

Background:

 \rightarrow Near Threshold Computing (NTC) [1] improves energy efficiency by reducing voltage.

 \rightarrow Performance impact from NTC can be mitigated through parallelism.

 \rightarrow GPUs are ideal for such scenario.

 \rightarrow NTC requires more current, thus makes the system more sensitive to process variation (PV) [2].

 \rightarrow Increased current also reduces power delivery efficiency.

Voltage Stacking:

 \rightarrow Instead of the parallel power delivery, use a serial approach. \rightarrow In a N-stack level, supply voltage is multiplied by N, and current drops by around N.

 \rightarrow Challenge: keep the load balance of the stack levels.

(a) Conventional

(b) Stacked

Fig 1. Voltage Stacking reduces the overall system current, and thus reduces the pressure on the power delivery.

Voltage Stacking for Process Variation Compensation:

→ Channel length (Leff) or an threshold voltage (Vth) increase will result in higher impedance and slow device.

→ Conventional: PV results in a lowered current through the core. This results in a higher delay and a slower core. To compensate, higher voltage can be applied.

 \rightarrow **Stacked:** the same current passes through the stack, therefore, higher impedance results in a higher voltage across that core, which naturally compensates the PV effects.

Case study: Inverter chain

Fig 2. Voltage Stacking naturally compensates PV effects.

GPU NTC Process Variation Compensation with Voltage Stacking

Rafael Trapani Possignolo, Ehsan Ardestani, Alamelu Sankaranarayanan Jose Luis Briz Dept. of Computer Engineering Dept. of Computer Engineering University of California, Santa Cruz Universidad Zaragoza

> $\underbrace{\text{lin}(t) = 2\text{Vin}}_{Z1(t)+Z2(t)}$ - Stack Vmid(t) = lin(t).Z2(t)

Shared Nets Configuration:

 \rightarrow PV only known post-silicon. \rightarrow To allow post fabrication changes we propose Shared Nets (SNETs).

 \rightarrow Switches or fuses are used to regulate stacking. \rightarrow Number of SNETs decided on design time through simulation.

Fig 3. Shared Nets allow for post-silicon configuraility.

What to stack?

 \rightarrow Stacking needs balanced load \rightarrow Stack equal structure. \rightarrow Stack GPU PEs (lanes) within a SM.

- \rightarrow Within a SM, lanes work in lock-step, running the same program.
- \rightarrow Foot/Head position is fixed during design time for simplicity.
- \rightarrow Compensantion works well for cores with reverse variation.
- \rightarrow Stack most positive with most negative variation.
- \rightarrow Cluster multiple lanes per SNET.

Fig 4. GPU Architecture is composed of uniform PEs, ideal for stacking.

Fig 5. For simplicity, PE position is fixed during design time. After fabrication cores with opposed variation are stacked.

[1] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudgi, "Near-threshold computing: Reclaiming moores law through energy efficient integrated circuits," February 2010. [2] S. Lee, D. Brooks, and G. Wei, "Evaluation of Voltage Stacking for Near-threshold Multicore Computing," in Low Power Electronics and Design (ISLPED), 2012 IEEE International Symposium on, pp. 373–378, ACM, 2012.

[3] U. Karpuzcu, K. Kolluru, N. Kim, and J. Torrellas, "Varius-ntv: A microarchitectural model to capture the increased sensitivity of manycores to process variations at near-threshold voltages," in Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pp. 1–11, IEEE, 2012. [4] E. K. Ardestani and J. Renau, "ESESC: A Fast Multicore Simulator Using Time-Based Sampling," in International Symposium on High Performance Computer Architecture, HPCA'19, 2013.

Jose Renau Dept. of Computer Engineering University of California, Santa Cruz

Evaluation Setup:

- 1) Expected compensation over 10k GPU dies: \rightarrow Varius-NTC [3] to generate 10k variation maps.
 - \rightarrow Calculate expected voltage (from impedances).
 - \rightarrow Varius-NTC [3] to calculate the new delay/power.
- 2) Check power delivery quality:
 - \rightarrow ESESC [4] to generate power traces.

 - \rightarrow IBM PowerGrid Benchmarks to model power grid.

Overal Results:

Power Grid Quality:

Fig 7. GPU Stacking keeps Vdd and Vmid within 10% of the expected value 99% of the time, and within 15% of the expected value 100% of the time for all the benchmarks tested.

Conclusions:

 \rightarrow GPU Stacking manages PV. \rightarrow Stacking can increase performance under PV at NTC on average by 37%.

 \rightarrow Stacking delivers 80% of the performance compared to the no variation conditions.

- \rightarrow GPU Stacking did not hurt power delivery quality.
- \rightarrow GPU Stacking reduces IR drop.
- \rightarrow Reduces the pressure in power grid design.
- \rightarrow GPU Stacking is also able to compensate PV effects.

 \rightarrow Generate a time varying impedance model for each core. \rightarrow SPICE simulation of the power grid with the core models.

(ie no PV) scaling conditions.