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ABSTRACT

The focus of this paper is to measure and qualify high-level pro-
cess variation models by measuring variability on FPGAs. Mea-
surements are done with high spatial resolution and demonstrate
how the high-resolution data matches two industry test cases. The
benefit of such an approach is that several inexpensive FPGAs,
which are normally on the leading edge of technologies compared
to ASICs, obviate the need of fabricating many custom test chips.
Specifically, our evaluation shows how measurements of an Altera
Cyclone II FPGA can be used to derive variability models for sev-
eral 90nm commercial designs such as the Sun Niagara and Intel
Pentium D. Even though the FPGAs and commercial processors
are produced by different fabs (TSMC, TI, and Intel, respectively),
we find the FPGAs to be very useful for predicting variation in the
commercial processors.

1. INTRODUCTION

Test chips are routinely made by industry to determine, with great
accuracy, the values of process parameters across die, wafer, and
lots in a given process technology. Such methods are costly, but
knowing these statistics can provide invaluable insight into the va-
lidity of new design techniques. Manufacturing tolerances and

product yields are staunchly guarded industry secrets, however. There-

fore, researchers are prevented from validating ideas using produc-
tion model processor data while exploring architectural solutions.

In this paper we propose a new application for FPGAs, specifi-
cally we use the 90nm Cyclone II from Altera, to measure process
variability. This paper shows that FPGAs can be used to calibrate
high-level variability models instead of expensive test chips. To this
end, we describe how to use FPGAs to measure variability and then
confirm that these measurements agree with variability of modern
processors.

The main driving force behind adopting a new technology is tran-
sistor density. Either the same design can be made smaller (and
hence cheaper) or more functionality can be integrated. Because of
these reasons, FPGAs are often early adopters of new technologies.
In addition, FPGAs are very regular structures and are easy to test.
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Because of this, FPGAs tend to be the first chips that the foundries
mass produce. Together with their low-cost, they are ideal test ve-
hicles to measure process variability. We use a 90nm technology
because production designs for FPGAs and several off-the-shelf
processors are readily available in this technology.

The model we investigate was originally proposed by Bowman et
al. [2]. The Bowman FMAX model is widely cited and its pre-
dictions have been compared with small test chips. However, an
often cited shortcoming of the Bowman model is its lack of spatial
correlation. We propose to extend the FMAX model to account for
spatial correlations and then determine whether such an extension
is necessary. Many other works in the CAD community, such as
the infamous Pelgrom model [12], have preached the importance of
correlation but the importance for the Bowman model has not been
investigated. This is the first time that the FMAX and extended
FMAX models have been calibrated with FPGAs and applied to
several modern commercial processors.

Similar to our work, several researchers have measured variability
on FPGAs. While we use FPGA variability to extrapolate CPU
variability, previous works have focused solely on making FPGA
designs more robust. Li et al [8] used FPGAs as a polysilicon criti-
cal dimension (CD) process monitor. Parametric yield in FPGAs
due to within-die delay variations were explored in [14]. Mat-
sumoto et al. [11] proposed a method for improving timing yield
considering random within-die variation by selecting an appropri-
ate configuration from a set of functionally equivalent configura-
tions. Katsuki et al. [6] fabricated a LUT array to confirm that
FPGAs have clear within-die and die-to-die delay variations.

To validate the FMAX and the extended FMAX model we ana-
lyze several existing commercial processors; the Sun Niagara and
the Intel Pentium D, which both are manufactured in similar 90nm
technologies. As the evaluation will show, the measured FPGA
variability exhibits significant die-to-die (D2D) variation and high
spatial correlation. The Niagara chip exhibits the same correlation
as the FPGA. The Pentium D only has two cores and is not suitable
for measuring spatial correlation at a high-level. More importantly,
the evaluation shows that the FPGA variability measurements can
be used to predict the variability of the commercial processors. It is
important to emphasize that the processors are only used to validate
the results and not to fit the model.

The rest of the paper is organized as follows: Section 2 describes
the proposed infrastructure; Section 3 evaluates the proposed in-
frastructure and the accuracy of the models; and Section 4 presents
conclusions and future work.



2. MEASURING PROCESS VARIABILITY

Process variation is typically classified as independent, correlated,
or deterministic. Systematic effects can introduce either correlated
behavior or completely deterministic variations. Independent varia-
tion has no discernible cause and effect relationship. Many system-
atic variations, however, may be predictable but are too complex to
model accurately during the design process.

The sources of these variations can be further assigned to two types:
within-die (WID) or die-to-die (D2D) variation. WID variation,
also called intra-die variation, causes on-chip variations in a single
design. A transistor or wire on one portion of the die may behave
differently than an identical transistor on another portion of the die.
D2D variation, also called inter-die variation, causes wafer or lot
variation. It affects entire dies in the same way. D2D variation
cannot, however, be considered only as an offset due to the differing
path and clock signal sensitivities to the D2D variation sources. In
this paper, we consider both D2D and WID variation.

Several models [2, 3, 4, 5, 9, 15] have been developed that cap-
ture the WID and D2D variation. Sometimes the assumptions used
in the models contradict each other. For example, [1] assumes that
WID variation is bigger than D2D variation, while [13] assumes the
opposite. Most models assume variation parameters from the ITRS
roadmap, however, these are industry goals and the actual param-
eters may be significantly different. Some models determine their
process variation parameters by measuring small custom chips, but
as mentioned previously, this is prohibitively expensive for large
chips which are required for measuring any significant WID varia-
tion.

In Section 2.1, we describe an infrastructure to measure the vari-
ability using low-cost FPGAs. Subsequently, we present the data
in Section 2.2. Finally, Section 2.3 explains how to adapt a recent
variability model [2] so that the data gathered from the FPGA can
be used to predict CPU variability.

2.1 FPGA Measurement Infrastructure

Field Programmable Gate Arrays (FPGA) are very dense, regular
circuit structures. The logic structure primitives are referred to as
Logic Elements (LEs) and a single chip can contain a few thousand
to many hundreds of thousands of LEs. In addition to the LEs,
an FPGA may contain other regular structures such as embedded
memories (SRAMs), DSP blocks (hardware multipliers) and even
embedded processors.

FPGAs are ideal environments to measure the variability in modern
technologies for three major reasons: FPGAs are early adopters of
new technologies, they are low cost, and they have large die areas.
Due to their high regularity and large volume, FPGAs tend to be
the first devices to use new technologies. Although it is possible
to use custom or ASIC designs to analyze variability, the cost and
overhead is significantly larger than using FPGAs. A large FPGA
costs under $1K, but building a custom chip with equivalent area
can easily exceed $500K. In addition, FPGA die area is equiva-
lent to state of the art processors; a low cost FPGA like the Altera
Cyclone 11 is over 60mm?.

FPGAs also have the ability to be reprogrammed after they are
manufactured. This trait is ideal for our variability research since
configuring the FPGA to perform combinational and sequential
logic operations at specific areas of the die is essential for WID
variation analysis. The fine-grain mapping of circuit elements al-
lows us to precisely map logic across a die.

The FPGA development system also enables us to easily control
the test environment by changing clock frequencies and controlling
the scan chains and reset control. To cover the majority of a chip,
we created 80 “builds”, each covering roughly 1% of the total chip
area available for programmable logic. Each build is a synthesized
logic design comprised of a test block and clock control circuitry.
The general methodology to measure variability on FPGAs is to
replicate a self-checking circuit all over the FPGA area, and slowly
increase the clock frequency until a failure is detected. From the
failure frequency and block list, a map of WID variability is con-
structed.

Three major issues need to be addressed to obtain accurate variabil-
ity maps: supply variation control, temperature control and self-
checking circuit regularity.

In order to reduce the impact of IR drop in supply circuits, each
build with the self-checking circuit was tested separately. This re-
moves the impact that one self-checking circuit may have on an
adjacent block.

Two sets of input values Two sets of input values

B | B |
[T TT TT 11 [T TT T1T T1

J18)UN0y
uosuedwo)

(b)

Figure 1: (a) Development board with heat sink and clock gen-
erator (b) Self-test circuit and relationship to FPGA.

In addition, temperature has a significant impact on performance
of both interconnect and devices. In order to reduce the tempera-
ture impact on our process variability measurements, our setup uses
a larger-than-required heat sink to minimize intra-die temperature
variations. The cooling consists of two parts: a peltier cooler which
sits on top of the FPGA (cold side down) and a CPU heat sink and
fan which sits on top of the peltier cooler. The heat sink is capable



of dissipating over 100W and keeps the FPGA temperature under
10C. This larger than required heat sink ensures that thermal effects
both within the FPGA as well as between FPGAs are kept to a min-
imum and that temperature is stable regardless of the frequency of
the external clock.

It is also important to guarantee that all the self-checking blocks
have the same hardware mapping to the LEs. This is more chal-
lenging than it seems at first. Designs can be placed and routed,
exported, and then imported to any FPGA location with the cor-
rect resources. Small adjustments in the routing of these “hard”
blocks during the synthesis of each build are required due to IO
connections. However, since the circuits are self-checking, these
IO routes have little impact on the overall performance. Any re-
maining differences are accounted for by normalizing each block
location among the same block on all of the measured dies.

Figure 1-(a) shows the major components of the measurement in-
frastructure: the FPGA board, the heat sink, and the external clock
generator.

The Cyclone II FPGA is manufactured in TSMC’s 90nm technol-
ogy and operates at 1.2v. The Development and Education Board
(DE2) developed by Altera (Figure 1-(a)) was used for analysis.
Each DE2 board contains a Cyclone II EP2C35 (672 pin pack-
age) FPGA. This device contains approximately 33K LEs, 483K
memory bits, 35 embedded multipliers, 4 PLLs, and 475 user I/O
pins. Our methodology used the Altera Quartus II version 6.1 de-
sign software. This tool is used for design entry with Verilog HDL,
synthesis, mapping, fitting, and timing analysis.

We divide the FPGA’s available programmable space into 80 blocks
(Figure 1-(b)). Not all the available block space is used, but we
get 75% coverage of physical area over many project builds. Each
build is an individual test block. A test block uses 95% of the
combinational cells and 58% of the register cells available in its
physical region. An example of one of these builds is shown in
Figure 1-(b) as a simplified block diagram. The basic test block
is synthesized for a clock speed of 200MHz and constrained to an
area of 4x5 LABs (a LAB consists of 16 Logic Elements). It is then
exported as a hard macro to retain its placement and routing. Then,
this basic block is imported into 80 projects, each at a different
location on the FPGA.

At the top level of each project, a clock generation unit selects one
of two possible clock sources: the external high frequency clock
generated by an HP 8647A Signal Generator or an external scan
clock. The development board provides debounced buttons which
we configure for use as a reset, enable, and scan clock signals. We
also use a switch to select which clock source to use. Since switch-
ing a clock source while a circuit is running can be problematic, the
asynchronous enable button is synchronized and then disables the
registers before changing clock sources. The registers inside the
FPGA have enable ports which allow us to use this approach. Thus
we were able to reset the logic, program a clock frequency, wait a
short period, disable the clock, switch clock sources, scan the result
out, and note if the block fails for a given frequency.

2.2 Measured FPGA Data

This section presents the variability measurements obtained after
analyzing the six FPGA development boards. A histogram of the
delay is shown in Figure 2. The data for each of the analyzed FPGA
chips is shown in a box plot in Figure 3. Here, we see that there
is significant variation among the means of each FPGA die (D2D

o
AN
-
2 o
[5} ¢
S
o o
H* ©
o
<
o
8V
o
Figure 2:
7o
e
>
8 8
° -
a
Yol
@
o

Figure 3: Delay box plot for the FPGA chips analyzed.
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variation). We also see the first and third quartiles for each FPGA
chip in relation to each other. There are a couple of outlier points on
each die, but it was confirmed that these values are repeatable over

a period of time. These plots visually show the different types of SE
populations without any assumptions of the statistical distribution. T

(o2}
Figure 4 shows the delay maps of each analyzed FPGA. The level e
plot shows a 10 x 8 grid annotated with the normalized failure de- s
lay (failure delay = W). From this data, we compute 5 °
the die-to-die (D2D) standard deviation to be 2.56%, the within- 2 ~
die (WID) standard deviation to be 1.04%, and the random stan- 8 s 7
dard deviation to be an additional 1.04%. It is observed that there
is significant D2D variation and the combination of the WID and S
random variation is comparable to the D2D variation.

Yo}

o

Further examination of Figure 4 shows significant clustering of the ‘ ‘ ‘ ‘ ‘ ‘
failure delay. That is, if an area has a high failure delay, it is likely 0 2 4 6 8 10
that adjacent areas have a similar delay. This is due to the spatial
correlation of the WID variation due to proximity effects during
design and manufacturing. Figure 5 shows three different plots
analyzing the correlation coefficient compared to distances in the @
Xy plane, x-dimension, and y-dimension, respectively. It is inter-

esting to note that the directional distance in the xy plane is quite

noisy, but has a general trend of decreasing correlation with dis-

XY Distance (mm)

tance. This corresponds to previous research results. An interest- e
ing result, however, is that the x- and y-dimensions do not show
equal spatial correlation. The x-dimension has a correlation of o |
roughly 0.9 independent of the distance through about 7mm. The y- °
dimension, however, has decreasing correlation down to about 0.8 S o |
at 7mm. Since the FPGA die size is 8mm x 8mm, we are unable to g8 °©
verify correlations beyond this distance at this time. g ~
O o
2.3 Processor Variability Model o |
‘We approach modeling variability by using the FMAX model pre- e
sented in [2] which is fundamentally stated in (1). The FMAX o
o

model says that the frequency that a design will run is the nominal ‘ ‘ ‘ ‘ ‘ ‘ ‘ I
frequency for the design plus the effects of die-to-die variability 0 1 > 3 4 5 6 7
and the effects within-die variability.

X Distance (mm)
The f7,, max is a probability distribution function (PDF) of the longest
delay of a critical path in a design. The component PDFs of this (b)
distribution are as follows: the nominal delay (f7,,,,,) is an offset,
die-to-die variation (fapop) is a normal distribution, and within-
die variation (fawp) is a composite term. To find the PDF for

Tep.max We use (2), which convolves the nominal critical-path delay

e ]
as an impulse with the PDFs of the respective elements of variation. -
1
o ]
o
fTL.pA,max = f7},,,nom +fAD2D +fAW1D (1)
- C
8(t = Tepnom) * fapan(t) * fawin(t) — (2) g S
The value of this impulse can be approximated as the FO4 logic g ~ |
depth of the design, Nr o4, multiplied by the delay time of a NAND o <
gate for the modeled technology T¢p nom = NFo4 - Tnana- Returning ©
to the variation components; the D2D variation, fApyp =N (0, 6%2 D) S
is a normal distribution centered at O with a variance determined by °
measurements. s 1 : : : : : : :
fAWID = Ncp 'waid(t - Tcp,nom) . (FAwid (t - Tcp‘nam))N(p_l (3) 0 1 2 3 4 5 6 7
Y Distance (mm)
The within-die variation is shown in (3), where Ncp is the number
of critical paths in the design of a core, approximated by the work ()
!'Summing gaussian normals is done by convolving them Figure 5: Spatial correlation on distance (a), for the x-axes (b),

and the y-axes (c) for the FPGA chips analyzed.
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Figure 4: Delay level plots for the FPGA Chips analyzed.

of [10]. In this equation, f,;s is a normal distribution, like fApop,
centered at 0 with an empirically determined standard deviation (4).

SAwid (t - Tcp,nom) = N(O7 G‘%V[D) 4

The component F ;4 is the cuamulative distribution function (CDF)
shown in (5) by integrating over fa,iq-

T— TL'mem

Fppwia(t — Tcpﬁnom) = /0 Sawia(x)dx ()

Equation 6 shows the expanded terms using the number of critical
paths, the length of the longest critical path, and two empirically
determined deviations as inputs. The output is a PDF representing
the spread of cycle time delays that the design can be reasonably
expected to attain.

(8(? - (NFO4 : Tnand))
*N(O,GIZJ2D) * (Ncp 'N(07G‘2/VID)

.(f(;_(NFOWT’"W{) N(O7G%/1D)dl)Ncp*1) (6)

fdelay(t) =

The FMAX model does not address spatial correlation though. For
this, we add a spatial correlation coefficient which takes into ac-
count the size and floorplan of the die. By measuring the size and
position of cores on a die, we produce matrices which relate the re-
spective X and Y distances among all cores. Using the distance vs.
correlation plots obtained from FPGA measurements, we create a
correlation matrix which describes the relation in variation between
all cores on a die. By extending the FMAX model in (1) and (6),
we are able to predict the cycle time spread of spatially correlated

multicore dies. To do this, we add a term to account for variation
from core-to-core (C2C) to get:
S1pmax = Tepnom + fapap + fawip + facac- N

Our T¢.p nom and fawp are represented as the maximum of partially
correlated Gaussians across all critical paths in a core in (8). In
this equation, N; (T nom, 6‘24, ;p) is the delay distribution of a single
critical path with N; = 1...Nyp and pwp is the correlation of the
WID variation in a single core.

ch,uwuHrAWID = N (lupllflﬂcfmth) ®)
MAX (pwip, (N1 (Tcp,nom; G%V]D)7

Na(Tepnom> 51D+ -+ Nvep (Tep.nom: Syip)))

To find the distribution of cores on a multicore die, (8) is reformed
to take the maximum of several partially correlated cores in the
following:

N (cores: Gores) ©)
MAX (p [Ncores|[Ncores]

(Nl (:upath 5 cgath ) ) NZ (:upath 5 céazh )7

ITpnom+ AWID+AC2C

..., NNcores (,upath s Giath ) ) -

This calculates the delay distribution for a multicore processor. Be-
cause the inputs to the MAX function are not values, but distribu-
tions, the computation of the MAX function for the core delays
depends on the particular layout of the processor. It can be simple
in the case of only two cores or require integration of the joint prob-
ability distribution in the case of non-uniform distances in a system
with many cores.

After calculating the distribution of a single die with multiples cores,
we then combine the independent D2D deviations of fapyp and



fT(.p_“(,mJr AWID+Ac2c With convolution. This computes the delay
distribution of a die with multiple cores.

3. EVALUATION

The evaluation starts by presenting the challenges in measuring
commercial processor delay distributions in Sections 3.1 and 3.2.
Then, the raw data measured from the processors is presented in
Section 3.3. Next, we use the FPGA variability data, including spa-
tial correlation, to generate predicted Pentium and Niagara proces-
sor variability in Section 3.4. The confidence of these predictions
is then formally computed in Section 3.5.

3.1 Processor Measurement Infrastructure
The best method of measurement available to test processors is
built-in-self-test (BIST) as the processors are overclocked at mul-
tiple frequencies under a controlled temperature. This usually in-
volves a service processor which can setup the parameters of the
test and allows for the most accurate and precise testing since the
BIST can give information about specific kinds of failure local to
each processing core.

The maximum performance of a core is measured as the frequency
where a core no longer works properly. Ideally, a test is performed
as the frequency is turned up until the cores start to fail the test.
Many machines will let you do this in the BIOS before booting up
the machine or by replacing the external clock generator.

Of course, neither the BIST nor the frequency change are avail-
able on many systems. Equally important, temperature variations
can significantly affect the failing frequency and the manufactur-
ers often bin their systems according to performance. To have ac-
curate processor variability measurements, we need to have BIST,
frequency control alternatives, and to compensate for temperature
and manufacturer binning.

BIST Alternatives: If a BIST is not available, then a self-checking
test program which utilizes most functions of each core can be writ-
ten. A good self-checking program can be a CRC check, matrix
multiplier, or some other CPU intensive program. Since we want
to focus our testing on the processor core only, the test program
should not generate any off-core traffic such as L1 cache misses
and/or I/O operations.

Frequency Increase Alternatives: The maximum operational fre-
quency is dependent on both temperature and voltage. We found
that controlling the temperature was more challenging than con-
trolling the supply voltage. Therefore, if frequency overclocking
is not available, the alternative is to lower the core voltage. This
achieves the same effect as raising the frequency. Several manufac-
tures publish "shmoo" plots which map core voltages to function-
ally equivalent frequencies [7].

Temperature Impact: Failures due to overclocking inevitably oc-
cur at different running temperatures. This requires a correction
since temperature affects the processor circuit timing and in turn the
frequency at which it will fail. To compensate for this, we force dif-
ferent on-die temperatures and measure for their corresponding dif-
ferent failing frequencies. For the range of temperatures/frequency
analyzed, we found the relationship between temperature and fre-
quency to be linear in our setup. This means that if both the failing
frequency (F) and the operating temperature (T) that cause the fre-
quency are known, then (10) gives what the frequency would be
if all failures occurred at the same temperature. The Trycr0r is Ob-

tained for each measured processor.

F = Freasured + (Tcenzer - Tmeasured) : Tfactor (10)

Manufacture Binning: Manufacturers bin their processors accord-
ing to frequency. This means that measuring the variability on a
binned processor may lead to lower process variability than what
really exists. In order for our study to accurately represent the
un-binned lot of chips as they are manufactured, we obtain sales
records to approximate the size of each bin. In our case, we track
the sales ranking on Amazon for the product lifetime to use as a
representative bin size. We then weigh the variability data accord-
ing to the size of its bin.

3.2 Pentium D and Niagara Measurement Setup
While the previous section explained a general infrastructure to
measure process variability in off-the-shelf processors, this section
provides further details required for the Intel Pentium D and Sun
Niagara processors.

Intel Pentium D: The dual core Pentium D 820/840s measured
have 200mm? die area using Intel 90nm technology operating at
1.3v. Pentium D 820s operate at 2.8GHz and the Pentium D 840s
reach 3.2GHz. We were able to overclock the frequency of both
processors. Raising the clock frequency of the processor is accom-
plished by increasing the external system clock which is input to
the processor. The chip then multiplies this clock to get its own fre-
quency. By using a processor which is relatively slow when com-
pared to the other system components we ensure that failures are
only the result of the chip and not memory or other components. To
guarantee that the motherboard never fails we use 1000MHz DDR?2
when the processor only requires 600MHz DDR2. Intel does not
publish information about the on-chip BIST, therefore, we use the
BIST alternatives previously explained.

Sun Niagara: The eight core T1 chip has a 400mm? die area using
TI 90nm technology operating at 1.3v. To measure performance
we lower the Niagara’s core voltage rather than raising the clock
rate. We do this because the Niagara’s CPU frequency can only
be changed by raising the system clock. Raising the system clock,
however, means that any failures could be from overclocking any
of the system components. To isolate the eight cores for failure we
instead lowered the core voltage and recorded the point of failure
with the BIST activated during system boot. When combined with
the shmoo plot (Figure 6) published by Sun [7], we are able to
obtain data which is equivalent to overclocking.
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Figure 6: Shmoo plot for the Sun Niagara.



3.3 Processor-Measured Data

We measured the performance for eleven off-the-shelf Pentium D
800 series chips (22 cores total) and three Sun Niagara T1 chips
(24 cores total).

Intel Pentium D: The Intel Pentium D 800 series have two cores
per chip. For these Pentiums, we measured the temperature at
which each chip failed. Since the cores sometimes failed at tem-
peratures as much as 45 °C apart, we measured the range of failure
for several chips over the widest possible frequency and tempera-
ture spread. The plots showed a near linear relationship between
the temperature of failure and the frequency of failure. Using this,
we applied an Tyer0r in (10) of 4.4 MHz/°C to account for temper-
ature differences.

# Cores

Delay (ps)

Figure 7: Un-binned performance distribution of the Pentium
D 800 series.
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Figure 8: Binned or adjusted performance distribution of the
Pentium D 800 series.

Of the Pentiums tested, seven were Pentium D 820s and four were
Pentium D 840s so that we would have a more complete sample

of the chips produced. By retrieving sales records for the Pentium
D 800 series for a large scale vendor (Amazon), we extrapolate
the approximate production quantities for each bin. We found that
roughly 60% of the chips produced were Pentium D 820, 23% Pen-
tium D 830, and 17% were Pentium D 840. While Figure 7 shows
the frequency distribution of the original 22 Pentium cores, Fig-
ure 8 shows the bin-compensated Pentium frequency distribution
using the estimated manufacturing bins. Note the slight slump on
the left side of the distribution around 255ps. This is because we
could not attain any 830 chips to measure. The missing data from
the 830 chips seems very likely to fill the dip between data acquired
from the 820s and the 840s. The measured D2D variability is 3.9%,
the WID variability is 0.8%, and the Random variability is 3.0%.

Sun Niagara: Figure 9 shows the performance level counter plots
measured for each Niagara chip. A visual inspection of the Niagara
plots shows a spatial correlation among cores as seen with the FP-
GAs. The right-most plot had only limited measurements because
the master core was the first core to fail. A failing master core pre-
vents the BIST on the other cores since data cannot be retrieved
from the chip at any higher performance level than that of the mas-
ter core. The Niagaras had a 14.2% D2D, 2.8% WID, and 1.0%
Random variation. The D2D variation should not be considered
because we only sampled three different chips.

3.4 Model Parameter Extraction
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Figure 10: Pentium D 800 series plots with the measured pro-
cessor distribution (Measured), Bowman model without spatial
correlation (Bowman), and Bowman model extended with spa-
tial correlation (Proposed).

This section applies the model from Section 2.3 with the FPGA
data to estimate variability measured from the Intel Pentium D 800
series and the Sun Niagara T1s.

Figure 10 shows the overall variability distribution estimated for
the Pentium D 800 series using the FPGA data without spatial cor-
relation model (Bowman) and with spatial correlation (Proposed).
As we see from the figure, the spatial correlation (between 0.8 and
0.9) has a low impact on the distribution. Adding spatial correlation
to the Bowman model tends to increase the standard deviation (G)
and lower the average delay (u). Despite being non-Gaussian, we
still make comparisons using the first two moments of the distribu-
tions (u and o) since the distributions are not drastically different
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Figure 9: Performance level contour plots for the Sun Niagara analyzed.

from a Gaussian.

The binned Pentium D 800 series have a mean of 269ps with a
standard deviation of 7.5ps. Bowman predicts a gy = 272ps and a
6 = 4ps. Once we add spatial correlation used on the proposed
model, we obtain u = 267ps and 6 = Sps. Both Bowman and the
Proposed method are very close to the measured data.
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Figure 11: Niagara plots with the measured processor distri-
bution (Measured), Bowman model without spatial correlation
(Bowman), and Bowman model extended with spatial correla-
tion (Proposed).
For the Sun Niagara, we triple the number of FO4 (Npo4) and de-
crease by one fold the number of critical paths (V). The Sun
Niagaras have a mean delay of 734ps with a standard deviation
of 82ps. When we use our model, we obtain a u = 779ps with a
o = 15ps. The u is very close to the predicted by the model, but
the ¢ is 5.4 times bigger than what was measured over all of our
Niagaras. We feel the reason for this is that we only measured 3
Niagara chips and one of them was significantly faster, perhaps as
much as two standard deviations away from the mean of all Nia-
garas produced. This meant that our measured mean was not in our
confidence interval calculated from the model. If we remove the
fast Niagara chip (Figure 11), we have a y=789ps and a ¢ = 13ps.
The © predicted by the model (Proposed) fits between both of them.

Bowman predicts a u = 784ps and a 6 = 13 ps.

We conclude that the FPGA variability is a good source to select
parameters for process variability because comparing the measured
results to the predicted with the Bowman model and the Proposed
model has a low error.

Another conclusion from this section is that, for the data analyzed,
there is only a small difference between the probability distribu-
tions when we use a plain Bowman model and a Bowman model
extended with spatial correlation. This means that modeling spatial
correlation does not have a significant affect on measurements.

3.5 Confidence Intervals

Because we were only able to attain a limited number of processors
to test, we include a calculation of the statistical confidence of our
measurements. Determining confidence in a statistical set requires
calculating a confidence interval, which starts with the sample set
and an allowable error, o.. The sample set is x; _,. The known mean
of this sample set is X and the unknowable mean of the infinite set
is u. The variance of the sample is
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We define Z as %. After which we can say that the probability
P of the next drawn sample Z being between —z and z is

P(-z<Z<z) = 1-a
z = ¢'(0())
0(z) = HZS@:]—%

By calculating z from the probit function, ¢!, we find the bounds
of the confidence interval. With the semantics of confidence inter-
vals being something of debate in the statistics community, it may
be worth noting that we choose this to mean that with probability
1 — a,, the u will be in the interval X 4 z\%.

Our FPGA setup and extended model estimates a 95% confidence
interval for the mean cycle time of Pentium Ds to be between 265 ps
and 269 ps, which the measured of mean of 269ps is. Likewise, our
95% confidence interval for the mean cycle time of Niagaras is



772ps to 786ps. In this case, our measured mean was near the edge
of the confidence interval at 789ps.

4. CONCLUSIONS AND FUTURE WORK

This paper has several novel contributions: it introduces a measur-
ing infrastructure for FPGAs and processors, it shows that FPGA
variation information can be applied to processor models, and it
presents new insights on variation and spatial correlation in multi-
core systems.

The proposed measuring infrastructure targets processors and FP-
GAs. The processor setup captures operating frequency of mod-
ern processors and proposes several compensations and methods
to obtain accurate measurements. The FPGA setup also captures
variability, but with a higher spatial resolution.

The key contribution of the paper is that high resolution FPGA
variability data can be applied to commercial processors. Utiliz-
ing FPGAs enables the opportunity to perform many measurements
with a reduced cost. Both the absolute variability and the distribu-
tion predicted using FPGA measurements is very close to the mea-
sured variability on the Sun Niagara and Intel Pentium D 800 series.
We feel that such measurements are important for developing new
models and to gain further insights.

Both the FPGA and the processors analyzed show a larger D2D
variation than WID variation. These preliminary results seem to
contradict previous publications [1, 2] that assume a bigger WID
than D2D variation. Though other sources like IBM [16] purport
that D2D variation is a full three times greater than WID variation
which supports our conclusions. These findings have several impli-
cations to designers as differences inside a die are less significant
than difference between dies. Ideally, future work should validate
our insights by analyzing multiple types of FPGAs and technolo-
gies.

Another interesting insight shown in the FPGA evaluation is the
fairly constant spatial correlation. Our variability model assumes
that the spatial correlation changes with distance. A nearly con-
stant spatial correlation 2 could simplify existing variability mod-
els. Also, we found that despite having been produced by differ-
ent fabrication plants, the FPGA still provided good input for our
models to predict processor variation. Future work should measure
more (and larger) FPGAs and processors to further quantify these
observations.

Finally, we feel that the measuring capabilities shown in the paper
create the opportunity for further insights. For example, we found
that WID variability is lower than D2D variability. The D2D vari-
ability could be divided into wafer to wafer (W2W) variability and
within-wafer variability (WIW). If the wafer information is known,
additional measurements are possible. Building test circuits into
FPGAs would enable an even more detailed insights. Also inter-
esting would be to analyze 65nm FPGAs. In conclusion, this work
has made several interesting contributions and establishes new op-
portunities for many additional research projects.
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2Figure 5-(a) has between 0.8 and 0.9 correlation for all the dis-
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