
Design Decisions in LiveHD for HDLs Compilation
Sheng-Hong Wang

University of California - Santa Cruz
USA

Jose Renau
University of California - Santa Cruz

USA

ABSTRACT
We present LiveHD, an under-construction open-source frame-
work to build scalable and incremental solutions for hard-
ware design. LiveHD targets new hardware description lan-
guages(HDLs) compilation, simulation, synthesis, and other
Electronic Design Automation (EDA) steps. LiveHD has two
main data structures with associated APIs: LNAST and LGraph.
LNAST is a Language Neutral AST, and LGraph is a graph SSA
netlist. In this work, we present many important decisions on
the LiveHD internal representations like local vs global type
inference, or types of gates allowed.

1 INTRODUCTION
Hardware design is a complex task that requires specialized
tools. The most popular language, Verilog, is showing its age
with close to 40 Years since its design in 1983. More modern
versions like SystemVerilog are compatible with older ver-
sions which adds complexity. The main commercial tools also
lack many modern features. For example, the top-of-the-line
ASIC flows do not have incremental compilation. Even more
challenging, many tools lack scalable compilation steps like
software compilers do.

From the academic point of view, the closed source nature
of most tools is a challenge. It does not allow to improve whole
flows or to do changes to improve internal steps. Even more
problematic, it is difficult to reproduce results, and it is illegal
to report benchmarking results.

When combining with the new pressure to create more cus-
tom hardware to compensate for Dennard scaling, the result
is a new set of open-source flows and languages to challenge
the status quo.

Yosys [16] and Verilator [1] were some of the earlier open-
source alternatives. Yosys mostly reads Verilog and interfaces
with synthesis tools like ABC [12] or SAT/SMT solvers. More
recently, other back-ends like C++, low-level FIRRTL [6] have
been added to Yosys. Verilator is widely used in academia
and industry to perform Verilog simulations. Both tools are
great, but they are highly tied to Verilog and cannot interact
directly with new HDLs with higher language abstracts.

Besides Yosys and Verilator, there are some newer tools. The
most notable/related to our work are FIRRTL [6], LLHD [8],
coreIR [7], and google XLS [2]. Each has very different design
options and, as a result, characteristics. This work presents

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
LATTE ’21, April 15, 2021, Virtual, Earth
© 2021 Copyright held by the owner/author(s).

LiveHD and explains some of the different tool internal design
options and its decisions.

2 LIVEHD INTERNALS
The main goal of LiveHD is to be a "compiler" infrastruc-
ture for hardware; as such, it has a rich API for many opera-
tions like graph traversals and storing hardware representa-
tions. Most of the APIs provide support to main structures
LNAST [14] and LGraph[13].

LNAST is the Language Neutral AST. It allows easy trans-
lation for new languages to LiveHD. By targeting LNAST
instead of LGraph, the language designer does not need to
worry about SSA, control flows conversion, variable scopes,
and many other constructs shared by most languages. In a
way, LNAST is easier to translate to because it is a control
flow with several operations.

LGraph is a hierarchical SSA-graph. By hierarchical, we
mean that a graph can point to other graphs, and there are
many constructs like hierarchical iterators to handle them.

There are many design decisions for both LNAST and
LGraph. The following are some of the most important:

SSA Graph: LGraph has an SSA representation, but others
like Yosys internals do not. By SSA-graph, we mean that a
wire/net has a write from a single source. The SSA represen-
tation has been proved very effective in traditional compilers
to simplify passes. The fact that in hardware, pointers are not
existing and loops are infrequent makes the SSA even more
interesting.

Reduced Instruction Set Logic (RISL) Cells: Logic cell
means different graph nodes to represent functionality. Most
EDA tools have many logic cells or gate options. While some
cells are commonly used, such as add, subtract, concatenate
wires, pick bits, one_hot_encoding, many cells only created for a
specific function. Yosys has over 100 types, XLS has 60, and
FIRRTL 37. LGraph logic cells have been designed to reduce
the number of gates. In a way, it tries to be a Reduced Instruc-
tion Set Logic (RISL) in a similar way that RISC is a reduced
instruction set vs. CISC. The goal has been to have the smallest
amount of cells covering all the options without the overhead.
The reason for RISL is to reduce the design complexity on
passes and optimizations in the IR.

Signed Wires: Most EDA flows have to deal with signed
and unsigned wires. In a flow like Yosys, the logic cells behave
differently with signed and unsigned inputs/outputs. This
separation adds even more complexity to the logic cells. In FIR-
RTL, most of the 37 existing cells also have different behavior
regarding cell inputs’ signedness. However, signed represen-
tation is indeed a superset of unsigned. If the flow supports
signed, there is no reason to support unsigned. Choosing a
unified signed representation leads to less design overhead



LATTE ’21, April 15, 2021, Virtual, Earth Sheng-Hong Wang and Jose Renau

(positive values in an unsigned result have the upper bit zero).
For example, the bitwidth inference pass no longer needs to
differentiate a cell’s different input signedness.

N-ary Gates: LiveHD logic cells are n-ary. N-ary means that
cells like or or add can have an unlimited number of inputs.
This allows for simpler graphs and easier optimizations.

Wire Width Semantics:. LGraph wires are designed to be
always signed, but maybe equally interesting, the cell seman-
tics are independent of the wire widths. This means that a
gate-like concatenate is not needed because the output is in-
dependent of the input wire width. This design choice is be-
cause even the designer specifies a "maximum" number of bits
to a wire, the tool should be allowed to optimize the wire’s
bitwidth. This already happens in synthesis tools that can
simplify away wires. LiveHD brings the same concept/ideas
to LGraph.

Bitwidth Inference: Verilog specifies the bits for each wire.
Other modern HDLs like CHISEL [3] or Pyrope [10] have
a different bitwidth semantic depending on the operators.
For these languages, the flow can not know all the bits at
the elaboration phase; instead, a bitwidth analysis must be
performed to gain the knowledge of each gate’s bit size be-
fore code generation. LiveHD has been designed to allow the
per-language bitwidth inference at the transformation from
LNAST to LGraph.

Global Inference: Another flexibility that LiveHD provides
is the global inference. Some programming languages have
global type inference, others have local type inference, and
others like Verilog and FIRRTL have no inference. To support
a wider superset of languages, LiveHD is designed to perform
both global and local inference. The types, bits, and other
attribute fields are propagated through the graph hierarchy.
Other tools, with the exception of ML-based like Clash [15]
and Lava [11], seem to have local type inference or none.

Scope Flexibility: Different HDLs has different scope de-
sign. In general, we try to be generic enough to cover dif-
ferent HDLs like Verilog, Pyrope, and FIRRTL efficiently. For
example, in Verilog and Pyrope, there could be local and mod-
ule/function scopes. The design of LNAST variables scope [9]
resembles Verilog and Pyrope; Statements from the root node
are in the top scope; by creating a new sub-LNAST tree,
LNAST could have an additional scope hierarchy inside a
module (or a function). In a way, the scope representation in
LNAST is a superset to the FIRRTL language. This is because
in FIRRTL, the scope is per module, which needs the variables
to be instantiated at the module level. Therefore, LNAST could
also handle the FIRRTL module scope naively.

When considering the design choice such as global type
inference and scope in LiveHD, it is almost impossible that
create the most generic IRs for semantics and syntax in all
HDLs. To overcome this problem, LiveHD allows extensions
with attributes in the IRs passes. For example, if a new lan-
guage wanted to have dependent types [4], the LNAST could
annotate the types with attributes, and a new compiler pass
at the LGraph level could enforce the refining types.

Prototype Inference: Current LiveHD still does not have a
working object model, but the object methods and attributes

are builds following prototype inheritance. This means that
an object/struct can be extended and changed. It does not
require specifying a fixed type.

Yosys [16]
FIRRTL

[6]

XLS [2]

coreIR
[7]

LLH
D

[8]
Verilator [1]

LiveH
D

HDLs V0 FIR1 C++
DSLX2

V
Py3 SV4,5 SV

V
SV6

FIR
Prp7

Cell Types >100 ~37 ~60 ~40 ~60 >1008 31
Aggr. Type9 no yes yes yes yes yes yes
Signedness S/U𝑎 S/U S/U S/U S/U S/U S
N-ary Gate no no yes no no no yes
Global Inf𝑏 no no no no no no yes
Formal yes yes yes yes no no todo
Simulation yes yes yes no yes yes yes
Synthesis yes no no no todo no yes
FPGA yes no no no no no yes

Table 1: Capability comparison between relevant tools

0 Verilog-2005, 1 hi-FIRRTL, 2 Google’s high-level synthesis language, 3

Python, 4 SystemVerilog, 5 As the time of writing, SystemVerilog is imple-
mented 6 we are now integrating Slang [5] to bridge SystemVerilog, 7 Pyrope,
8 includes many simulation only constructs, 9 High-level aggregate types like
tuple, vector 𝑎 Signed/Unsigned, 𝑏 Global type inference,

3 CONCLUSIONS
LiveHD builds an end-to-end hardware flow from front-end
HDLs compilation/simulation, to mid-end logic synthesis,
and to back-end FPGA place and route. Furthermore, it pur-
suits for a scalable and incremental compilation. In order to
achieve these goals, we have considered and design a differ-
ent set of options in LiveHD. As discussed in section 2, many
decisions/options have broad implications. Certainly, some
will prove to be not the best decisions, but exploring and
evaluating is the right way to improve.

REFERENCES
[1] 2021. Verilator 4.034, Open-source tool for Verilog HDL simulation. https:

//www.veripool.org/wiki/verilator. Online; accessed on 5 February
2021.

[2] 2021. XLS: Accelerated HW Synthesis. https://github.com/google/xls.
Online; accessed on 9 February 2021.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Water-
man, Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel:
constructing hardware in a scala embedded language. In DAC Design Au-
tomation Conference 2012. IEEE, 1212–1221.

[4] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C Necula. 2007. Dependent types for low-level programming.
In European Symposium on Programming. Springer, 520–535.

[5] Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: language mech-
anisms for extensible real-time shading systems. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 1–13.

[6] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al.
2017. Reusability is FIRRTL ground: Hardware construction languages,



Design Decisions in LiveHD for HDLs Compilation LATTE ’21, April 15, 2021, Virtual, Earth

compiler frameworks, and transformations. In Proceedings of the 36th Inter-
national Conference on Computer-Aided Design. IEEE Press, 209–216.

[7] Cristian Mattarei, Makai Mann, Clark Barrett, Ross G Daly, Dillon Huff,
and Pat Hanrahan. 2018. CoSA: Integrated Verification for Agile Hardware
Design. In 2018 Formal Methods in Computer Aided Design (FMCAD). IEEE,
2–5.

[8] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020.
Llhd: A multi-level intermediate representation for hardware description
languages. In Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. 258–271.

[9] Sheng-Hong Wang and Jose Renau. [n.d.]. LNAST API. https://masc.
soe.ucsc.edu/lnast-doc/. Online; accessed on 3 April 2021.

[10] Sheng-Hong Wang, Haven Skinner, Sakshi Garg, Hunter Coffman, Ken-
neth Mayer, Akash Sridhar, Rafael T. Possignolo, and Jose Renau. [n.d.].
Pyrope. https://masc.soe.ucsc.edu/pyrope.html. Online; accessed
on 16 February 2021.

[11] Satnam Singh and Philip James-Roxby. 2001. Lava and JBits: From HDL
to bitstream in seconds. In The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01). IEEE, 91–100.

[12] Berkeley Logic Synthesis and Verification Group. [n.d.]. ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.
edu/~alanmi/abc/.

[13] Sheng-Hong Wang, Rafael Trapani Possignolo, Qian Chen, Rohan Ganpati,
and Jose Renau. 2019. LGraph: A Unified Data Model and API for Pro-
ductive Open-Source Hardware Design. In Open-Source EDA Technology,
Proceedings of the Second Workshop on (WOSET’19).

[14] Sheng-Hong Wang, Akash Sridhar, and Jose Renau. 2019. LNAST: A
Language Neutral Intermediate Representation for Hardware Description
Languages. In Open-Source EDA Technology, Proceedings of the Second Work-
shop on (WOSET’19).

[15] Rinse Wester, Christiaan Baaĳ, and Jan Kuper. 2012. A two step hard-
ware design method using C𝜆aSH. In 22nd International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 181–188.

[16] Clifford Wolf. 2021. Yosys Open SYnthesis Suite. http://www.clifford.
at/yosys/. Online; accessed on 10 February 2021.


	Abstract
	1 Introduction
	2 LiveHD Internals
	3 Conclusions
	References

