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Background:
➔ Near Threshold Computing (NTC) [1] improves energy 
efficiency by reducing voltage. 
➔ Performance impact from NTC can be mitigated through 
parallelism.
➔ GPUs are ideal for such scenario. 
➔ NTC requires more current, thus makes the system more 
sensitive to process variation (PV) [2].
➔ Increased current also reduces power delivery efficiency.

Fig 1. Voltage Stacking reduces the overall system current, 
and thus reduces the pressure on the power delivery.
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Voltage Stacking:
➔ Instead of the parallel power delivery, use a serial approach.
➔ In a N-stack level, supply voltage is multiplied by N, and 
current drops by around N.
➔ Challenge: keep the load balance of the stack levels.

Voltage Stacking for Process Variation Compensation:
➔ Channel length (Leff) or an threshold voltage (Vth) increase 
will result in higher impedance and slow device.

➔ Conventional: PV results in a lowered current through the 
core. This results in a higher delay and a slower core. To 
compensate, higher voltage can be applied.

➔ Stacked: the same current passes through the stack, 
therefore, higher impedance results in a higher voltage across 
that core, which naturally compensates the PV effects.

Case study: Inverter chain

Fig 2. Voltage Stacking naturally compensates PV effects.

Shared Nets Configuration:
➔ PV only known post-silicon.
➔ To allow post fabrication changes we propose Shared Nets 
(SNETs).
➔ Switches or fuses are used to regulate stacking.
➔ Number of SNETs decided on design time through simulation.

Fig 3. Shared Nets allow for 
post-silicon configuraility.

Evaluation Setup:
1) Expected compensation over 10k GPU dies:
    ➔ Varius-NTC [3] to generate 10k variation maps.
    ➔ Calculate expected voltage (from impedances).
    ➔ Varius-NTC [3] to calculate the new delay/power.

2) Check power delivery quality:
    ➔ ESESC [4] to generate power traces.
    ➔ Generate a time varying impedance model for each core.
    ➔ IBM PowerGrid Benchmarks to model power grid.
    ➔ SPICE simulation of the power grid with the core models.

Fig 4. GPU Architecture is composed of uniform PEs, ideal for stacking.

Fig 5. For simplicity, PE position is fixed during design time.
After fabrication cores with opposed variation are stacked.

What to stack?
➔ Stacking needs balanced load ➔ Stack equal structure.
➔ Stack GPU PEs (lanes) within a SM.
➔ Within a SM, lanes work in lock-step, running the same 
program.
➔ Foot/Head position is fixed during design time for simplicity.
➔ Compensantion works well for cores with reverse variation. 
➔ Stack most positive with most negative variation.
➔ Cluster multiple lanes per SNET.

Overal Results:

Power Grid Quality:

Fig 6. GPU Stacking shifts power and performace towards the ideal 
(ie no PV) scaling conditions.

Fig 7. GPU Stacking keeps Vdd and Vmid within 10% of the expected 
value 99% of the time, and within 15% of the expected value 100% of 

the time for all the benchmarks tested.

Conclusions:
➔ GPU Stacking manages PV.
➔ Stacking can increase performance under PV at NTC on 
average by 37%.
➔ Stacking delivers 80% of the performance compared to the no 
variation conditions.
➔ GPU Stacking did not hurt power delivery quality.
➔ GPU Stacking reduces IR drop.
➔ Reduces the pressure in power grid design.
➔ GPU Stacking is also able to compensate PV effects.
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