Effective Optimistic-Checker Tandem Core Design Through Architectural Pruning

Francisco J. Mesa-Martinez Jose Renau
Dept. of Computer Engineering, University of California Santa Cruz
http://masc.cse.ucsc.edu

Abstract

Design complexity is rapidly becoming a limiting fac-
tor in the design of modern, high-performance micro-
processors. This paper introduces an optimization tech-
nique to improve the efficiency of complex processors. Us-
ing a new metric (pUtilization), the designer can identify
infrequently-used functionality which contributes little to
performance and then systematically “prune’ it from the
design. For cases in which architectural pruning may affect
design correctness, previously proposed techniques can be
applied to guarantee forward progress.

To explore the benefits of architectural pruning, we
study a candidate Optimistic-Checker Tandem architecture,
which combines a complex Alpha EV6-like out-of-order Op-
timistic core, with some of the underutilized functionality
pruned from its design, with a non-pruned EV5-like in-order
Checker core. Our results show that by removing 3% of
infrequently used functionality from the optimistic core an
increase in frequency of 25% can be realized. Taking into
account the replay overhead triggered by the removed func-
tionality, the Tandem system is still able to achieve a 12%
overall speedup.

1 Introduction

Design cost is a limiting factor in the design of mod-
ern high performance architectures. The inherent complex-
ity found in modern processors makes the optimization for
area, power, and frequency a challenging task. It may be
argued that excessive design complexity has terrible con-
sequences as innovation may be hampered. It is therefore
critical that designers are given new methods to meet ag-
gressive design targets in the face of growing complexity.

This work proposes the systematic use of Archi-
tectural Pruning —the selective removal of infrequently
used functionality— as a design optimization methodology.
This new methodology and its associated metric, named
wpUtilization, allows designers to rank the Hardware De-
scription Language (HDL) statements in a processor de-
sign based on their activity. Efficiency metrics that build
on pUtilization correlate activity with contribution to per-

formance or some other criteria. A set of heuristics deter-
mine removal since not every segregated element is equally
valuable. Infrequently-used statements that contribute little
to performance are then removed, and the rest of the design
is re-optimized around them. Removing functionality may
lead to the introduction of faults into a design. To handle
possible faults and guarantee correct execution and forward
progress in the event of the processor transitioning to a state,
where removed functionality would otherwise be executed,
any one of several previously proposed techniques can be
used [12, [11} [19} 20} 21} 29]]. In this work we use a simple
in-order checker core.

Architectural pruning is motivated by the observation
that significant hardware functionality is often required to
handle extremely rare events. However, if forward progress
and correctness can be ensured despite missing functional-
ity, then the main design can be optimized.

T T T
Non-Cumulative
; Cumulative -------

0.8 / [
0.6 i
20% of lines virtually/never used)/

04 7 /
0.2 _f/

0 20 40 60 80 100
Normalized Ranking of HDL Statements

pUtilization

Figure 1. RiSC-16 [13] pUtilization.

To have some insights on the optimization opportunities,
Figure [T| shows the pUtilization for a simple RiSC-16 [13]
processor after executing a benchmark to solve Laplace
equations. RiSC-16 is a simple, single-issue out-of-order
processor. The non-cumulative graph in Figure[I|shows the
normalized rankings of pUtilization for the HDL statements
in the codebase. This is a listing of pUtilization data values
in ascending order, normalizing to 100 statements. Using
this plot, we can easily see that fully 80% of HDL state-
ments (x-axis) are used less than 20% of the time (y-axis).

The cumulative graph in Figure[I|represents the integra-
tion of the pUtilization up to a particular statement. We

http://masc.soe.ucsc.edu

can easily see that 20% of the statements are virtually never
used. Therefore, roughly 20% of the codebase can be re-
moved without sacrificing any significant performance due
to the replays needed to guarantee execution correctness and
forward progress. This shows that for even simple hardware
designs, significant portions of the codebase are dedicated
to extremely rare events. By not having to explicitly han-
dle these rare events, designers are afforded dramatic new
opportunities for optimization. Once removed, previously
complex structures are pruned-down, freeing valuable real-
estate and reducing pressure on critical paths.

To demonstrate the effectiveness of architectural pruning
as an optimization technique, we evaluate a Tandem pro-
cessor organization combining a pruned out-of-order Opti-
mistic core, to explore data and control behavior, with an in-
order Checker core that guarantees forward progress. Un-
der this Optimistic Execution approach, the Checker core
combines possible future memory prefetching and predic-
tion updates with verified past branch behavior to hide some
of its associated latencies. The results obtained show that it
is indeed possible to “prune” under performing structures
from a complex candidate design. The pruned out-of-order
core cycles 1.25 times faster. Despite the increased rate of
replays needed to guarantee forward progress, the resulting
system still exhibits a 12% performance increase with re-
spect to the original complex processor [28] that serves as
the basis for the pruned core in the Tandem configuration.

This paper makes several contributions; It proposes for
the first time an architectural pruning methodology as a
possible processor optimization technique. It quantitatively
evaluates the effect of pruning on an HDL design for an
out-of-order core —specifically, the Illinois Verilog Model
(IVM) [28]. It also explores an architectural organization in
which a pruned complex core is used to scout the memory
and branch behavior for a simpler verified core.

The rest of the paper is organized as follows. Section 2]
describes a systematic framework for architectural pruning.
We begin by describing a new metric, uUtilization, that
measures the relative activity of HDL statements. We then
describe how pUtilization can be augmented to correlate
activity with contribution to performance. Finally, we de-
scribe the architectural pruning process. Section |3|presents
a Tandem architecture in which a pruned core is allowed
to explore memory and branch behavior in an Optimistic
fashion; Section [4] evaluates the setup for our evaluation;
Section [3] displays and analyzes some of our results from
simulation and implementation of the proposed Tandem ar-
chitecture; Section [f] covers related work; and Section
concludes.

2 Architectural Pruning Methodology

The proposed optimization methodology requires an ef-
fective mechanism for the identification of complex struc-
tures and their relative utilization. To address this, we in-

troduce pUtilization, a new metric that couples complexity
with utilization. For the remainder of this paper, we assume
that processor designs can be represented as a collection of
HDL statements. These statements provide a first-order ap-
proximation of design complexity [3]]. Furthermore, the rel-
ative importance of a given statement can be approximated
by how much that statement is exercised during normal pro-
cessor operation.

2.1 pUtilization Metric Definition

pUtilization extends traditional coverage metrics [31] by
providing information about the exercise rate for a given
HDL statement. Low pUtilization for a statement sug-
gest that it can be potentially removed. Nevertheless, some
structures may have a low pUtilization but can not be
removed because they are required to guarantee forward
progress. For example most of the reset logic, while used
very infrequently, is critical for the correctness of proces-
sor operation. To provide for this improved identification
strategy, pUtilization can describe either the utilization fre-
quency of a given statement or a value of 1. The latter value
is used on statements that are determined by the designer
to be essential for forward progress or processor operation
(Equation[I)). The overall pUtilization for a given structure
is equal to the arithmetic mean of the pUftilization of its
statements (Equation [2)).

Required : 1

. . #Cycles statement is used
Not Required : FTowl cycles

pUtilization = {
)]

n—1
pUtilization , ycpure = gz pUtilization; (2)
=0

2.2 Structural Efficiency

While the contribution of a particular HDL statement to
overall performance is, in the general case, highly corre-
lated with activity rate, this is not always the case. Struc-
tures that are seldom used may be critical for the correct-
ness of the design, while certain structures that contribute
little to performance may be very active. To decide which
structures can be pruned, it is necessary to determine an op-
timization target and its associated evaluation function. Tra-
ditional optimization targets are overall performance, area,
Ex D, and E x D?. The coupling of the pUtilization metric
with and optimization targets defines a new metric, Struc-
tural Efficiency.

Each HDL statement has a specific contribution to any
of the many design metrics, such as Architectural Vul-
nerability Factor (AVF) [17], Aenergy, Apower, Aarea,
Afrequency, and AIPC. Therefore, in order to compute

the Structural Efficiency for a pruned design it is necessary
to know the individual contribution of the excised state-
ments.

Structural Efficiency, = Overall Speedup =

_IPC, y F, n

IPC, ~ Fo ' n+ Y'") pUtilization; x RP; x AV F;

3

For example, Equation [3| represents the overall speedup
due to pruning, which is equivalent to the Structural Effi-
ciency when performance is optimization target. This equa-
tion assumes that r statements are selected for removal
out of a codebase of size n. The first half of the equa-
tion is composed by the ratios of the original (o) and post-
pruning (p) metrics. These ratios capture the overall im-
provement/degradation induced by the pruning of r state-
ments. IPC, assumes no overhead due pruning-induced
faults, but does account for other forms of IPC degrada-
tions due to pruning, e.g., removing a section of the branch
predictor. F, captures the frequency for the design after
pruning. The second component in the equation models the
penalties associated with the faults induced by pruning.

Each statement has a baseline value of 1 as its over-
head. Statements that induce a fault, after they are pruned
from the design, add the replay penalty associated with
their fault (RP;). This overhead can be further refined
by taking into account how frequently the output for the
excised statement is used. This is captured by the archi-
tectural vulnerability factor [17, 28](AV F;). Finally, the
wuUtilization; x RP; x AV F; product provides a first-order
estimation of the performance impact induced by the prun-
ing of a specific statement.

2.3 Architectural Pruning

Using architectural pruning, the designer manually re-
moves isolated HDL statements. However, the actual effect
of excising a given statement may be more dramatic. The
most clear effect is the savings in area and power associ-
ated with the logic budget dedicated to implement the ex-
cised functionality. The removal of specific statements may
also lead to the reduction of critical paths along the design.
Furthermore, other structures may be pruned in a transitive
fashion through optimizations performed automatically by
the synthesis tools. If dependent functionality is no longer
relevant once a given statement is removed, this functional-
ity is automatically excised as well.

Transitive pruning induces the removal or resizing of an
object that was not originally singled out for pruning, but
that became resized or eliminated automatically due to the
removal of a related statement.

As an example, Figure 2}(a) presents the mapping of
a Verilog module into its equivalent gate representation.

module test (inl,in2,in3,out);
output out;

input inl,in2,in3; .
wire x1,x2,y1,vy2,v3,21; inl

in2

not (x1, in2);

not (x2, in3); in2
(a) and (yl, inl, x1); .

and (y2, x2, in2); in3

and (y3, inl, x2);
or (zl, yl, y2);
xor (out, zl, y3);

inl

Original Code

in3

Rank original code
according to utilization
nent
Slatezr Yemo"“‘
selecte inl
xor (out, zl, y3); in2
not (x2, in3); Ty T ==
and (y2, x2, in2);
and (y3, inl, x2);
or (zl, yl, y2);
and (yl, inl, x1);
not (x1, in2);

(b)

- Utilization +

Prune code

Transitive Pruning

inl y

not (x2, in3);

and (yl, inl, x1);
and (y3, inl, x2);°-< .

or _(zI, vI, v2); = in3 y3
xor (out, zl, y3); X2

©

inl

Pruned Code

Figure 2. Architectural pruning example with the
original structures (a), the pUtilization ranked code (b),
and the resulting pruned design (c).

pUtilization metrics are obtained, and based on their Struc-
tural Efficiency the designer can excise a statement with lit-
tle utilization. Assuming ground behavior for active high
and floating logic, the elimination of certain HDL state-
ments affects the original design as shown in Figure 2}(b).
The elimination of the top NOT gate is due to a lack of ac-
tivity for the in2 input, this means that the gates producing
vl, y2 and zI are superfluous and can be safely eliminated
through optimizations by the design tool. The resulting dat-
apath in Figure 2}(c) not only has fewer gates due to direct
pruning, but the number of logic propagation stages is also
reduced by the elimination of the OR gate in level S5

The ripple effect from the removal of a single statement
may therefore lead to the removal of statements throughout
the design. This transitive effect may also lead to the alter-
ation of the pUtilization for each of the affected statements.
A detailed evaluation of these ideas is left to future work.

Architectural pruning as an optimization is used in the
following fashion; After gathering pUtilization metrics for
the source design and deciding on an optimization target,
the designer can then rank and isolate sets of possible state-
ments or structures to be pruned. The designer decides
which statements to remove by examining the effect their
removal has on the Structural Efficiency defined for the cur-
rent optimization target.

3 A Pruning-Based Tandem Architecture

After pruning, the correctness of a design can not be
guaranteed and thus it is assumed to be subject to hard
errors. In order to illustrate the benefits derived from
architectural pruning, we evaluate a Tandem architecture
that combines a complex out-of-order core, architecturally-
pruned with the goal of increasing its frequency, with a sim-
pler in-order processor used to guarantee forward progress.
Through the reminder of this paper the pruned core is la-
beled as the Optimistic core, with the non-pruned core
which guarantees correctness as the Checker core.

Previous tandem designs like DIVA [2] and Slip-
stream [[19]] send complete pre-executed instructions to the
Checker core which then performs parallel verification on
those instructions and commits. Architectural pruning can
certainly be applied to the Optimistic cores in such designs
and is left for future work. The Tandem architecture we con-
sider here is more similar to Paceline [12]] and SRTR [27].
The Optimistic and Checker cores operate essentially in par-
allel with only the Checker core committing instruction re-
sults to architected state. The Optimistic and Checker cores
compare the results —actually signatures of the results— of
their committed instruction streams. On a mismatch, the
checker core flushes the optimistic core, reloads it with cor-
rect register state, and restarts it. All exceptions and inter-
rupts are handled in-order by the Checker’s retirement stage

If both the Optimistic and Checker cores operate in lock-
step, performance is limited by the retirement bandwidth of
the Checker and the replay overhead. To address this, the
Optimistic core is decoupled from the Checker- its “com-
mitted” instructions stored in a buffer — and allowed to run
ahead. This organization allows the Optimistic core to ac-
celerate the Checker by acting as an aggressive and accurate
prefetch engine. It also allows the Optimistic core to im-
prove the branch prediction accuracy for the Checker, using
a new technique we describe in Section Both prefetch-
ing and improved branch prediction are enhanced by the
architectural pruning of the optimistic core which improves
frequency.

Decoupled Tandem operation is illustrated in Figure [3]
Under Optimistic Execution, the Optimistic core is allowed
to run ahead by committing its Optimistic results to be ver-
ified by the Checker into a common buffer. The Checker is
the only core allowed to commit results in the Tandem and
it guarantees forward execution whenever an Optimistic re-
sult fails verification. To recover from a fault the Checker
flushes both the shared buffer and the Optimistic pipeline.
The Optimistic core is restarted after copying the architec-
tural register file from the Checker, its rename table is also
set accordingly. Copying this state is part of the replay over-
head.

Figure @} (a) presents a typical fully verified out-of-order
core, with its major operational blocks; L1/L2 Cache, load
store queue (LD-ST queue), out-of-order scheduler (Sched-

— = = Optimistic Stream
Optimistic
Optimistic Core Checked Stream
Core
—Y | X Load Correct
= 5 State
Iz 12
[Checker 12 Checker Optimistic Checker
I Core El Core Core Core
I £ 12
g 3
+~°—“ +a X
? . |¢:| — o
. e \ R
Signature ™ 'Flush RE
Match Signature
Signature Buffer
Mismatch!

Optimistic Execution —— Error Detected ——————— Replay

|

Figure 3. Decoupled Tandem operation.

W Removed Logic Added Components

Optimistic Core

)
I
ROB | ! (m—mm T s - Signature
= 0B
| : u .ROB | Signatures
! |
BTB/ |1 | Checker
Schedul RF ! !
cheduler ‘ BPU ‘: i 1 S
) ! S |) §
b M| |RF|[BTB }\
I
Ao o || s IV P
- 1 'y .
Queues | | Cache || Cache |1 | | LSQ T |[Tip) PSS b
: 1] Cache Cache |! Cache Cache
,,,,,,,,, f,,,,#,,; e e — p—

‘ L2 Cache ‘

()

L2 Cache ‘

(b)

Figure 4. Traditional out-of-order processor core (a),
and Tandem architecture with an Optimistic out-of-order
core and in-order Checker (b).

uler), register file (RF), branch prediction unit (BPU/BTB),
execution units (EX), and reorder buffer (ROB). In contrast,
Figure [d}(b) presents an Optimistic-Checker Tandem archi-
tecture with a buffer used to pass the Optimistic results to
be verified by the Checker. The operation of this Signa-
ture Buffer is described in full detail in Section Under
the proposed Tandem configuration in this paper, the overall
cache size does not change. Each core uses half the L1 size
found in the original core, with the L2 remaining fixed in
size and shared among both cores in the Tandem.

3.1 Signature Buffer

Unlike previous approaches like Dual-Core Execu-
tion [32], Slipstream [19], and DIVA [2], our Tandem ar-
chitecture does not pass full instruction state (PC, instruc-
tion bits, input/output values, reference address, control out-
come, etc.) between cores. Instead the Optimistic core gen-
erates a signature for the state of the instruction to be ver-
ified. The signature for an instruction is a hash value that
summarizes its state update [24].

Signatures capture state by taking into account the val-
ues from instructions retiring in the reorder buffer (ROB)

and load-store queue (LD-ST) of the Optimistic core. Only
the result of an instruction needs to be hashed to represent
its state. The hash is computed using a linear block code
such as CRC-16, for our purposes 4 and 5-bit wide signa-
tures provide good hash diversity. Signatures are computed
with a single-instruction granularity, it is possible however
to lump multiple instructions per signature since instruc-
tions are retired in-order. Information such as the program
counter (PC) for the instruction is not required because the
Optimistic core inserts signatures in order in a FIFO fash-
ion. The Checker simply removes the oldest signature in
the buffer and compares it with the most recent instruction
it is considering for retirement. The depth of the signature
buffer determines the maximum number of instructions that
can be executed ahead of the stream for the Checker.

Since the signature hash is just a few bits wide, an in-
correctly executed instruction from the Optimistic core may
not trigger a replay. This is not a problem because the Op-
timistic core can execute and optimistically retire incorrect
instructions. Eventually the Optimistic core will have a dif-
ferent hash value than the value generated by the Checker.
Having the Optimistic core produce incorrect results affects
only the performance of the Tandem processor, not its cor-
rectness.

3.2 Optimistic Branch Prediction

Optimistic Tandem architectures are not constrained to
be just data prefetching tools. By having access to future
execution information, control behavior for the instruction
stream can also be explored.

We introduce an Optimistic branch prediction mecha-
nism, under which both cores implement separate local hy-
brid branch predictors. The Optimistic core maintains its
own predictor and behaves like a traditional branch predic-
tor. However updates for the predictor tables found in the
Checker come from the pruned core, only the Global His-
tory Register (GHR) in the Checker is updated by its own
branch executions.

By updating the Checker branch prediction tables with
the outcome of the branch predictions from the Optimistic
core, we are providing near future execution information
with the trend observed for “correct” past execution cap-
tured by the Checker GHR. As a result, the hybrid pre-
dictor found in the Checker core can be implemented us-
ing smaller history tables than traditional hybrid predictors
without future and “correct” updates.

This approach is still considered a prediction for two rea-
sons; first, the history tables have limited space and are sub-
ject to aliasing issues, and second the speculative nature of
the results by the Optimistic core induces a certain degree
of uncertainty to the future branch results recorded by the
local history table.

This last point raises an important consideration regard-
ing deep signature buffers. The more signatures in the

buffer the longer it can potentially take the Checker to detect
an error. This increases the probability that the Optimistic
core generates erroneous branch results which are directly
stored in the local table for the Checker, thus increasing the
overall pollution in its predictor.

An alternative design could remove the branch predictor
from the Checker core and just use branch outcomes from
the Optimistic core. For such design, the pruned core needs
to pass the predictions in-order to the Checker core. There-
fore, it can pass the prediction at retire or speculatively at
fetch. However, unless the Optimistic core is far enough
ahead, passing its prediction at retirement may not be timely
enough. Alternatively, passing the prediction speculatively
leads to a worse prediction because of its speculative nature.
As a result, we opted for the proposed Optimistic branch
predictor model.

4 Evaluation Setup

To illustrate the principles behind our pruning method-
ology, we use an Alpha EV6-like processor to measure the
pUtilization of its structures and prune a few underutilized
instances. The EV6-like processor is based on the Illinois
Verilog Model IVM) [28]]. IVM implements a subset of the
Alpha EV6 architecture, it was designed originally at the
University of Illinois for fault-tolerance research. It con-
tains over 30K HDL statements.

For the rest of this evaluation we refer to the original
IVM EV6-like core as Baseline and the pruned IVM as the
Optimistic core. We also consider two possible configu-
rations for the Checker processor based on their superscalar
width: 2-issue and 4-issue. The main simulation parameters
for each core are captured in Table[I] Under the proposed
Tandem configuration in this paper, the overall cache size
does not change. Thus the Optimistic and Checker cores
use half the L1 size found in the original Baseline. Other
structures for the Optimistic and Checker cores such as the
predictor tables, BTB, etc are also reduced in order to con-
strain storage requirements for the resulting Tandem with
respect to Baseline. Finally, to copy the architectural state
from the Checker core to the Optimistic core, we add a 40
cycle penalty for each replay (31 int regs + state overhead).

The Baseline core cycles at 3GHz, the Optimistic core
frequency is 3.75GHz. The 25% frequency increase is
equivalent to the frequency improvement observed on the
pruned IVM (Table [J). Since the Checker core is a sim-
ple in-order processor, we assume that it can cycle as fast
as the complex out-of-order Optimistic core. This seems a
reasonable assumption backed by the fact that the out-ot-
order EV6 Alpha, similar to Baseline, reaches 500Mhz at
0.35 pm while the in-order EVS5 operates at 667Mhz using
the same process technology. Recently, IBM has replaced
the 90nm 2.2GHz out-of-order Power5+ with a much faster
65nm 4.7GHz in-order Power6. Memory access time for
Optimistic and Checker is increased by 25% with respect

[[Structure [[Baseline [Optimistic [Checker 1]
Local History Table 16384 entries 8192 entries 4096 entries
Meta Table 16384 entries 8192 entries 4096 entries
GHR width 16 bit + XOR 8 bit + XOR 8 bit + XOR
Return Addr. Stack 64 entries 32 entries 16 entries
BTB 1024 entries 512 entries 256 entries

4-way assoc 4-way assoc 2-way assoc
L1 Data 32 KB, 2-way 16 KB, 2-way 16 KB, 2-way
32 Byte line 32 Byte line 32 Byte line
3 cycle hit 3 cycle hit 3 cycle hit
L1 Inst 32 KB, 2-way 16 KB, 2-way 16 KB, 2-way
64 Byte line 64 Byte line 64 Byte line
3 cycle hit 3 cycle hit 3 cycle hit
Register File 128 entries 128 entries 32 entries
Decode 4-issue 4-issue 4 or 2-issue
Issue 16-entry 16-entry N/A
Memory 2 ports 1 port 1 port
70ns 70ns 70ns
Out-of-Order Yes Yes No
Retire 64-entry ROB 64-entry ROB N/A
Frequency 3GHz 3.75GHz 3.75GHz

Table 1. Baseline, Optimistic and Checker cores
configuration assuming the same frequency.

to Baseline in order to account for the increased processor-
memory speed differential due to the faster frequency.

In order to gather statement coverage metrics, the HDL
code is instrumented using a set of tools built on top of a
Verilog parser. The HDL code is instrumented at the parsed
Abstract Syntax Tree (AST) by inserting Verilog PLI calls
for each basic block.

4.1 Synthesis

Synthesis is the process of converting an HDL functional
description into a gate-level netlist in the case of a standard-
cell ASIC. Synopsys Design Compiler 2007.03 [26] is used
to synthesize IVM with a 90nm (25C typical) technology
library. We include a 25% clock skew and use the “ultra
compile” option with the maximum optimization level.

In this work, memory blocks are treated as black-boxes
during synthesis to avoid being synthesized with simple
flops. The IVM multiplier relies on ASIC libraries. Since
the default library does not have a high performance 64bit
multiplier (less than 100MHz), the multiplier is also treated
as a black-box assuming that it can be cycled faster than
500MHz. The input load capacitance for all the black boxes
is modeled as 24 FO4s.

4.2 Applications

wnUtilization statistics are gathered by executing several
SPECInt applications (bzip2, gap, gcc, gzip, mcf, perl) on
the simulated Verilog design. SPECFP is not evaluated
because IVM lacks support for floating point operations.
Some integer benchmarks are not executed because IVM
also lacks some of the functionality required.

Modeling at the register transfer level (RTL) is a slow
process, so to speedup simulation we use SimPoint 3.2 [22].

Since RTL is several orders of magnitude slower than tradi-
tional architectural simulators, we use simulation intervals
of only 20K instructions | |with 30 intervals per benchmark.
To avoid the problems associated with such small simula-
tion intervals, we run the architectural simulator for longer
periods and the RTL state is “loaded” with the architectural
simulator state (caches, branch predictor, etc.). As a result,
the RTL simulation has a correctly trained state before each
simulation point begins.

5 Evaluation

The evaluation of the potential offered by the pruning
of processor structures is presented in three sections: Sec-
tion[5.1]shows pruning and pUtilization results for the IVM
processor; Section shows the performance impact of
pruning the Tandem architecture; Finally, Section[5.3|shows
the area and power overhead considerations for the Checker.

5.1 Pruning Results

Figure 5| shows the pUtilization for the IVM processor.
We observe that close to 20% of the code is barely used
(pUtilization < 0.01). The cumulative pUtilization starts to
curve around 5%. This means that as long as a verification
mechanism guarantees forward progress, close to 5% of the
code can be removed with little performance impact. To
simplify the pruning process, we do not remove any of the
reset logic. As a result, we conservatively prune only 3% of
the code.

i Non-ClumuIati e
i Cumulatjve -------
0.8 g
: | /
S 0.6 1
© i
Y /
5 04 i
2 3% prufied 4
0.2 / /
/ '/’ /

0 20 40 60 80 100
Normalized Ranking of HDL Statements

Figure 5. IVM pUtilization.

As shown in Figure 2] (Section [2)) removing some HDL
statements has a ripple effect over the rest of the design.
Once a piece of logic is pruned or removed, the synthesis
tool (Synopsys) can further optimize other sections of the
design. Unused functionality not pruned explicitly can still
be removed transitively.

Table [2] shows the synthesis results. “Original” column
has the synthesis results for the original HDL, “Pruned” has

ISimPoint recommends simulation intervals of 100M

the synthesis results when 3% of the code is excised. The
second row reports the frequency (395MHz vs S00MHz).
A 25% frequency improvement is achieved with just a 3%
code pruning. This is a significant result that demonstrates
the opportunity to prune processors for performance rea-
sons. The third row shows the number of nets available in
the design (25149 vs 25144). The small difference implies
that the processor pruning performed does not have signifi-
cant reduction in networks on a chip.

H [Original [Pruned H

% Pruned Code 0% 3%
Frequency (MHz) 395 500
Nets 25149 25144
Combinational Area (mm?) 2.15 1.81
No-Combinational Area (mm?) 0.73 0.72
Total Area (mm?) 2.89 2.50
Net Switch Power (mW) 1495.7 | 1486.6
Cell Internal Power (mW) 855.9 838.4
Total Dynamic Power (mW) 2351.7 | 2906.2
Leak Power (mW) 35.9 33.1

Table 2. IVM main synthesis results.

Rows four to six show area synthesis results with a
breakdown between combinational and non-combinational
area. The non-combinational area does not include the
SRAM areas associated with the register file and caches.
Those SRAM blocks should use a memory compiler or
full custom macros and should not be affected by proces-
sor pruning. As expected, pruning has a much bigger im-
pact on combinational area (15.9% reduction) than in non-
combinational area reduction (1% reduction). This is be-
cause we do not target structure sizing, as a result the non-
combinational logic remains relatively unchanged. Overall
we observe a 13.5% reduction in total area for the pruned
design.

Rows nine to eleven show the power reduction consid-
ering the 25% frequency improvement achieved when the
IVM design is pruned. The result is a minor improvement
in maximum cell switch power (2%) because the processor
cycles faster El The bigger reduction achieved in leakage
power (35.9 vs 33.1 mW) is consistent with the area reduc-
tion. The 25% increase in frequency has a clear impact in
the overall dynamic power which experiences a 23.5% in-
crease for the pruned design.

IVM Pruning Insights: Up to now, we have provided a
cumulative view of pruning, we now proceed to show fur-
ther insights on the IVM pruned structures. A 3% code
pruning has the following impact:

e We prune most of the logic that makes it possible to
retire over 5 instructions per cycle.

2Synopsys reports power assuming a 50% activity rate for each input,
power is lower when activity rate is used

e The ROB full detection signal is rarely asserted as the
scheduler and other resources usually fill first. We re-
move this signal and associated logic.

e The LD and ST queues have to guarantee correctness
but many situations are unlikely to happen. We also
simplify the store set ids to detect dependences be-
tween load and stores. As a result, we prune several
forwarding corner cases on the queues.

e The ST queue has the same size as the LD queue and
thus is unlikely to fill. We remove the ST queue full
signal and associated logic.

e In IVM, a conflict buffer handles write port conflicts
from the shift and multiply units. Conflicts are very
infrequent, so most of its logic is removed.

e We also remove most of the write port arbitration for
several ALUs.

e Several infrequently used ALU operations like scaled
longword add, special multiplications, and mask byte
instructions are removed. They are handled only by
the Checker.

IVM does not have a perfectly balanced pipeline. The
scheduler is the most critical path, and to avoid bias towards
it, this study does not prune it. Nevertheless, many of the
inputs/outputs that interact with the scheduler in the same
cycle are affected by pruning (ROB, LD-ST queues, port
contention). Also in an indirect fashion, the smaller area
results in shorter wires and better floorplaning. The pruned
scheduler cycles over 25% faster than the unoptimized one.
In order to achieve this frequency speedup, the second slow-
est pipeline stage (ROB/LD-ST queues interaction) is also
optimized.

The insight gained in our evaluation points to the fact
that the same pruning principles should also work for more
balanced processors. The reason is that even balanced de-
signs need logic for detecting infrequent situations (over-
flows, forwardings, port conflicts, etc.). Pruning optimizes
these cases.

Even in the case that a critical pipeline stage can not be
optimized, pruning still can be useful. The reason is that for
the faster pipeline stages”, we can afford bigger structures
and/or more energy efficient designs. For example, if the
LD-ST queues can cycle faster after pruning, we can add
entries and/or reduce the Vdd until we match its original
cycle time. Obviously, this type of evaluation is outside the
scope of this paper.

5.2 Performance Results

In order to study the performance implications of archi-
tectural pruning, we evaluate a Tandem architecture using
the Optimistic and Checker cores described in Table|l} Our
study focuses on two Tandem configurations, which use is-
sue widths of 2 and 4, respectively.

Performance Impact of Pruning and Checker Width:
For every structure pruned from IVM, the resulting design
has potential for slowdowns due to the replay penalty in-
duced every time a pruned structure is exercised. To eval-
uate the effect of replays, we execute a set of simulation
points on top of the pruned HDL codebase for the IVM pro-
cessor. In order to detect hard errors, the simulated Verilog
is executed in parallel with an architectural [IVM simulator
executing the same program. Both simulators compare their
results at retire, whenever a mismatch happens we add the
offending instruction into an error trace. We generate a set
of statistically significant simulation points as explained in
Section [l

1.5 - Without Replay Overhead ——=
1.4 2-issue Tandem o
' 4-issue Tandem

Speedup

bzip2 crafty eon gap gzip mcf perl twolf vpr Ave.

Figure 6. Speedup for Tandem configuration using
2 and 4-issue Checker with replay overhead break-
down. Results are normalized against Baseline.

Once the error traces have been generated, we proceed to
re-execute every benchmark using a modified version of the
SimpleScalar tools [5] that models Tandem operation. Ev-
ery time an instruction in the error trace is encountered, the
Optimistic pipeline is flushed and execution is rolled back
to the current safe state for the Checker. A replay penalty is
then added to the simulation statistics.

Figure [0 presents the simulation results for 2-issue and
4-issue Tandem using the Optimistic and Checker cores de-
scribed in Table[I] Performance is normalized against Base-
line. Tandem configurations using a 2-issue Checker suffer
a slight 5.1% slowdown with respect to Baseline. This is
due mostly to the limited retirement bandwidth for the nar-
row Checker. On the other hand, the wider 4-issue config-
uration displays an average speedup of roughly 14% over
Baseline. After taking into account error penalties induced
by pruning most benchmarks display a replay overhead of
less than 1%, however vpr and eon suffer a replay overhead
of 3% and 4% respectively. The wide Tandem configuration
achieves an overall speedup of 12% over Baseline once the
replay-induced overhead is taken into account. The overall
penalty, required to service the faults induced by pruning
3% of the statements from the design of our target proces-
sor, is a mere 2% reduction in performance.

Performance Impact of Optimistic Execution Opti-
mistic Execution has three main components; Optimistic
frequency increase due to pruning, Optimistic data prefetch-
ing, and Optimistic branch prediction. In order to isolate the
contribution to performance of each component, we analyze
four different configurations for the 2 and 4-issue Tandem
systems being considered in this study. Figure [7] presents
the contribution to performance, normalized against Base-
line, of each Optimistic component.

1.6 T T T T T T T T T
Optimistic Prediction Contrib. 1
Optimistic Prefetch Contrib. m===m
1.4 Optimistic Frequency Contrib. =]
- 2-issue-Tandem w/o Optimistic Contrib. - -
1.2 b Arissue Tandem w/o Optimistic. Contrib, . s |

Speedup

1.0

0.8

0.6

bzip2 crafty eon gap gzip mcf perl twolf vpr Ave.

Figure 7. Speedup differential between Tandem el-
ements that contribute to Optimistic Execution. Re-
sults are normalized against Baseline.

As expected, the worst performance corresponds to Tan-
dem configurations that do not increase their operational
frequency through pruning, and use Checker cores that do
not access Optimistic prefetch and prediction data. A 2-
issue system under these constraints running at the same fre-
quency and memory access time as Baseline (2-issue Tan-
dem w/o Optimistic contribution) achieves a net slowdown
of 52%. Doubling the issue of the Checker (4-issue Tandem
w/o Optimistic contribution) results in a 34% slowdown.

To isolate the effect of increases in frequency due to
pruning, the operational frequency of the previous Tandem
is increased by 25% following the Optimistic and Checker
configurations from Table [T] (Optimistic Frequency contri-
bution). Memory access time for the system is increased
accordingly. A 2-issue simulated Tandem under this config-
uration obtains a slowdown of 22%, a wider 4-issue reduces
the performance gap with Baseline to 10%.

Prefetching effects are isolated by allowing the Checker
in the previous Tandem configuration to access prefetch in-
formation generated by the Optimistic core running ahead
(Optimistic Prefetch Contribution). Allowing a 2-issue
Checker to benefit from Optimistic frequency increases and
prefetches reduces its overall slowdown to 12%. A similar
configuration involving a wider 4-issue Checker is able to
narrowly outperform the slower-clocked Baseline by 4% on
average.

Finally, the effects of Optimistic branch prediction are
exposed by allowing prediction updates from the pruned
core to be used by the Checker in the evolving Tandem
configuration in our study (Optimistic Prediction Contri-

bution). This yields a full Tandem configuration. A nar-
row 2-issue full Tandem performs 4% slower than Baseline.
Doubling the issue of the Checker provides a 12% speedup.
Overall, for a Tandem configuration with a 4-issue
Checker over 53% of its speedup over Baseline is due to
25% reduction in clock cycle through architectural pruning.
28% of the increase in performance is due to Optimistic data
prefetching. Prediction improvements due to Optimistic
branch prediction account for the remaining speedup.

Impact of Signature Buffer Sizing: Figure [8| presents a
limit study for the effects of the signature buffer depth with
respect to average branch prediction rates for a Tandem us-
ing the Optimistic and Checker cores found in Table[I} Both
Tandem configurations obtain good prediction rates for dis-
tances of 125 to 500 instruction signatures between cores.

The Baseline processor achieves an average branch pre-
diction rate of 94.8%. We observe that Tandem configura-
tions using buffers with low signature counts are not able to
improve their Optimistic prediction rates over Baseline. On
the other hand, having more than 500 signatures between
cores worsens prediction results considerably. This is due
mostly to the diminishing correlation between increasingly
distant segments of code being executed by the Optimistic
and Checker cores respectively. With the net effect of in-
creasing considerably the amount of aliasing and false data
induced by the updates from the Optimistic core. Pollution
in the local history tables for the Checker affects more neg-
atively than a lack of timely updates. Therefore, relying on
the observed branching trends captured by the GHR in the
Checker may be more beneficial than allowing too much
pollution into its local predictor tables.

100% . ;
Best Branch Prediction 2-issue Tandem -------
98% I | 4-issue Tandem -------- 4
— .. Average Trend ——
96% TR |
94% | i

92% | TR .

Branch Prediction Rate (%)

900/0 1 1
100 1000

Signature Buffer Size

Figure 8. Effect of signature buffer sizing on Op-
timistic branch prediction.

As stated earlier, allowing the pruned core to run ahead
of the Checker amounts to a prefetch engine. The average
L2 miss rate for the Baseline is 9.8%. Both tandem con-
figurations obtain better L2 hit behavior for signature buffer
depths between 125 and 500 instructions. There is a corre-
lation between memory access penalty (250 cycles) and the
optimal number of entries in the signature buffer. However
the raw miss rate for the L2 cache hides the fact that the
pressure on the cache in increased by the parallel requests
from the Optimistic and Checker cores. The overall number

of cache accesses is increased by over 82% for a Tandem
using a 4-issue Checker with respect to Baseline. The large
number of accesses therefore reduces the nominal miss rate
for the Optimistic core which has an average miss rate of
9.3%.

25% T

2-issue TandemI ———————
20% I 4-issue Tandem --------
Average Trend

15% Best Cache Miss Rate

10% ,l:;;;,,_;,__f,,_:_u

50 L T -

Cache Miss Rate (%)

0% 1 1
100 1000
Signature Buffer Size

Figure 9. Effect of signature buffer sizing on 1.2
Cache miss rate.

Low signature counts between Optimistic and Checker
cores do not provide enough slack to hide the misses in-
duced by the requests already issued by the Optimistic core
and the new memory accesses generated by the Checker. If
both cores are separated by a large number of signatures be-
tween them, significant degrees of pollution are introduced
into the L2 by the runaway pruned core. From the results in
Figure[J]it is clear to see that signature buffers between 125
and 500 entries provide the best prefetching behavior.

5.3 Overall Power/Area Considerations

After the previous evaluation it is clear that a Checker
that matches the width of the pruned core in the Tandem of-
fers the best potential for performance. Both approaches,
Baseline and Tandem with 4-issue Checker share the same
L1 and L2 area budget. After pruning considerations, we
are able to free over 13% of the combinatorial area from
the original design. In order to study the power and area
footprint of the Checker processor, we assume a decoupled
tandem approach that combines two Alpha processors. The
Optimistic core is based on the EV6, and the Checker is
based on the in-order 4-issue EVS5. After scaling both cores
to the same O.1um feature size [15], the EVS5 weighs in
at 28% of a scaled 4-issue EV6. Taking into account the
reduction in area achieved through architectural pruning, a
pruned EV6 combined with an EV5 Checker shows a 15%
area overhead with respect to the original EV6 core. Under
the same scaling approach, an EV5 consumes 53% the peak
power of an EV6. The tandem configuration would then
display an overall increase in power of over 38%.

6 Related Work

To our knowledge, there has been no previous work
published on quantitative approaches for improving proces-
sor performance through structural or architectural prun-

ing. The application of coverage metrics to account for
the utilization of specific processor structures as used in the
pUtilization metric is also novel. Previous alternative uses
of coverage metrics, for purposes other than verification,
have been focused on the simplification of system-level de-
sign and architectural exploration [6].

The pruning of processor structures amounts to the in-
jection of faults in its design. Fault injection has been
thoroughly studied and modeled [7, 28]. Accordingly, sev-
eral proposals have aimed at offering fault tolerant designs.
DIVA tolerates design faults in a complex processor by
coupling it to a simpler, verified checker processor [2].
Other approaches such as AR-SMT [21]], SRT [18| 20]], and
SRTR [27], offer recovery from faults through redundant
thread schemes. Chip multiprocessors (CMPs) have been
proposed for fault detection and recovery. CRTR [11] re-
duces the probability of thread corruption by having the
leading and trailing threads execute on different processors.
Reunion [25]] correctd soft errors by having multiple cores
executing identical threads, each core generates fingerprints
which are shipped across cores for cross-verification.

Leader/follower approaches can also be used to improve
performance. Future Execution [9] uses a leader core to
generate value prediction for non-control instructions to
prefetch data for the primary core. Strict leader/follower
architectures use different forms of optimization to acceler-
ate the leader and, by extension, the entire system. DIVA [2]
and Paceline [12] use overclocking to increase performance,
errors associated with a pipeline operating outside its de-
sign parameters are solved through the use of redundant
cores in charge of verifying the overclocked results. Other
approaches use different forms of speculation to accelerate
the leader. In Dual-Core Execution (DCE) [32], the leader
does not stall on long-latency loads. In Slipstream [[19], the
leader executes only a subset of the full instruction stream
of the program. Architectural pruning could potentially be
applied to the leader cores in these designs as well, provid-
ing further speedups.

Some predictor designs operate in a fashion similar to
our Optimistic branch prediction by combining possible fu-
ture execution with past trends. Falcon et al [8] proposes a
two-tier approach to prediction which combines a prophet
predictor that generates a set of future predictions, and a
critic predictor that uses the observed history to question the
prophet’s prediction. Jimenez et al [[14] propose a system in
which a small, fast, and inaccurate predictor gets to issue
pseudo future predictions, that will later be challenged by
a more accurate and slow predictor. If the two predictions
differ, all the work based on the fast prediction is flushed.

7 Conclusions

Due to the increasing sophistication of critical structures
in complex microprocessors, designers have a more difficult
time meeting aggressive frequency, power and area budgets.

This paper introduces a new mechanism to gain further in-
sight that may alleviate some of the difficulties associated
with the task of optimizing complex processor cores. By us-
ing the proposed pUtilization metric, designers can identify
processor structures ideally suited for optimization. Con-
sequently, the designer can selectively prune infrequently-
exercised HDL statements within those structures using a
quantitative approach. Although a fully automated pruning
tool could be highly interesting, it is beyond the scope of
this paper.

Using this new optimization methodology, a detailed
analysis is performed for an Alpha EV6-like processor [28]].
By removing 3% of HDL statements, the resulting pro-
cessor exhibits a 25% frequency improvement. To guar-
antee forward progress we combine the pruned core with
a simpler in-order Checker. The resulting Tandem archi-
tecture can leverage the prefetching and early branch ex-
ploration qualities of the Optimistic (pruned) core with the
verified execution of the Checker. A Tandem configura-
tion yields a 12% performance increase with respect to the
original out-of-order core that served as basis for the Op-
timistic core. Our proposed pruning approach can be used
to reduce the area and power requirements associated with
leader/follower architectures.

The work presented in this paper provides insights into
the design of existing processors. The pUtilization rank-
ing and Structural Efficiency metrics provide opportunities
for further synthesis optimizations. These metrics may also
provide valuable insight in the development of new archi-
tectures. Designers can now access a new metric to evalu-
ate the efficiency of competing proposals and decide which
structures must be prioritized in their design and verification
efforts. Tandem processors offer opportunities for further
optimizations by using finer degrees of architectural prun-
ing. We expect further work exploring these opportunities.

Acknowledgments

We like to thank the reviewers for their feedback on the
paper. Special thanks to Amir Roth for his invaluable help
and feedback. The authors gratefully acknowledge Michael
Huang, Luigi Capodieci, Andrea Di Blas, and Matthew
Guthaus for their feedback on the pruning infrastructure.
This work was supported in part by the National Science
Foundation under grants 0546819 and 720913; Special Re-
search Grant from the University of California, Santa Cruz;
Sun OpenSPARC Center of Excellence at UCSC; gifts from
SUN, Altera, Xilinx, and ChipEDA. Any opinions, findings,
and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views
of the NSF.

References

(1]

[2

—

3

—

(4]

(5]

(6]

(7]

(8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Pro-
cessing and Recovery: Towards Scalable Large Instruction
Window Processors. In the 36th International Symposium
on Microarchitecture, Nov 2003.

T. Austin. DIVA: A reliable substrate for deep submicron
microarchitecture design. In the 32th International Sympo-
sium on Microarchitecture, pages 196207, 1999.

C. Bazeghi, F. Mesa-Martinez, and J. Renau. pComplexity:
Estimating Processor Design Effort. In the 38th Interna-
tional Symposium on Microarchitecture, Nov 2005.

F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for on-
line diagnosis of hard faults in microprocessors. In the 38th
International Symposium on Microarchitecture, pages 197—
208, Washington, DC, USA, 2005. IEEE Computer Society.
D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical Report
CS-TR-1996-1308, 1996.

D. V. Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and
R. B. Brown. High-level design verification of microproces-
sors via error modeling. ACM Trans. Des. Autom. Electron.
Syst., 3(4):581-599, 1998.

K. Cheng, S. Huang, and W. Dai. Fault emulation: a new
approach to fault grading. In the 1995 international confer-
ence on Computer-aided design, pages 681-686, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

A. Falcon, J. Stark, A. Ramirez, K. Lai, and M. Valero.
Prophet/critic hybrid branch prediction. SIGARCH Comput.
Archit. News, 32(2):250, 2004.

I. Ganusov and M. Burtscher. Future execution: A prefetch-
ing mechanism that uses multiple cores to speed up single
threads. ACM Trans. Archit. Code Optim., 3(4):424-449,
2006.

D. Gil, R. Martinez, J. V. Busquets, J. C. Baraza, and P. J.
Gil. Fault injection into VHDL models: Experimental val-
idation of a fault tolerant microcomputer system. In Euro-
pean Dependable Computing Conference, pages 191-208,
1999.

M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomer-
anz. Transient-fault recovery for chip multiprocessors. In
the 30th International Symposium on Computer Architec-
ture, pages 98—109, 2003.

B. Greskamp and J. Torrellas. Paceline: Improving single-
thread perfomance in nanoscale cmps through core over-
clocking. In the 16th International Conference on Paral-
lel Architectures and Compilation Techniques, Washington,
DC, USA, 2007. IEEE Computer Society.

B. Jacob. ENEE 446: Digital Computer Design An Out-
of-Order RiSC-16. Technical Report UMD-SCA-2000-02,
2000.

D. A. Jimenez and C. Lin. Neural methods for dynamic
branch prediction. ACM Trans. Comput. Syst., 20(4):369—
397, 2002.

R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan.
Heterogeneous chip multiprocessors. Computer, 38(11):32—
38, 2005.

J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Tor-
rellas. Cherry: Checkpointed Early Resource Recycling in
Out-of-order Microprocessors. In International Symposium
on Microarchitecture, Nov 2002.

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and
T. Austin. Measuring architectural vulnerability factors.
IEEE Micro, 23(6):70-75, 2003.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alterna-
tives. In the 29th International Symposium on Computer
Architecture, pages 99-110, Washington, DC, USA, 2002.
IEEE Computer Society.

Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of
slipstream processors. In the 33th International Symposium
on Microarchitecture, pages 269-280, 2000.

S. K. Reinhardt and S. S. Mukherjee. Transient fault detec-
tion via simultaneous multithreading. In the 27th Interna-
tional Symposium on Computer Architecture, pages 25-36,
2000.

E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. In the 1999 Symposium
on Fault-Tolerant Computing, pages 84-91, 1999.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct 2002.

R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson. Binary translation. Communications of the ACM,
36(2):69-81, 1993.

J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and
A. Nowatzyk. Fingerprinting: Bounding soft-error-
detection latency and bandwidth. IEEE Micro, 24(6):22 —
29, November 2004.

J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Re-
union: Complexity-effective multicore redundancy. In the
39th International Symposium on Microarchitecture, pages
223-234, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

Synopsys. Design Compiler Product Information, 2005.
http://www.synopsys.com.

T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
fault recovery using simultaneous multithreading. In the
29th international symposium on Computer architecture,
pages 87-98, Washington, DC, USA, 2002. IEEE Computer
Society.

N. Wang, J. Quek, T. Rafacz, and S. Patel. Characterizing
the Effects of Transient Faults on a High-Performance Pro-
cessor Pipeline. In International Conference on Dependable
Systems and Networks. IEEE Computer Society, Jun 2004.
C. Weaver and T. Austin. A fault tolerant approach to micro-
processor design. In the 2001 International Conference on
Dependable Systems and Networks, pages 411-420, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

S. Weiss and J. E. Smith. IBM Power and PowerPC. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.
B. Wile, J. Goss, and W. Roesner. Comprehensive Func-
tional Verification. Morgan Kaufman, 2005.

H. Zhou. Dual-core execution: Building a highly scalable
single-thread instruction window. In the 14th International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 231-242, Washington, DC, USA, 2005. IEEE
Computer Society.

	Introduction
	Architectural Pruning Methodology
	Utilization Metric Definition
	Structural Efficiency
	Architectural Pruning

	A Pruning-Based Tandem Architecture
	Signature Buffer
	Optimistic Branch Prediction

	Evaluation Setup
	Synthesis
	Applications

	Evaluation
	Pruning Results
	Performance Results
	Overall Power/Area Considerations

	Related Work
	Conclusions

