certain characteristics,
namely they are not spawned farther than some thresh-
old number of instructions from their begin point, they are
smaller than certain threshold static task size, and they have
too many live-ins, respectively. And the last passProfiledac-
cepts input from the profiler and uses it to eliminate a final
set of tasks.

In theFinalize-Taskpass, the compiler inserts all instruc-
tions and code needed to correctly spawn, execute, and com-
mit tasks, as well as to perform value prediction. The final
code generation varies depending on whether we plan to pro-
file or not. If we do, then extra information (e.g. task id) is
encoded into each task to allow the profiler to communicate
back to the compiler.

We built these phases as a part of gcc-3.5, allowing us
to leverage a complete compiler infrastructure. We use the
newly available SSA tree as the high-level intermediate rep-
resentation [18].

3.3 Profiler
The profiler provides a list of tasks that are beneficial for per-
formance. The compiler uses this information to eliminate
other non-beneficial tasks. Note that the profiler also informs
the compiler of which tasks are not beneficial because the
value predictions that they rely on are usually incorrect. Then
the compiler also eliminates these tasks.

To perform profiling, we run the applications with the
Train input set. The execution of the tasks isserial, with-
out assuming any TLS architectural support, and modeling
only some rudimentary timing. While the tasks run, the pro-
filer collects information about each task that can be used to
make a decision regarding the amount of parallelism the task
has to offer, the likelihood the task is squashed, and whether
the task may offer benefits due to prefetching. A more de-
tailed explanation of the profiler algorithms is given in Sec-
tion 4.3. On average, a profiler run takes about 5 minutes on
an Intel P4 3GHz machine.

4 Algorithms and Design Issues
4.1 Task Selection
Task selection is easier for TLS compilers than for conven-
tional parallelizing compilers. The reason is that depen-
dences are allowed to remain across tasks, since the hard-
ware ultimately guarantees correct execution. In practice,

a variety of heuristics can be used to choose tasks. The
resulting tasks should ideally have few cross-task depen-
dences, enough work to overcome overheads, and few live-
ins. Choosing tasks that provide the optimal performance
improvement is NP-hard [2].

POSH’s heuristic to select good tasks is to rely on the
structure that the programmer gave to the code. Specifically,
POSH can use the following modules as potential tasks: sub-
routines from any nesting level, their continuations, and loop
iterations from one or more loops in a nest.

As an example, Figure 2 shows how POSH generates tasks
out of a subroutine and its continuation (Chart (a)), as well
as out of a loop iteration (Chart (c)). Chart (a) shows a code
segment with a call to subroutineS1. POSH identifies two
tasks: the call toS1and its continuation code (the code that
follows the call). Consequently, it inserts the begin points
BP2andBP1, respectively.

Chart (c) shows a loop as it is typically represented in the
intermediate representation of gcc-3.5. The representation
typically places the update of the induction variable (i in the
chart) right before the backward jump. POSH identifies loops
in the program by computing the set of strongly connected
components (SCC) in the control flow graph. Then, it tries to
identify the update to the induction variable, and it placesthe
task begin point for iterationn (BP in the figure), right before
the update of the induction variable in iterationn-1. With this
approach, induction variables neither need to be predicted
nor cause dependence violations. In the cases where gcc-3.5
does not follow this pattern, POSH does predict the values of
induction variables.

4.1.1 Spawn Hoisting

With spawn hoisting, we place the spawn of the task as early
as possible before the begin point of the task, given the con-
straints indicated before. Figure 2(b) shows the code from
Chart (a) after performing spawn hoisting. Note that the
continuation task in Chart (a) (the one starting atBP1) had
the live-in variabley. Consequently, we need to ensure that
y is written to memory before the continuation task is in-
voked, and it is read from memory inside the continuation
task. POSH ensures this by declaring a volatile variablev y
(Chart (b)). Updates to such variable will always be prop-
agated to memory. Then, before the continuation task is
spawned, POSH copies the live-iny to v y. Inside the contin-
uation task,v y is read from memory and copied toy. Finally,
as Chart (b) shows, the spawn for the continuation task (Task
1) is hoisted all the way up to after the update tov y (spawn
point SP1).

On the other hand, the spawn for the subroutine task (Task
2) can be hoisted all the way to the beginning of the code
section, since the task has no live-ins. It will only be hoisted
further up if we find a point in the code that is execution
equivalent to the call to the subroutine.

Figure 2(b) also includes the commit statements for the

task. Recall that, the commit statements are placed just be-
fore each task’s begin point.

Finally, Figure 2(d) shows the code from Chart (c) after
performing spawn hoisting. As in Chart (b), POSH intro-
duces a volatile variable to ensure that variablei is written to
memory every iteration and read from memory by the succes-
sor iteration. Note that the spawn forTask 1can be hoisted
only up to the beginning of the loop body because of the
execution equivalence constraint. POSH also introduces the
commit statement.

4.2 Prefetching Effects

(c) Prefetching

Task 2

Task 2

execution

Task 1

spawn

squash

re−execution

initial

(a) Squential Execution

Task 2

Task 1

(b) Parallelism

Task 2

Task 1

overlap

spawn

LD A

LD A

Figure 3:The two potential benefits of TLS: parallelism and
prefetching.

While POSH targets task parallelism, it is also specifically
designed to reap the benefits of prefetching in TLS. Fig-
ure 3 shows the two potential benefits of TLS: parallelism
and prefetching. GivenTask 1andTask 2(Chart (a)), TLS
exploits parallelism by allowing the overlapped executionof
the two tasks (Chart (b)). However, when violations cause
tasks to be squashed and restarted, TLS can speed up the
program through automatic data prefetching.

This effect is illustrated in Figure 3(c). In its first exe-
cution, Task 2suffers a miss on variableA. After Task 2is
squashed, its new access toA finds the data already in the
cache. Consequently, while there is little parallelism between
Task 1andTask 2, TLS speeds up the program becauseTask
2 benefits from automatic data prefetching.

Figure 4 shows a code snippet from the SpecInt 2000 gap
application that illustrates prefetching. The while loop has
clear loop-carried dependences inhdP, hdL, and i. Conse-
quently, existing TLS compilers are unlikely to parallelize
this loop. However, parallelizing this loop yields significant
performance gains due to prefetching. Specifically,ProdInt()
calculates the product of two integer numbers. The numbers
are stored in memory in a tree data structure. As a result,
ProdInt()has poor locality and suffers many L2 misses. For-
tunately, the squashed tasks bring in lines into the cache that
are very likely to be needed in the re-execution.

POSH tries to leverage prefetching through its profiler. We
describe the profiler algorithms next.

BP

BP1

SP

BPBP2

SP2

SP1

(c) (d)(a)

x=y;
BP1

BP2

(b)

commit;

x=y;
y=v_y

Task_1:

if(i>99)
loop:

 goto lend;

commit;

i=i+1;
i=v_i;

lend:
goto loop;
v_i=i;

<LOOP BODY>

if(i>99)

i=i+1;
goto loop;

loop:

 goto lend;

lend:

<LOOP BODY>

volatile int v_i;

v_i=i;

int x,y; S1();

commit;
Task_2:

int x,y;
volatile int v_y;
spawn Task_2;

v_y=y;
spawn Task_1;

S1();

spawn Task_1;

Task_1:

int i=0;

int i=0;

Figure 2:Generating tasks out of a subroutine, its continuation, andthe iterations of a loop.

i = HD_TO_INT(hdR);

 if (i % 2 == 1) hdP = ProdInt(hdP, hdL);
 if (i > 1) hdL = ProdInt(hdL, hdL);
 i = i / 2;
}

while (i != 0) {

Figure 4:Code snippet from the SpecInt 2000 gap applica-
tion that illustrates prefetching.

4.3 Profiler
The profiler runs the applications with theTrain input set.
The execution of the tasks isserial, does not assume any
TLS architectural support, and models only some rudimen-
tary timing. We feel that constraining the profiling runs in
this way makes the framework widely usable in a variety of
circumstances. The profiler also models a simple L2 cache
(without cycle-accurate timing model) to estimate the num-
ber of misses. The latter are used for our analysis of prefetch-
ing. Simulating a cache without modeling time introduces
practically negligible profiling overhead. Overall, an average
profiler run takes about 5 minutes.

To make the profiler as general as possible, its computa-
tions assume unlimited processor cores. The code optimized
based on unlimited processor cores is able to expose more
parallelism and is more likely to perform well on chips with
various number of cores.

4.3.1 Profiler Execution

In its sequential execution of the program, the profiler es-
timates L2 cache misses. Moreover, it assumes that every
instruction executed takesCI cycles, except for loads and
stores that miss in the L2 cache, which takeCL2Miss cycles.
It also assumes some constant overhead for each squash and
spawn operation (Ovhdsquash and Ovhdspawn). With all
this information, the profiler can build a rudimentary model
of the TLS execution that allows it to estimate cross-task de-
pendences and squashes.

Let us consider an example (Figure 5-(a)). As the pro-
filer executes the code sequentially, it assigns a time to
each instruction as if the tasks were executed in parallel.
Specifically, when the profiler executes the first instruction

of Task 2, it rewinds the time back to when the task would be
spawned (T1) plus the spawn overhead (Ovhdspawn).

1T

Task 2

Task 1

spawn

(a)

2
+Ovhdspawn

T

1T

execution

Task 1

ST Xst

LD X

initial

LD X

re−execution

NewCurrTime

CurrTime

spawn
spawnT

T Task 2

Task 2

Tend

(b)

Figure 5:Example of profiler execution.

For each spawn instruction, the profiler records the time
and the target task. For each store, it records the time and
the address stored to. When the profiler encounters a load to
an address, it checks the table of recorded stores to find the
latest store that wrote to that address. If the time of the load
is less than the time of the store, the profiler has detected a
dependence violation. At this point, the profiler conceptu-
ally squashes the consumer task and updates the times of its
instructions.

An example is shown in Figure 5-(b). In the figure, the
profiler executed theSTX in Task 1and assigned timeTst

to it. Later, the profiler encounters theLDX in Task 2at a
time that we callCurrT ime. SinceCurrT ime < Tst, it
means that theLDX happens before theSTX andTask 2
needs to be squashed. As a result, the profiler updates the
times of all store instructions inTask 2. In particular, the new
LDX time isNewCurrT ime. NewCurrT ime is obtained
by the following formula:

NewCurrT ime =Tst + Ovhdsquash

+ CurrT ime − Tspawn

− NL2Miss × (CL2Miss − CI)

In this formula,Tspawn is the time associated with the initial
spawn ofTask 2, andNL2Miss is the number of L2 misses
suffered by the first execution ofTask 2until it reached
LDX. With this method, the profiler models the squash and
re-execution with a single sequential run.

4.3.2 Benefit of a Squashed Task

Based on the previous discussion, we can roughly estimate
the expected performance benefit of squashed tasks. The
benefit is a combination of the remaining task overlap, and
of prefetching effects, as follows:

Benefit =Overlap + Prefetch

=(Tend − Tst − Ovhdsquash)

+ (CL2Miss − CI) × NL2Miss

In the formula,Tend andTst are the times of the squashing
task end, and of the squashing store, respectively (Figure 5-
(b)).

4.3.3 Task Elimination
The output of the profiler is the list of tasks that are benefi-
cial for performance. To generate this list, the profiler runs
as described, and it identifies the tasks that need to be elimi-
nated. There are three elimination criteria: task size, hoisting
distance, and squash frequency. We describe these criteriain
this section.

Due to the overhead of task spawning, small tasks are un-
likely to provide much benefit. Consequently, we use a task
size criteria, where a task is eliminated if its size is smaller
than thresholdThsz and it spawns no other task. We treat
small tasks that spawn other tasks with care. The reason is
that if such small tasks can be hoisted significantly (see next
criteria), their callees would benefit substantially.

The number of instructions between the spawn point of a
task and the begin point of that task is called the hoisting dis-
tance. Short hoisting distances do not expose much overlap
between tasks, while long hoisting distances are likely to in-
troduce too many data dependences. Consequently, with the
hoisting distance criteria, we eliminate the tasks that have
a hoisting distance smaller thanThmin hd or larger than
Thmax hd. Recall that one compiler pass eliminates those
tasks that have small hoisting distance. The reason we still
have the hoisting distance criteria is that compiler can only
determine the hoisting distance statically, so the compiler has
to be conservative.

Finally, task squashes are very expensive. Consequently,
with the squash frequency criteria, we eliminate the tasks
with an average number of squashes per task commit that
is higher than a squash thresholdThsq. However, based on
the discussion in Section 4.3.2, some squashes may result in
a net positive performance effect due to prefetching. Con-
sequently, we apply aPrefetching Correctionto this rule.
Specifically, if the task has a performance benefit (Benefitas

defined in Section 4.3.2) higher than a squash benefit thresh-
old Thsb, the task is not eliminated.

4.4 Software Value Predictor

A general approach for deciding when value prediction
should be used is difficult for a compiler, but there are some
specific locations that have been shown profitable in previous
studies (e.g., [19, 15, 27]). In POSH, we use value prediction
for three cases: function return variables, loop inductionvari-
ables, and cross-iteration dependences on variables that have
a behavior similar to induction variables.

For these cases, POSH uses a software value prediction
scheme similar to the one in [7]. Such scheme leverages the
TLS dependence tracking hardware to squash a task that used
a wrong prediction.

5 Methodology
5.1 Simulated Architecture
A cycle accurate execution-driven simulator is used to eval-
uate POSH. The simulator models out-of-order superscalar
processors and memory subsystems in detail. The TLS ar-
chitecture configuration modeled is shown in Table 1. It is a
four-processor CMP with TLS support. Each processor is a
3-issue core and has a private L1 cache that buffers the spec-
ulative data. The L1 caches are connected through a crossbar
to an on-chip shared L2 cache. The CMP uses a TLS co-
herence protocol with lazy task commit and speculative L1
caches similar to [14]. Since the L1 caches need to manage
speculative data, we set their access time to a higher value:3
cycles.

Frequency 4 GHz ROB 126
Fetch width 6 I-window 68
Issue width 3 LD/ST queue 48/42
Retire width 3 Mem/Int/Fp unit 1/2/1
Branch predictor: Spawn Overhead 12 cycles

Mispred. Penalty 14 cycles Squash Overhead 20 cycles
BTB 2K, 2-way

L1 Cache: L2 Cache:
Size, assoc, line 16KB, 4, 64B Size, assoc, line 1MB, 8, 64B
Lat. w/ TLS 3 cycles Latency 12 cycles
Lat. w/o TLS 2 cycles Memory:
RT. to remote L1 at least 8 cycles Latency 500 cycles

Bandwidth 10GB/s

Table 1: Architecture configuration. All cycle counts are
in processor cycles. In our comparison, we usedifferentL1
cache access times for TLS and non-TLS.

In our evaluation, we report the speedups of this TLS CMP
architecture over the execution of the original (non-TLS) ap-
plication binaries on a single-processornon-TLSarchitec-
ture. Suchnon-TLSarchitecture has one aggressive 3-issue
core, one L1 cache, and one L2 cache like the ones in Ta-
ble 1. One difference is that the L1 cache has the shorter
access time of 2 cycles because it does not have to manage
speculative data.

5.2 Profiler Parameters

Table 2 shows the parameters used to configure the profiler.
We assume 1 cycle per instruction and a 200-cycle penalty
per L2 cache miss. We set the L2 miss penalty lower than
the time to get to memory because the architecture we model
is a 3-issue out-of-order processor that can hide some of the
latency by executing independent instructions.

CI 1 cycle Thsz 30 instructions
CL2Miss 200 cycles Thmin hd 120 instructions

Thmax hd 5M instructions
Ovhdspawn 12 cycles Thsq 0.75
Ovhdsquash 20 cycles Thsb 0

Table 2:Profiler parameters.

In the rightmost columns of Table 2, we show the thresh-
old values used to guide our profiling algorithms.Thsz is
set to 30 to prevent selecting tasks too small to overcome
the overhead of spawning a thread. The minimum and maxi-
mum spawn distance thresholds,Thmin hd andThmax hd re-
spectively, are set to conservative values. The squash thresh-
old Thsq is set to 0.75, which means that a task squashed
more than 3 time out of 4 commits will be eliminated. Fi-
nally, for the case of detecting benefits from squashing, we
setThsb = 0, which means that a task will not be eliminated
if there is any benefit from squashing at all.

5.3 Applications Evaluated
The simulated architectures are evaluated with the SpecInt
2000 applications running theRefdata set. The profiler uses
theTrain data set. All of the SpecInt 2000 codes are included
except three that fail our compilation pass (gcc, perlbmk, and
eon— the latter because C++ is not currently supported).

The non-TLS binary we compare against is generated by
the same compiler,gcc-3.5, with -O2 optimization enabled.
Note that there are no TLS or other additional instructions
added to the baseline binary. For the TLS binaries, POSH
rearranges the code into tasks and adds extra instructions for
spawn, commit, passing live-ins through memory, and value
prediction.

In both the TLS and non-TLS compilations, we first run
the SGI’s source-to-source optimizer (copt from MIPSPro)
on the SpecInt code. This pass performs PRE, loop unrolling,
inlining, and other optimizations.

To accurately compare the performance of the different bi-
naries, simply timing a fixed number of instructions cannot
be used. Instead, “simulation markers” are inserted in the
code, and simulations are run for a given number of markers.
After skipping the initialization (typically 1-6 billion instruc-
tions), a certain number of markers are executed, so that the
baseline binary graduates from 500 million to 1 billion in-
structions.

6 Evaluation
To evaluate POSH, we examine several issues: different task
selection algorithms, task characteristics, effectiveness of the
profiler, and effectiveness of value prediction. In the evalu-
ation, we select subroutine continuations and loop iterations
as tasks.

6.1 Different Task Selection Algorithms
To evaluate the performance provided by selecting as tasks
only particular code structures, we conducted three experi-
ments in which (1) we only selected the subroutine continua-
tions (Subr), (2) we only selected the loop iterations (Loop),
and (3) we selected a combination of both (Subr+Loop). Fig-
ure 6 shows the speedup obtained by these three selection al-
gorithms. In all three experiments, we used the profiling pass
and enabled value prediction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

S
p

e
e

d
u

p

Subr
Loop

Subr+Loop

bzip2 crafty gap gzip mcf parser twolf vortex vpr Geo.Mean

Figure 6:Comparison of different task selection algorithms:
subroutines only (Subr), loop iterations only (Loop), and the
combination of both (Subr+Loop).

As shown in Figure 6,Subr+Loopdelivers speedups that
reach 2.02 inmcf, and have a geometric mean of 1.28. The
latter is 15.3% more than inSubrand 10.3% more than in
Loop. For six of the applications (bzip2, crafty, gzip, parser,
twolf, and vortex), theSubr selection algorithm performs
better than theLoop one. For the other three benchmarks,
gap, mcf and vpr, theLoopselection algorithm performs bet-
ter. Due to the irregular code structure, selecting only either
subroutines or loop iterations is not enough to get the best
speedup. Instead, using both subroutines and loop iterations
is a simple and the best way to select tasks.

These significant speedups make POSH an attractive TLS
compiler infrastructure, especially given that POSH is a
fully-automated compiler that speculatively parallelizes ir-
regular SpecInt programs.

6.2 Task Characteristics
Table 3 shows the characteristics of the tasks selected by
POSH after all the passes, including the profiler. The second
column shows the static number of subroutine tasks, while
the third column shows the static number of loops whose it-
erations will be given out as tasks. The average figures for
these parameters are 27.0 and 7.4, respectively. Their rela-
tive value is not surprising, given that SpecInt applications
usually have many subroutine calls, and loops do not domi-

nate the program execution time.vpr is an interesting case,
with only two loops, yet yielding a speedup of 1.20 (as shown
in Figure 6). Finally, the last column shows that the dynamic
task size ranges from 54 instructions inmcfto 1851 invortex.

Appli- #Static #Static #Dynamic Insts
cation Subroutine Tasks Loop Tasks per Task

bzip2 6 10 998
crafty 38 5 887
gap 5 6 288
gzip 11 3 661
mcf 2 2 54

parser 147 33 294
twolf 13 4 320
vortex 21 2 1851

vpr 0 2 454
Average 27.0 7.4 645

Table 3:Task characteristics.

6.3 Effectiveness of the Profiler

The profiler plays an important role in POSH. According
to our design philosophy, the compiler aggressively selects
tasks based on code structure, and lets the profiler eliminate
tasks that are detrimental to performance.

Figure 7 shows the effectiveness of the profiler. We con-
duct three experiments: (1) no profiler is used (NoProfiler),
(2) we use the profiler without the Prefetching Correction de-
scribed in Section 4.3.3 (Profiler w/o Prefetch), and (3) we
use the complete profiler (Profiler w/ Prefetch). The only
difference in the latter two experiments is the inclusion of
prefetching awareness. In both cases, the profiler applies the
other elimination rules, namely elimination of small tasks,
tasks with too-short or too-long hoist distance, and tasks with
frequent squashes. In all three experiments, we select both
subroutines and loop iterations, and have the value predic-
tion turned on.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

e
e

d
u

p

1.24
1.28

NoProfiler
Profiler_w/o_Prefetch

Profiler_w/_Prefetch

bzip2 crafty gap gzip mcf parser twolf vortex vpr Geo.Mean

Figure 7: Comparison of POSH without the profiler, with
the profiler but without the prefetch correction, and with the
full profiler.

As shown in Figure 7, without profiler support we obtain a
negligible average speedup of 1.02. After applying the pro-
filing pass and without considering prefetching effects, the
average speedup increases to 1.24. Finally, when we include
prefetching-awareness, we reach the final average speedup
of 1.28. From these results, we see that adding prefetch-
awareness to the profiler is important for boosting the per-
formance: on average, the profiler increases its effectiveness

by 18%.
An especially remarkable case is that ofgap. If it uses only

Profiler w/o Prefetch, it ends up 2% slower than the sequen-
tial run. The profiler eliminates tasks with obvious data de-
pendences, thus losing the opportunity to leverage prefetch-
ing. By considering the prefetching factor in the profiler,gap
boosts its speedup to 1.27.

6.3.1 Characterization of Task Profiling
Table 4 characterizes our task profiling. The second column
and the last column show the total static number of subrou-
tine and loop tasks3 before and after profiling, respectively.
We can see that a large number of tasks are eliminated by the
profiler. On average, 139.7 tasks are selected by the com-
piler and only 35.4 tasks survive the elimination process, or
around 75% of tasks are eliminated on average.

Columns 3-6 of Table 4 show the number of static tasks
eliminated due to each of the reasons discussed in Sec-
tion 4.3.3. Specifically, on average 14.8 tasks are eliminated
because of their small size (Column 3), 31.9 tasks because of
a small hoisting distance (Column 4), 1.8 tasks because of a
large hoisting distance (Column 5), and 55.8 tasks because of
frequent squashes (Column 6). The latter effect dominates.

Column 7 of Table 4 shows the number of static tasks re-
maining after profiling that were retained due to thePrefetch-
ing Correctionof Section 4.3.3. We can see that, on average,
2.1 tasks were retained because of their prefetching capabili-
ties. While 2.1 tasks is a small fraction of the total 35.4 tasks
that are remaining, they have a significant performance im-
pact, as discussed in Section 6.3.

gap benefits the most from prefetching, with 7 prefetch
tasks out of a total of 12 selected tasks. The 7 prefetch tasks
help to improve the speedup from 0.98 to 1.27 (Section 6.3).
Some applications, such asbzip2, vortexand vpr have no
prefetch task selected. In these three applications, this type
of prefetching offers no benefits.

6.4 Effectiveness of Value Prediction
Figure 8 shows the effectiveness of our value prediction tech-
nique. We compare the application speedups with and with-
out the value prediction. In both runs, we use the profiler to
get high-quality TLS binaries.

On average, 5% more speedup is delivered by POSH when
value prediction is enabled. In particular,vpr gains 43%
more speedup. According to Table 3, there are only two loop-
based static tasks selected forvpr. The induction variables of
these two loops are highly predictable and the loops show
very good parallelism. Prediction is needed in these two
cases because the induction variable updates occur within an
if-then-else statement (a solution like that in Figure 2(c)is
not feasible).

3Recall that a loop whose iterations are going to be given out as tasks is
counted as a single static task.

App. #Tasks Before #Tasks Eliminated #Tasks Eliminated Due to #Tasks Eliminated #Tasks Saved #Tasks After
Profiling Due to Task Size Small Hoisting Large Hoisting Due to Squashes Due to Prefetch Profiling

bzip2 115 2 44 1 51 0 17
crafy 376 70 99 3 160 1 44
gap 36 0 11 2 11 7 12
gzip 55 1 9 0 30 2 15
mcf 17 2 6 0 4 1 5

parser 464 47 68 10 158 6 181
twolf 75 0 30 0 27 2 18
vortex 98 11 20 0 43 0 24

vpr 21 0 0 0 18 0 3
Average 139.7 14.8 31.9 1.8 55.8 2.1 35.4

Table 4:Characterization of task profiling. Note that the static tasks after the profiling pass (last column) are always one
more than the sum of the static subroutine tasks and the loop tasks in Table 3. The reason is there is always one initial task
in the program execution.

-10%

0%

10%

20%

30%

40%

50%

P
e
rc

e
n
t
Im

p
ro

v
e
m

e
n
t(

%
)

bzip2 crafty gap gzip mcf parser twolf vortex vpr Geo.Mean

Figure 8: Improvement of the speedups with value predic-
tion over without value prediction.

Some benchmarks are hurt by value prediction.parser
loses around 3% speedup with value prediction. The over-
head of inserting extra instructions to support value predic-
tion can not be compensated by the low gains in this appli-
cation. Sinceparser has frequent squashes, we are left to
conclude that the dependences between tasks in parser have
lower predictability than anticipated by our profiler.

7 Related Work
Several compiler infrastructures for TLS have been proposed
but differ significantly in their scope. Multiscalar prompted
many compiler efforts for TLS [20, 26]. The Multiscalar
compiler selects tasks by walking the Control Flow Graph
(CFG) and accumulating basic blocks into tasks using a va-
riety of heuristics. The task selection methodology for the
Multiscalar compiler was recently revisited by Johnson et
al [13]. Instead of using a heuristic to collect basic blocks
into tasks, the CFG is now annotated with weights and bro-
ken into tasks using a min-cut algorithm. These compilers
assume special hardware for dispatching threads and, there-
fore, do not specify when a thread should be launched.

A number of compilers focus only on loops [7, 8, 24, 28].
In SPSM [8], loop iterations are selected by the compiler as
speculative threads. The more interesting part of the work
is the use of thefork instruction, very similar to our spawn
instruction, that allows the compiler to specify when tasks
begin executing. In addition, SPSM recognized the poten-
tial benefits from compile-time prefetching but proposed no
techniques to exploit it. Du et al [7] recently presented a cost-
driven compilation framework to statically determine which
loops in a program deserve speculative parallelization. They
compute a cost graph from the control flow and data depen-

dence graphs and estimate the probability that misspecula-
tion will occur along different paths in the graph. The cost
graph, in addition to a set of criteria, determine which loops
in a program deserve speculation.

Bhowmik et al [2] have built a framework for speculative
multithreading on the SUIF-MachSUIF platform. Within this
framework they consider dependence-based task selection al-
gorithms and, like our work, consider a spawn instruction and
look at thread spawning strategies. Like Multiscalar, theyfo-
cus on compiling the whole program for speculation but al-
low the compiler to specify a spawn location as in SPSM.

In each of the above techniques, the compiler statically
splits the program into tasks leveraging varying degrees of
dependence analysis. In addition, all of these approaches use
profiling to guide their task selection by collecting probabil-
ities for common execution paths. In POSH, we use the pro-
gram structure to identify tasks. In addition, we use profiling
information to eliminate some tasks after the compiler has
identified the tasks and the profiler is prefetching-aware.

Some work has used dynamic selection of tasks for
TLS [4, 17]. Jrpm [4] decomposes a Java program into
threads dynamically using a hardware profiler called TEST.
While the program runs in TEST, they identify important
loops that will provide the most benefit due to speculative
parallelization and recompile them with dynamic compila-
tion support. POSH is different from Jrpm in three aspects.
First, POSH doesn’t rely on a hardware profiler. Second,
POSH considers both loops and subroutines. Third, POSH
takes into account prefetching effects in the profiling pass.
Marcuello et al [17] use profiling to identify tasks but are pri-
marily interesting in thread-spawning policies. While POSH
uses the post-profiling pass to refine a set of tasks already
selected by the compiler.

Many other works have looked at optimizations for specu-
lative threads. Chen et al [5] calculate a probability for each
points-to relationship that might exist for a pointer at a given
point in the program. This probability can be used to deter-
mine whether a squash is likely to occur due to a memory
carried dependence. Zhai et al [28] were concerned with task
selection but primarily for replacing dependences with syn-
chronization and alleviating the associated synchronization
overheads. Oplinger et al. [19] looked for the best places
within an application to speculate. One important contribu-

tion was the use of value prediction to speculate past function
calls. We have incorporated some of the techniques from [28]
to move data dependences as far apart in time as possible, and
we have exploited the benefits of return value prediction as
reported in [19].

8 Conclusions
This paper presented POSH, a new TLS compiler built on
top ofgcc-3.5. The paper made three contributions. First,
it showed that a TLS compiler that, rather than forming
tasks based on a data-dependence pass that tries to mini-
mize cross-task dependences, uses instead the code structure
(subroutines and loops) and a profiler, can deliver very good
speedups. Specifically, a TLS CMP with 4 3-issue cores de-
livers an average speedup of 1.28 for whole SpecInt 2000
applications.

Second, the paper showed that, for higher effectiveness,
the profiler has to take into account both the parallelism and
the data prefetching effects provided by speculative tasks. In
particular, the profiler increases its effectiveness by 18%if it
considers the data prefetching effects.

Finally, the paper showed the impact of several important
design decisions in the compiler, including task types, design
parameters in the profiler, and value prediction.

Our future work will involve comparing the effectiveness
of POSH and other existing TLS compilers. We plan to com-
pare the performance of each individual application under at
least two different compilers, to identify the strengths and
weaknesses of different approaches. We are also improving
the models used by the profiler. In particular, we are improv-
ing the cache models, which should make it possible to gain
more from prefetching.

References
[1] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor.

In International Symposium on Microarchitecture, pages 226–236,
November 1998.

[2] A. Bhowmik and M. Franklin. A General Compiler Frameworkfor
Speculative Multithreading. InProceedings of 14th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), August 2002.

[3] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua,
P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford.
Effective Automatic Parallelization with Polaris.International Journal
of Parallel Programming, May 1995.

[4] M. Chen and K. Olukotun. The Jrpm System for Dynamically Par-
allelizing Java Programs. InProceedings of the 30th International
Symposium on Computer Architecture, June 2003.

[5] P. S. Chen, M. Y. Hung, Y. S. Hwang, R. D. Ju, and J. K. Lee. Compiler
Support for Speculative Multithreading Architecture withProbabilistic
Points-to Analysis. InProceedings of the 2003 Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’03), pages 25–36,
June 2003.

[6] M. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Multiproces-
sors. InProceedings of the 27th Annual International Symposium on
Computer Architecture, pages 13–24, June 2000.

[7] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai. A
Cost-Driven Compilation Framework for Speculative Parallelization
of Sequential Programs. InIn Proceedings of SIGPLAN 2004 Confer-
ence on Programming Language Design and Implementation (PLDI),

June 2004.
[8] P. Dubey, K. O’Brien, K. M. O’Brien, and C. Barton. Single-Program

Speculative Multithreading (SPSM) Architecture. InProceedings of
the IFIP WG 10.3 Working Conference on Parallel Architectures and
Compilation Techniques, PACT ’95, 1995.

[9] M. Frank, W. Lee, and S. Amarasinghe. A Software Framework for
Supporting General Purpose Applications on Raw Computation Fab-
rics. Technical report, MIT/LCS Technical Memo MIT-LCS-TM-619,
July 2001.

[10] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning
Cache. InProceedings of the 4th International Symposium on High-
Performance Computer Architecture, pages 195–205, February 1998.

[11] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao,
E. Bugnion, and M. Lam. Maximizing Multiprocessor Performance
with the SUIF Compiler. IEEE Computer, 29(12):84–89, December
1996.

[12] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. In8th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 58–69, October 1998.

[13] T. Johnson, R. Eigenmann, and T. Vijaykumar. Min-cut program de-
composition for thread-level speculation. InIn Proceedings of SIG-
PLAN 2004 Conference on Programming Language Design and Im-
plementation (PLDI), 2004.

[14] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with
Speculative Multithreading.IEEE Trans. on Computers, pages 866–
880, September 1999.

[15] X. F. Li, Z. H. Dui, Q. Y. Zhao, and T. F. Ngai. Software Value Predic-
tion for Speculative Parallel Threaded Computations. InFirst Value
Prediction Workshop, pages 18–25, June 2003.

[16] P. Marcuello and A. Gonzalez. Clustered Speculative Multithreaded
Processors. InProceedings of the 1999 International Conference on
Supercomputing, pages 365–372, June 1999.

[17] P. Marcuello and A. Gonzalez. Thread-Spawning Schemesfor Spec-
ulative Multithreading. InProceedings of the Eighth International
Symposium on High-Performance Computer Architecture (HPCA’02),
February 2002.

[18] D. Novillo. Design and implementation of the treessa. In Proceedings
of the GCC Developer’s Summit, June 2004.

[19] J. T. Oplinger, D. L. Heine, and M. S. Lam. In Search of Specu-
lative Thread-Level Parallelism. InProceedings of the 1999 Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT’99), October 1999.

[20] G. Sohi, S. Breach, and T. Vijayakumar. Multiscalar Processors. In
22nd International Symposium on Computer Architecture, pages 414–
425, June 1995.

[21] J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A ScalableApproach
to Thread-Level Speculation. InProceedings of the 27th Annual In-
ternational Symposium on Computer Architecture, pages 1–12, June
2000.

[22] M. Tremblay. MAJC: Microprocessor Architecture for Java Comput-
ing. Hot Chips, August 1999.

[23] J. Tsai, J. Huang, C. Amlo, D. Lilja, and P. Yew. The Superthreaded
Processor Architecture.IEEE Trans. on Computers, 48(9):881–902,
September 1999.

[24] J. Y. Tsai, Z. Jiang, and P. C. Yew. Compiler Techniques for the Su-
perthreaded Architecture. InInternational Journal of Parallel Pro-
gramming, pages 27(1):1–19, 1999.

[25] T. Vijaykumar and G. Sohi. Task Selection for a Multiscalar Proces-
sor. InProceedings of the 31th Annual International Symposium on
Microarchitecture, pages 81–92, November 1998.

[26] T. N. Vijaykumar. Compiling for the Multiscalar Architecture. PhD
thesis, University of Winsconsin-Madison, 1998.

[27] F. Warg and P. Stenström. Limits on Speculative Module-Level Par-
allelism in Imperative and Object-Oriented Programs on CMPPlat-
forms. InProceedings of the 10th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT’01), September
2001.

[28] A. Zhai, C. Colohan, J. Steffan, and T. Mowry. Compiler Optimiza-
tion of Scalar Value Communication Between Speculative Threads. In
ASPLOS X Proceedings, San Jose, CA, October 2002.

