
GPU NTC Process Variation Compensation with Voltage Stacking
Rafael Trapani Possignolo, Ehsan Ardestani, Alamelu Sankaranarayanan

Dept. of Computer Engineering
University of California, Santa Cruz

Micro
Architecture
Santa
Cruz

Background:
➔ Near Threshold Computing (NTC) [1] improves energy
efficiency by reducing voltage.
➔ Performance impact from NTC can be mitigated through
parallelism.
➔ GPUs are ideal for such scenario.
➔ NTC requires more current, thus makes the system more
sensitive to process variation (PV) [2].
➔ Increased current also reduces power delivery efficiency.

Fig 1. Voltage Stacking reduces the overall system current,
and thus reduces the pressure on the power delivery.

Jose Renau
Dept. of Computer Engineering

University of California, Santa Cruz

Jose Luis Briz
Dept. of Computer Engineering

Universidad Zaragoza

Voltage Stacking:
➔ Instead of the parallel power delivery, use a serial approach.
➔ In a N-stack level, supply voltage is multiplied by N, and
current drops by around N.
➔ Challenge: keep the load balance of the stack levels.

Voltage Stacking for Process Variation Compensation:
➔ Channel length (Leff) or an threshold voltage (Vth) increase
will result in higher impedance and slow device.

➔ Conventional: PV results in a lowered current through the
core. This results in a higher delay and a slower core. To
compensate, higher voltage can be applied.

➔ Stacked: the same current passes through the stack,
therefore, higher impedance results in a higher voltage across
that core, which naturally compensates the PV effects.

Case study: Inverter chain

Fig 2. Voltage Stacking naturally compensates PV effects.

Shared Nets Configuration:
➔ PV only known post-silicon.
➔ To allow post fabrication changes we propose Shared Nets
(SNETs).
➔ Switches or fuses are used to regulate stacking.
➔ Number of SNETs decided on design time through simulation.

Fig 3. Shared Nets allow for
post-silicon configuraility.

Evaluation Setup:
1) Expected compensation over 10k GPU dies:
 ➔ Varius-NTC [3] to generate 10k variation maps.
 ➔ Calculate expected voltage (from impedances).
 ➔ Varius-NTC [3] to calculate the new delay/power.

2) Check power delivery quality:
 ➔ ESESC [4] to generate power traces.
 ➔ Generate a time varying impedance model for each core.
 ➔ IBM PowerGrid Benchmarks to model power grid.
 ➔ SPICE simulation of the power grid with the core models.

Fig 4. GPU Architecture is composed of uniform PEs, ideal for stacking.

Fig 5. For simplicity, PE position is fixed during design time.
After fabrication cores with opposed variation are stacked.

What to stack?
➔ Stacking needs balanced load ➔ Stack equal structure.
➔ Stack GPU PEs (lanes) within a SM.
➔ Within a SM, lanes work in lock-step, running the same
program.
➔ Foot/Head position is fixed during design time for simplicity.
➔ Compensantion works well for cores with reverse variation.
➔ Stack most positive with most negative variation.
➔ Cluster multiple lanes per SNET.

Overal Results:

Power Grid Quality:

Fig 6. GPU Stacking shifts power and performace towards the ideal
(ie no PV) scaling conditions.

Fig 7. GPU Stacking keeps Vdd and Vmid within 10% of the expected
value 99% of the time, and within 15% of the expected value 100% of

the time for all the benchmarks tested.

Conclusions:
➔ GPU Stacking manages PV.
➔ Stacking can increase performance under PV at NTC on
average by 37%.
➔ Stacking delivers 80% of the performance compared to the no
variation conditions.
➔ GPU Stacking did not hurt power delivery quality.
➔ GPU Stacking reduces IR drop.
➔ Reduces the pressure in power grid design.
➔ GPU Stacking is also able to compensate PV effects.

[1] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudgi, “Near-threshold computing: Reclaiming moores law through energy efficient integrated circuits,” February 2010.
[2] S. Lee, D. Brooks, and G. Wei, “Evaluation of Voltage Stacking for Near-threshold Multicore Computing,” in Low Power Electronics and Design (ISLPED), 2012 IEEE International
Symposium on, pp. 373–378, ACM, 2012.
[3] U. Karpuzcu, K. Kolluru, N. Kim, and J. Torrellas, “Varius-ntv: A microarchitectural model to capture the increased sensitivity of manycores to process variations at near-threshold
voltages,” in Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pp. 1–11, IEEE, 2012.
[4] E. K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator Using Time-Based Sampling,” in International Symposium on High Performance Computer Architecture, HPCA’19, 2013.

SM-0

L1

RF-0

Coalescing

L1Shared MemoryShared Memory

SM-1
SM-N

Scratchpad DL1G

Lane-0 Lane-1 Lane-2 Lane-3 Lane-i

RF-1 RF-2 RF-3 RF-i

lane-j RF-j

lane-j+1 RF-j+1 lane-2j RF-2jlane-j+2 RF-j+2

lane-0 RF-0 lane-1 RF-1

SNETs

VDD2

GND

(a) Conventional

2VinPo
w

e
r D

e
live

ry

V

Iin(t) = 2Vin
 Z1(t)+Z2(t)

Vmid(t) =Iin(t).Z2(t)

Stack

Levels

Z1(t)

Z2(t)

V
Z1 Z2

Iin Vin = V1 =V2

I1=Vin

Z1
I2= Vin

Z2

Po
w

e
r D

e
live

ry

(b) Stacked

Leff Variation %

Ideal
Conventional

Stacked

-20

-10

0

10

20

D
e
la
y
V
a
ri
a
ti
o
n
 %

-20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

-20 -15 -10 -5 0 5 10 15 20

D
e
la
y
V
a
ri
a
ti
o
n
 %

Vth Variation %

Ideal
Conventional

Stacked

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

Normalized Power

no-stack
1SN
2SN
4SN

39%

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

Normalized Performance

no-stack
1SN
2SN
4SN

37%

0

0.2

0.4

0.6

0 0.5 1 1.5 2

V
o
lta

g
e
 (
V
)

Execution Time (us)

stack1-bfs-head
stack1-bfs-foot

stack2-bfs-head
stack2-bfs-foot

stack3-backprop-head
stack3-backprop-foot

Vdd

Gnd

C1 C2 C3

C4 C5 C6

S-Net

