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ABSTRACT

Computer architects rely heavily on software-based mi-
croarchitecture simulators, which typically take hours
or days to produce results. We have developed LiveSim,
a novel microarchitectural simulation methodology that
provides simulation results within seconds, making it
suitable for interactive use.

LiveSim works by creating in-memory checkpoints of
application state, and then executing randomly selected
samples from these checkpoints in parallel to produce
simulation results. The initial results, which we call
LiveSample, are reported less than one second after
starting the simulation. As more samples are simulated
the results become more accurate and are updated in
real-time. Once enough samples are gathered, LiveSim
provides confidence intervals for the reported values and
continues simulation until it reaches the target confi-
dence level, which we call LiveCI.

We evaluated LiveSim using SPEC CPU 2006 bench-
marks and found that within 5 seconds after starting
simulation, LiveSample results reached an average error
of 3.51% compared to full simulation, and the LiveCI
results were available within 41 seconds on average.

1. INTRODUCTION

Computer architects are constrained by the fact that
system design is a slow, expensive, and time-consuming
process. To ameliorate this architects use a variety of
techniques to prototype ideas and perform design space
exploration. One of the most important techniques is
architectural simulation where a software model of the
simulated system is developed to evaluate its perfor-
mance using realistic benchmarks. Unfortunately, soft-
ware simulation is many orders of magnitude slower
than the real systems being designed. This limits the
length of the benchmarks that can be executed, and also
forces architects to wait for long periods (from minutes
to days) until new simulation results are ready.

Many techniques have been developed to reduce sim-
ulation time including: benchmarks size reduction [1],
specialized hardware [2], phase-based sampling [3], and
statistical sampling [4]. Of these techniques, the sam-
pling based approaches typically provide the best trade-
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off between simulation fidelity, speed, and flexibility.

The state of the art simulation techniques have re-
duced simulation time from weeks to days or hours, but
in many ways microarchitectural simulation still uses
the methodology of the era of punched cards and batch
queues. An architect typically first develops and config-
ures the simulation parameters. Then the simulation is
submitted to a batch queue and runs for hours or days
while the architect works on something else. After the
simulation finishes execution the architect must recall
what she was working on, interpret the results and then
repeat the cycle with new experiments.

This methodology contrasts with the rapid develop-
ment techniques popular in many types of software en-
gineering. We expect the productivity of computer ar-
chitects to improve with an interactive development en-
vironment. To support this development model we pro-
pose LiveSim, a simulation framework that provides
simulation results in near real-time. In this paper we
define our near real-time goal as within 5 seconds and
we use the terms live and interactive! interchangeably.
LiveSim provides initial results as soon as the first sam-
ple finishes simulation, and it provides a confidence in-
terval to bound the expected error after a minimum
number of samples have executed (which is typically
within 5 seconds on our system). If necessary LiveSim
continues simulating more samples until reaching a user
defined threshold for the confidence interval. We call
the results that are updated in real-time LiveSample,
and the result that is within the desired confidence in-
terval LiveClI.

LiveSim works by first running a setup phase that
executes the applications in emulation only mode and
creates in-memory checkpoints with architectural state.
This step is completely independent of simulated mi-
croarchitecture. Next the microarchitecture simulator
is loaded as a dynamic library, which allows it to be eas-
ily modified without rerunning the costly setup phase.
Then a calibration phase runs which executes a sample
from each checkpoint using the current simulator con-
figuration. The samples are used to characterize the
checkpoint and allow for clustering. Although the mea-
sured performance depends somewhat on the simulated
microarchitecture, in practice the clustering tends to be

!The simulator is used interactively, not the benchmark that
is simulated.
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Figure 1: LiveSim timeline showing how the user
is presented with LiveSample results from the
beginning, how accurate the results get within a
few seconds, and how the simulation continues
running until the confidence interval reaches the
threshold for the LiveClI results.

associated with program phases, and as a result the cal-
ibration phase tends not to need to be repeated even if
the simulated microarchitecture has radical changes. At
this point LiveSim is ready for interactive use allowing
the user to experiment with changes to the simulated
microarchitecture. After making a change to the simu-
lator the user requests new simulation results. LiveSim
randomly selects the minimum number of checkpoints
and begins simulating samples from the selected check-
points in parallel and reporting the LiveSample results
to the user. After meeting the cutoff for the LiveCI re-
sults the simulation halts and reports the final results.

Figure 1 illustrates an example of how LiveSim works
by showing the simulation result of running namd bench-
mark from SPEC2006 for approximately 10 seconds in
a Haswell CPU and simulating a similar CPU with
LiveSim. Unlike traditional simulators, LiveSim starts
to produce results as each simulation sample finishes
(LiveSample). As the evaluation will show, after 5 sec-
onds it is able to provide results that are within 4% of
the correct result. The correct result is a full simulation
of the 10 seconds without sampling shown as No Sam-
pling Simulation in the figure. Once enough samples
are gathered, it is possible to start reporting the confi-
dence interval for the simulation. As more samples are
added, the confidence interval decreases and stops the
simulation when enough samples are processed. While
LiveSample provides accurate results in a very short
time, it cannot guarantee them. Live Confidence In-
terval (LiveCI) bounds the error according to the user
requested acceptable error.

In this paper we make the following novel contribu-
tions:

e Introduce LiveSim, a new architectural simulation
methodology that enables interactive microarchi-
tecture design space exploration.

e Demonstrate that LiveSim is able to provide very

accurate LiveSample simulation results within 5
seconds. These results are independent of the length
of the simulated benchmark and simulating more
instructions does not increase the time it takes for
LiveSim to provide the LiveSample results.

e Demonstrate that LiveSim is able to produce LiveCI
results that bound the simulation error within 10%
within 41 seconds on average.

The rest of this paper is organized as follows: Sec-
tion 2 provides some background about existing tech-
niques to speed up simulation; Section 3 explains how
LiveSim works; Section 4 details the setup of our eval-
uation framework; Section 5 describes our results; Sec-
tion 6 provides a comparison with related work; and
Section 7 concludes.

2. BACKGROUND

Most architectural simulators are implemented as dis-
crete event simulators where the simulator models the
changes to microarchitectural state that occur each clock
cycle while the simulated processor executes an instruc-
tion. Simulating a single instruction can require the
host to execute thousands of instructions to update all
of the simulated microarchitectural state for an advanced
out-of-order processor, and even fast simulators are thou-
sands of times slower than native execution.

There are a variety of ways to cope with the slow
simulation speed. One is to simulate benchmarks that
execute very small numbers of instructions; however, it
is difficult to ensure that these results are comparable
to those obtained with standard benchmark inputs [5,
1]. Another approach is to accelerate the timing simu-
lation using FPGAs [2, 6, 7], but this requires custom
hardware, increases simulator development complexity,
and is not widely used in practice. The most popular
approach is to use sampling to reduce the number of
instructions that need to be simulated, and this is the
technique we use for LiveSim.

Many simulators have a variety of levels of simulation
detail ranging from the most detailed mode which mod-
els all microarchitectural details, to modes that only
simulate structures with long lived state (such as caches
or branch predictor), to emulation-only mode, or even
modes that run parts of the simulated benchmark di-
rectly on the host system [8]. As the level of detail
decreases, the speed of the simulation increases. Most
sampling techniques take advantage of this difference in
simulation speed by executing the majority of instruc-
tions in a faster simulation mode, and extrapolating
statistics collected from a small percentage of instruc-
tions executed using full detailed simulation mode. The
two main sampling techniques are profile based sam-
pling and statistical sampling.

Profile based sampling attempts to identify a few re-
gions of a benchmark that are representative of the be-
havior of the full benchmark execution. Sherwood et
al. [3] developed SimPoint, which works by profiling a
benchmark and collecting information about the dis-
tribution of basic blocks executed during benchmark



execution. This information is used to find phases in
program execution and then select representative sam-
ples for each phase. The statistics that are collected
from these samples can be used to extrapolate results
that tend to be very close to those from full benchmark
execution. The effectiveness of the original SimPoint
proposal was purely heuristic based, but Perelman et
al. [9] extended SimPoint to provide statistical confi-
dence measures.

Wunderlich, et al. [4] developed the SMARTS frame-
work, which applies statistical sampling theory to com-
puter architecture simulation. The main drawback with
SMARTS is that it requires continuous updates to the
simulated cache and branch predictor microarchitectural
state between sampling units. The simulation mode
that updates this state is called functional warming, and
while it is faster than detailed simulation, it is still much
slower than native execution. Although SMARTS is the
de facto reference for applying statistical sampling to
microarchitecture simulation, earlier work from Conte
et al. [10, 11] also explored using statistical sampling
with microarchitecture simulation.

Since functional warming of the cache dominates sim-
ulation time there have been a variety of proposals to
reduce the amount of warmup that is needed and to
speed up the emulation mode. One technique is to save
some of the simulation state in a checkpoint and then
load this checkpoint during future simulation runs [12,
13]. Another technique is to forego detailed cache mod-
eling during the functional warmup phase and simply
record the sequence of memory operations. This infor-
mation can then be used to quickly rebuild the cache
state prior to detailed simulation of a sampling unit [14].

LiveSim builds on existing work that uses sampling
to accelerate microarchitecture simulation, but rather
than simply trying to make the simulation faster, it is
designed to be suitable for interactive use. LiveSim uses
statistical sampling, in-memory checkpoints, checkpoint
clustering, parallel checkpoint execution, and a fast cache
warmup technique in order to support interactive sim-
ulation.

3. LIVESIM METHODOLOGY

The previous section provided some background about
the sampling techniques that LiveSim leverages to en-
able interactive or Live simulation. In this section we
explain in detail exactly how we implemented LiveSim.
The basic outline for how LiveSim works is as follows:

e Setup: Run simulated benchmark in emulation
only mode and periodically create in-memory check-
points that contain architecturally visible state.
Information about the sequence of memory accesses
is also recorded during checkpoint creation and
used later for cache warmup. The state contained
in the checkpoints is independent of the simulated
microarchitecture.

e Calibration: Execute a sample from each of the
checkpoints and use the recorded statistics to group
the checkpoints into clusters.

e LiveSample: When the user requests new simu-
lation results LiveSim begins executing a number
of checkpoints in parallel. As soon as simulation
results are ready they are reported visually to the
user.

e LiveCI: After a minimum number of checkpoints
complete execution LiveSim monitors the calcu-
lated confidence interval. If it is not within the
user specified limit then LiveSim randomly selects
more checkpoints to run. Eventually the confi-
dence interval reaches the selected limit and the
simulation halts.

In LiveSim checkpoints contain all of the architec-
turally visible state necessary to start simulation from
a specific point in the benchmark and can be reused
multiple times with many different simulator configu-
rations, whereas samples represent the result of simu-
lating a specific microarchitecture for a specific check-
point. Samples are created by first copying the check-
point state, next loading the simulator library and con-
figuration for the microarchitecture that is being simu-
lated, next warming up the microarchitecture state, and
finally collecting statistics for the sample.

In the rest of this section we explain in detail how
each of the steps in LiveSim works.

3.1 Sampling Setup

The field of inferential statistics provides well known
techniques for inferring statistics about a population
given a sample of that population. SMARTS [4] demon-
strated that systematic sampling can be used to ap-
proximate random sampling when used with microar-
chitectural simulation. LiveSim also uses systematic
sampling to approximate random sampling during the
setup phase.

During the setup phase LiveSim runs a fast emulation-
only process that periodically forks copies of itself to
create an in-memory set of checkpoints that contain all
the architecturally visible state necessary to continue
benchmark execution. Figure 2 illustrates how these
newly created checkpoints enter a wait mode listening
for commands to start microarchitectural simulation.
Since forking a process uses copy-on-write, the check-
point creation step is relatively cheap during the setup
phase. However, in our implementation each checkpoint
uses tens of megabytes which makes its memory con-
sumption worthy of study. In Section 5.4 we evaluate
checkpoint size and how to determine the optimal num-
ber of them.

In addition to the architecturally visible state, a check-
point also needs a way to warm up the microarchitec-
tural state before collecting statistics from a sample. In
our experiments we found LiveSim was able to warm up
most of the microarchitectural state, including an ad-
vanced O-GHEL branch predictor, with only 1 million
instructions of warmup. However, effectively warming
up the cache required more than 50 million instructions
on average, and research indicates larger caches may
require even more warmup [15]. Executing this many
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Figure 2: During setup the benchmark is em-
ulated and checkpoints are created by period-
ically forking new processes. Each checkpoint
process enters a waiting mode. Once LiveSim
starts, each checkpoint loads the simulation dy-
namic library and configurations; then it starts
simulation.

instructions to warm up a sample would make the sim-
ulation too slow to meet the 5 second near real-time
targets for LiveSim.

To solve the cache warmup problem we adapted the
memory timestamp record (MTR) technique proposed
by Barr et al. [14], and we call our adapted cache warmup
technique LiveCache. LiveCache is implemented as a
very large and highly associative cache that is larger
than the largest cache that will ever be simulated. Each
cache line in LiveCache has a counter field which stores
a timestamp of the most recent access to this line. Each
memory operation increases this timestamp and stores
it in the counter field of the cache line it is accessing.
These counters provide an ordering of all locations that
could possibly be in the cache. Maintaining this state
has a low overhead and does not slow down the LiveSim
setup process very much. It will automatically be made
available to the newly spawned checkpoint when they
are forked, and it is independent of the microarchitec-
ture that will be simulated later.

When LiveSim starts simulating a sample from a check-

point, it first loads the simulator’s dynamic libraries
and configuration information. Next LiveSim executes
all memory operations saved in the checkpoint’s Live-
Cache in least recently used order without advancing
the clock or collecting any statistics. This warms up the
sample’s microarchitectural cache state. Once all Live-
Cache memory operations are executed, the real simula-
tion starts. This is similar to the technique proposed by
Barr et al. [14] with some slight changes to simplify the
integration with the LiveSim simulation infrastructure.

3.2 Calibration

The central limit theorem is the underlying founda-
tion for the statistics theory that allows us to approx-
imate the distribution of sample averages as though it
were normally distributed. A typical rule of thumb is
that 30 samples are enough to apply the central limit
theorem when the population that is sampled is not
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Figure 3: The CPI trace of Astar benchmark in
SPEC 2006. The infrequent but extremely large
spikes will have a considerable affect on the av-
erage CPI. Missing these spikes in random sam-
pling will result in an unreliable sample mean.

highly skewed. But if the population is highly skewed
then more samples are required.

Figure 3 shows a trace of CPI values for the Astar
benchmark plotted over time for the first 30 billion in-
structions of the benchmark execution. This distribu-
tion is highly skewed for two reasons. First, the mini-
mum CPI in the simulated 4-wide system is 0.25, but
the maximum CPI is effectively unbounded and we can
see spikes as high as 10 for this benchmark. Second, the
spikes are relatively rare and most of the samples have
a CPI much closer to 1. Simply using random sampling
can require hundreds of samples for a distribution that
is this highly skewed. Furthermore, while we can calcu-
late the number of samples needed if we are given the
population distribution, this information is not known
a priori. Thus random sampling alone is unable to meet
the execution time constraints of LiveSim.

However, LiveSim is able to take advantage of the cor-
relation between code signatures and performance [16]
and use this information to group the checkpoints into
clusters. When results are calculated, LiveSim ensures
that each cluster has at least 1 sample that is selected,
and it also weights the results from each cluster based
on the cluster size. This technique has some similarities
to what Perelman et al. [9] do to statistically bound the
error for results obtained using SimPoint.

LiveSim groups the checkpoints based on the perfor-
mance statistics that are obtained with the baseline sim-
ulator configuration. Since performance statistics corre-
late with code signatures, this grouping tends to cluster
the checkpoints together in a way where even radical
changes in the simulated microarchitecture still cause
the checkpoints to be clustered in a similar way. The
clustering does not need to be exactly the same for dif-
ferent simulated microarchitectures, just close enough
to avoid problems with extreme outliers that may oth-
erwise skew the results.

After all of the checkpoints are spawned during setup



LiveSim begins calibration. For each checkpoint LiveSim
loads the baseline simulator configuration and simulates
a sample from the checkpoint. After all of the check-
point samples are collected LiveSim uses a clustering
algorithm to group the checkpoints into clusters.

For clustering LiveSim uses K-means algorithm where
K ranges from K = 1 to K = numcheckpoints/2 and
LiveSim attempts to find the value of K that provides
the optimal trade-off between the variation of samples
in clusters and the number of clusters (with the goal
of minimizing both of these values). For each itera-
tion of K LiveSim finds the best possible grouping of
checkpoints to minimize the total variation of the met-
ric of interest (typically CPI) across all K clusters. As
LiveSim iterates through different values of K it keeps
track of the value of K (and the associated configura-
tion) seen thus far that minimizes total variation. When
the algorithm finishes LiveSim uses the value of K that
minimized total variation as the selected configuration
for clustering checkpoints.

The final step in calibration is to assign weights to
each cluster. This is done based on the number of check-
points that are assigned to each cluster. For example
if there were 2 clusters, and the first cluster had 900
checkpoints, while the second cluster had 100 check-
points, then the first cluster would have a weight of
0.9 and the second cluster would have a weight of 0.1.
These weights are used for averaging results obtained
from simulated samples and reporting LiveSample re-
sults.

3.3 LiveSample

Once the setup and calibration phases are complete
LiveSim is ready for interactive use. The usage scenar-
ios that we envision is that the setup and calibration
phases can be completed when the architect is not ac-
tively using the simulator (similar to how simulation
batch jobs are run today). The LiveSample and LiveCI
results are what the architect would be interested in see-
ing while using LiveSim for Live simulation. An archi-
tect may make a configuration change and then request
results from LiveSim.

At this point LiveSim randomly selects the first batch
of checkpoints to simulate. The selection algorithm de-
pends on the number of clusters and the computation
resources of the system used for running the simulation
and is shown in Algorithm 1. The reason that we spawn
at least twice as many checkpoints as cores in the host
system is that it provided the highest sample execution
throughput on our system. Too many running samples
will overload the computation resources of the system,
while too few limit opportunities for overlapping com-
putation with I/O. This part of the initial checkpoint
selection algorithm could be tuned differently for differ-
ent systems, but it is important to ensure at least one
checkpoint is executed from each cluster, regardless of
the amount of samples that the system can execute in
parallel.

The selected checkpoints are contacted by the LiveSim
controller process and each selected checkpoint forks an-

for all clusters do
randomly select 1 checkpoint from the chosen
cluster;
end
while num selected checkpoints < num cores * 2
do
| randomly select 1 checkpoint from any cluster
end
Algorithm 1: Initial checkpoint selection algorithm

other copy of itself to run the simulation, while the par-
ent checkpoint process goes back to its waiting mode.
The child processes that will execute a sample loads the
simulator library, initializes the cache state using the
LiveCache data, warms up the rest of the microarchi-
tectural state using detailed warmup, and finally col-
lects statistics for its sample and reports them to the
LiveSim controller process.

LiveSim begins reporting simulation statistics to the
user as soon as the first checkpoint finishes execution.
These statistics are calculated by computing the arith-
metic mean of the sample values, after weighting each
sample by its cluster weight. These results are what we
call the LiveSample results and in our experiments they
typically reached a steady state value within 5 seconds
of starting the simulation.

3.4 LiveCl

Figure 1 shows an example of how LiveSim produces
LiveSample and LiveCI results for a user. The LiveSam-
ple result is provided as soon as the first checkpoint is
simulated, and it typically reaches a steady state value
very quickly (typically within 5 seconds). However, the
initial LiveCI results take slightly longer before they are
available and the simulation continues running until the
LiveCI result reaches the user’s specified threshold.

When LiveSim selects checkpoints to use for LiveSam-
ple results it ensures that at least 1 sample is selected
from each cluster. Afterwards it begins selecting check-
points completely randomly. However, for calculating
the confidence interval these samples that were initially
selected from clusters cannot be used. The reason is
that the confidence interval calculation requires sam-
ples to be chosen randomly from the population, and
the clustering violates this requirement.

Consequently when LiveSim selects checkpoints for
the LiveCI results it starts by selecting 30 completely
random checkpoints to take samples from. If any of the
checkpoints happen to have already been simulated then
the earlier sample results can be used directly. Oth-
erwise the LiveCl results have to wait until at least
30 completely random samples have been simulated.
LiveSim requires a minimum of 30 samples before cal-
culating the confidence interval because 30 is a gener-
ally accepted heuristic as the minimum cutoff value for
applying the central limit theorem to assume that the
sample mean distribution is normally distributed at this
rate and we are allowed to calculate confidence interval.

However, the minimum value of 30 is simply a heuris-



tic, and in a highly skewed distribution it may not be
enough. In some of our initial experiments we observed
that this could result in the confidence interval being
reported as more precise than it really was. This hap-
pened in cases with a population that was mostly homo-
geneous, but had a few large spikes (such as the Astar
example shown in Figure 3). If the initial set of samples
did not contain one of the spikes, the samples variance
could be very small which would lead to a very tight
confidence interval being calculated for a sample mean
that did not match the true sample mean of the popula-
tion. On the other hand if the initial set of samples did
contain a spike the confidence interval would be very
large and outside of the user defined range. In this case
the simulation would continue running and eventually
enough samples would be collected so that an accurate
sample mean and confidence interval was calculated.

So the only problem with the 30 sample minimum
heuristic was that sometimes the simulation could end
earlier than it should have because LiveSim missed one
of the infrequent spikes. To solve this problem we devel-
oped a heuristic where we inserted a synthetic sample in
the sample set when calculating the confidence interval.
The synthetic sample was created by computing the av-
erage of the samples collected thus far and multiplying
this average by 10. Then the confidence interval was
calculated using the true samples as well as the syn-
thetic one. This heuristic solved the problem of ending
the simulation too early due to missing extreme outlier
values and it works well in practice for the SPEC CPU
2006 benchmarks that we simulated. In the event that
a user was simulating a workload with even more ex-
treme variation in sample metric, a different heuristic
might be required, but we expect that adding a syn-
thetic point that is 10 times the sample average should
work well enough for most workloads that computer ar-
chitects simulate.

4. MEASUREMENT SETUP

We evaluated LiveSim using the 24 of the 29 SPEC
CPU 2006 benchmarks that we were able to run with
our simulator. Our simulation infrastructure uses the
MIPS64r6 ISA and it was missing support for some For-
tran libraries which prevented us from running 5 of the
CPU 2006 benchmarks (bwaves, gamess, cactusADM,
leslie3d, wrf).

We ran all of the benchmarks on an x86 system with
Haswell microarchitecture for 10 seconds using the first
reference input set and used performance counters to
determine how many instructions the benchmark exe-
cuted during this time. We then rounded this up to the
nearest 5 billion instructions and used this as the num-
ber of instructions to simulate during our evaluation.
This ranged from 15 billion to 90 billion instructions
depending on the benchmark.

We implemented LiveSim using a modified version
of ESESC [17] as the timing simulator and a modified
version of QEMU [18] as the emulation engine.

We compared 3 different simulated microarchitectures:

a high performance (HP) configuration that was mod-

eled on Intel’s Haswell microarchitecture, a medium
performance (MP) configuration modeled on the ARM
A72 microarchitecture, and a low performance (LP)
configuration modeled after MIPS Apache microarchi-
tecture. Table 1 provides more details about the simu-
lated microarchitecture configurations. The confidence
level for all evaluations was set to 95% and the target
confidence interval was 10% of the reported values.

Parameter | HP MP LP
Freq 3.5 GHz 2.5 GHz 1.7 GHz
1$ 32KB 8w 2cyc 32KB 2w 2cyc 32KB 4w 2cyc
D$ 32KB 8w 4cyc 32KB 4w 4cyc 32KB 4w 4cyc
L2 256KB 8w 1lcyc 2 MB 16w 16cyc  1MB 8w 26cyc
L3 (shared) | 8MB 16w 20cyc N/A 2MB 32w 14cyc
Mem. 110 cyc 100 cyc 60 cyc
BPred. ogehl 10%*2K Hybrid 16K 2level 2K
Issue 4 3 2
ROB 192 128 64
IWin. 60 72 64
LSQ 72/42 32/32 24/24
Reg(I/F) 168/168 128/128 40/40

Table 1: The three different architectures used
to evaluate LiveSim.

Our host system had 2 Intel Xeon CPU E5-2689 CPUs
and 192 GB of main memory. Each CPU had 8 cores
with 2 SMT threads per core, giving a total of 32 OS vis-
ible logical processors. When running the benchmarks
we executed them one at a time on the host system,
which allowed the host to use all its resources for run-
ning a single benchmark. In all our evaluations, the
simulated architecture is single-core and only one single
threaded benchmark is running at a time.

5. EVALUATION

Our evaluation of LiveSim is focused on four different
areas: speed, accuracy, warmup, and sample character-
ization. For speed and accuracy we compared LiveSim
with no sampling simulation and with a sampling mode
that was very similar to SMARTS [4].

5.1 Speed

Our primary goal for LiveSim is to enable interactive
design space exploration using a microarchitectural sim-
ulator. To evaluate this we ran all 24 benchmarks for
each of the 3 different configurations using both sam-
pling and no sampling, and we recorded a time vary-
ing trace of the LiveSim results. We calculated the
time varying CPI error percentage for each benchmark
by comparing the benchmark CPI reported by LiveSim
with the CPI simulated without sampling. Figure 4
shows a graphical representation of this data. The im-
portant thing to note is that although many of the
initially reported values have a large CPI error, this
quickly stabilizes and within 5 seconds the average er-
ror has dropped to 3.51%. Furthermore this error stays
roughly the same over the next 5 seconds. As a result
we believe that the LiveSample results reported after 5
seconds of simulation make LiveSim suitable for inter-
active microarchitectural simulation. This is even more
impressive considering that the portion of the bench-
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Figure 4: LiveSim CPI error for all 3 configurations and all 24 benchmarks (black line shows average
error). LiveSim achieves an average of 3.51% CPI error within 5 seconds.

mark simulated is equivalent to 10 seconds of execution
on a high performance system with a Haswell microar-
chitecture. This means that LiveSim enables simulation
that is even faster than native execution.
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Figure 5: Average simulation time of all bench-
marks and configurations. LiveSample results
are ready within 5 seconds, LiveCI takes tens
of seconds, SMARTS takes tens of minutes, and
running without sampling takes many hours.

With LiveSim we define LiveSample as the initial re-
sults that are produced using a weighted average of sam-
ples from the checkpoint clusters created during the cal-
ibration step. The results in Figure 4 indicate that the
LiveSample results are usable within 5 seconds. How-
ever, the LiveCI results take longer because they re-
quire true random selection of a larger number of sam-
ples. Figure 5 shows a comparison of runtime for all
of the different configurations for LiveSample, LiveClI,
SMARTS, and running the simulation without sam-
pling. It is important to note that the execution time of
SMARTS and no sampling is proportional to the length
of the benchmark while the execution time for LiveSam-
ple is nearly constant and for LiveClI it is proportional
to the variability of the samples. Hence, simulating a
longer benchmark won’t necessarily increase the simu-
lation time for either LiveSample or LiveCl.

Table 2 provides additional insight about the speed
of LiveSample and LiveCI and how it varies per bench-
mark using the HP configuration. The execution time
of LiveClI is proportional to the number of samples that
need to be simulated, and this is typically proportional
to the variability of the benchmarks. For LiveSample
we don’t show a specific time since it is not determined
algorithmically. But as illustrated earlier it is typically
stable within 5 seconds. The execution time of LiveCl is
determined algorithmically and it varies quite a bit from
one benchmark to another. However, for most bench-
marks it finishes within a minute or less. The MP and
LP configurations typically finish running more quickly
than the HP configuration, which is why the overall av-
erage execution time for LiveCI of all benchmarks and
all configurations is 41 seconds.

Setup and calibration only need to be performed once
for each benchmark even when there are big changes in
configurations (e.g. LP to HP) or even code changes in
simulator. In our experiments the average setup time
was 18 minutes and the average calibration time was
3 minutes. The only steps taken in every simulation
are LiveCache reload which takes 0.6 seconds on av-
erage, branch predictor warmup which takes 1 second,
LiveSample timing which takes 3.4 seconds and LiveCl
which can add 16 to 132 additional seconds to the sim-
ulation time.

5.2 Accuracy

In the previous section we demonstrated that LiveSim
is fast enough to be used for interactive simulator use.
However, fast results are only useful if they are reason-
ably accurate. When evaluating accuracy there are two
things to consider: how close is the point estimate to
the true value, and how often is the true value within
the confidence interval. For our evaluation we selected
a confidence interval of 10% and a confidence level of
95%. This means that we expect at most 5% of the
simulation results to vary by more than 10% from the
true value.

To evaluate this we ran 9 different experiments for
each of the 24 benchmarks. In each experiment, we



Benchmark | LiveSample LiveCI LiveCI Time (s)
astar 10 433 67.163
bzip2 10 496 64.021
calculix 6 398 48.227
dealll 1 178 17.937

gee 14 490 80.032

gemsfdtd 6 328 45.724
gobmk 4 360 56.750
gromacs 2 246 30.327
h264ref 1 178 24.756
hmmer 1 177 21.247
Ibm 3 239 32.679

libquantum 1 194 33.360
mcf 13 321 64.381
milc 13 500 74.741
namd 1 180 22.842
omnetpp 4 185 33.932

perlbench 6 183 33.197
povray 1 177 21.083
sjeng 2 899 137.470
soplex 9 427 61.676
sphinx3 8 213 27.493
tono 4 190 21.105

xalancbmk 1 177 31.461
zeusmp 8 412 54.872

Average 5.4 315.9 54.8

Table 2: Number of checkpoints needed for

LiveSample and LiveCI as well as LiveCI exe-
cution time for each benchmark.

first ran calibration with one configuration (HP, MP,
or LP) and then ran LiveCI with another configuration
(we tested all possible combinations). Of the total 216
experiments, there were 9 instances where the true CPI
value was outside of the range reported by LiveCI. This
is 4.16% of the time, which is within the expected range
for a 95% confidence level. Figure 6 shows the distribu-
tion of CPI error for this set of experiments. Although
the target confidence interval was set to 10%, in most
cases the actual CPI error was much less, and the overall
average error was 3.39%. These results also support our
contention that the calibration step is microarchitecture
independent. The overall error is roughly the same re-
gardless of whether calibration is done with the same
configuration as LiveClI or if the configuration used for
LiveClI is very different from that used for calibration.

Figure 7 compares the CPI from LiveCI and full sim-
ulation when using the same configuration for calibra-
tion and LiveCl. In this case all of the benchmarks are
within the configured confidence interval.

5.3 Warmup

Earlier we described how architectural state warmup
is a critical part of sampling. In this section we evalu-
ate the effectiveness of LiveCache as well as the amount
of detailed warmup for other parts of the simulated
microarchitecture. All of these experiments were per-
formed using the HP configuration since it has the largest
and most complex microarchitectural structure that will
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Figure 6: CPI error distribution across bench-
marks in LiveSim. Each box label shows calibra-
tion and live simulation configurations respec-
tively.

need the most warmup.

LiveCache is created to eliminate the need of doing
traditional cache warmup for millions of instructions.
In order to see how it compares, we ran a set of ex-
periments with different amounts of warmup varying
from 0 to 102.4 million instructions. In each experi-
ment we measured and recorded the AMAT error for
all benchmarks. Figure 8 shows the result of these ex-
periments comparing them to one other experiment in
which LiveCache was enabled and no other warmup was
done. Our evaluations show that having LiveCache en-
abled results in less AMAT error in average than doing
50m instructions warmup and less maximum AMAT er-
ror than 102m instructions warmup. We also measured
the overhead associated with LiveCache per checkpoint
and it was less than 0.6 seconds on average. This is a
relatively small overhead compared to the sample exe-
cution time, and is less significant because samples are
executed in parallel.

Although LiveCache eliminates the need for cache
warmup, there are other microarchitectural components
that need to be warmed up especially the branch predic-
tor. Figure 9 shows how branch prediction accuracy er-
ror rate decreases as the amount of warmup increases. It
hits a plateau around 900K instructions, and we found
that in practice 1 million instructions was a good value
for warmup.

In our evaluations, we used ESESC [17], which has
a typical timing simulation speed of 1 MIPS. Since ES-
ESC is fast it does not need a separate functional warmup
for branch predictor. However, a slower simulator may
need to have a separate branch predictor warmup mode.

5.4 Checkpoint Characterization

Although the number of samples that LiveSim uses
is determined on-the-fly, the maximum value is limited
by the number of available checkpoints. As a result we
need to make sure to create enough checkpoints for any
possible combination of configuration and benchmark
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Figure 7: LiveClI results of SPEC benchmarks
simulating the LP, MP and HP architectures
compared to no-sampling simulation. The re-
ported CPI results have 3.33% error in average
and CI estimation is 100% accurate.
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Figure 8: Comparison of AMAT error for Live-
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Figure 9: Average error of branch prediction
statistics based on amount of detailed warmup
at the start of a checkpoint.

that might be simulated. On the other hand, there are
two reasons why we want to limit the number of check-
points, although we think these problems are more sig-
nificant in simulator development than they would be if
LiveSim were used in practice. The first reason is that
each checkpoint needs to be run during the calibration
phase, so adding more checkpoints makes calibration
take longer. (However, if LiveSim were used in practice
we expect that calibration would be done infrequently
relative to how often the user collected LiveSim and
LiveSample results, and longer calibration times would
not be a problem.) The second reason is that our cur-
rent implementation potentially uses a large amount of
memory for each checkpoint, and if LiveSim has to use
swap it will have a dramatic performance drop. We be-
lieve that this is mostly an implementation issue rather
than something that is intrinsic to the LiveSim system,
and that memory use per checkpoint could be reduced
if more time were spent optimizing this bottleneck.
LiveSim uses copy-on-write when creating checkpoints
so the memory utilization depends on how many pages
the application writes to. We have measured the mem-
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for a given confidence interval and confidence
level in LiveSim, estimated using Monte Carlo
simulation.

ory usage per checkpoint for SPEC benchmarks, and on
average, a new checkpoint adds 45 MB memory occu-
pancy. The maximum checkpoint size belongs to MCF,
which is 165 MB.

To determine the maximum number of checkpoints
that might be needed for various confidence interval and
confidence level targets we ran the simulations with-
out sampling and collected samples for every possible
checkpoint candidate. This gave us a pool of tens of
thousands of potential samples to pick from. Next we
ran a Monte Carlo simulation to randomly select from
the pool of samples. For each benchmark and configu-
ration pair, we calculated the confidence interval from
the set of samples, and saved the maximum confidence
interval calculated for that number of samples. We did
this for the three most common confidence levels, and
Figure 10 shows a plot of the results. The plot indi-
cates that for our target of 10% confidence interval at a
95% confidence level we need roughly 500 checkpoints.
However, this is simply a heuristic and to be safe we rec-
ommend doubling the number shown here when pick-
ing how many checkpoints to actually use, because if
LiveSim does not have enough checkpoints it may be
unable to meet the confidence interval target for LiveCl
results.

We also evaluated how many instructions each sam-
ple should contain and the impact of sample size on
simulation error and runtime. In general larger sam-
ples tend to improve accuracy but decrease simulation
speed. We determined that there is a sweet spot where
increasing sample size does not improve accuracy but
does decrease the speed. Furthermore in our imple-
mentation we did not get any speedup for samples that
were smaller than 100K instructions because of commu-
nication overhead between the simulation server and the
worker nodes. We experimented with sample sizes rang-
ing from 100K instructions to 20 times that amount.
Figure 11 shows that the average error does not de-
crease with larger samples sizes.

Although Figure 11 indicates that the minimum sam-
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ror. Each box shows the error rate distribution
for SPEC benchmarks and the line shows the
average error across benchmarks.
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ple size is best in terms of speed and accuracy trade-off,
this is not necessarily the case, because smaller samples
can have more variation, and more variation across sam-
ples increases the number of samples needed for LiveClI.
Figure 12 shows the effect of sample size on simulation
time (LiveCI). This figure shows that 200K instruction
samples result in the minimum simulation time. Since
the error rate is nearly the same for all samples sizes,
this is the sample size we used for LiveSim.

6. RELATED WORK

Researchers have been working on ways to speed up
simulation for decades and we surveyed some of the
seminal work related to profile based sampling [3, 9]
and statistical sampling [4, 10, 11] for microarchitec-
ture simulation in Section 2. To the best of our knowl-
edge no one has proposed simulation techniques that
are suitable for interactive use (providing results in 5
seconds or less). LiveSim achieves fast simulation by
combining three main techniques: random sampling of



checkpoints, parallel simulation of checkpoints, and fast
warmup of checkpoint state using LiveCache. There is a
variety of related work in these various areas, but none
of them attempt to achieve the goals of LiveSim.

The most closely related work to LiveSim is from
Sandberg et al. [19, 20]. Like us, they use copy on write
to fork multiple checkpoints and execute the checkpoints
in parallel to speed up simulation. However, their pro-
posal focuses on accelerating a single simulation run and
only executes at 25% of native execution speed when
simulating a system with an 8MB L2 cache. While this
is an impressive result, our LiveSim system is able to ex-
ecute at faster than native speed. After the initial setup
step, LiveSim is able to provide simulation results in 5
seconds or less, even though we simulated 10 seconds
of native execution. Sandberg et al. essentially use
the SMARTS methodology, while using virtualization
and parallel checkpoint execution to accelerate the func-
tion warming (which is the most time-consuming part of
SMARTS). In contrast we randomly select checkpoints
in LiveSim and are able to report initial results within 5
seconds, and we choose how many total checkpoints to
execute based on characteristics of the benchmark that
we are simulating, whereas Sandberg et al. simulate all
checkpoints as SMARTS would. Parallel execution of
forked copies of an application has also been used by
others to speed up analysis performed using dynamic
binary instrumentation [21, 22].

SMARTS is effective at minimizing the number of in-
structions that need detailed simulation; however, its
conservative always-on warmup of caches and branch
predictor makes warmup the simulation bottleneck (over
99% of simulation time). Many researchers have ob-
served that always-on warmup of caches may be unnec-
essary and have looked for ways to accelerate warmup.
For LiveSim we developed LiveCache by adapting a
technique developed by Barr et al. [14] which keeps
track of the sequence of memory operations during func-
tional warmup and uses this information to rebuild the
cache state before beginning detailed simulation of a
sampling unit. We found that LiveCache technique
works very well with LiveSim and helps us meet our
goal of getting accurate simulation results in 5 seconds
or less. However, there are a variety of other techniques
that have been proposed for accelerating warmup.

Haskins and Skadron [23, 24] demonstrated that con-
tinuous cache and branch predictor warmup was unnec-
essary, and they proposed ways to determine when to
begin warmup prior to simulating a sample. Eeckhout
et al. [25] proposed a similar technique that further re-
duced the amount of warmup required. Luo [26] pro-
posed a method to monitor when a cache was warmed
up and used that information to decide when to switch
to full simulation. Recent work from Nikoleris et al. [15]
shows that some workloads may require up-to 100 mil-
lion instructions of cache warmup for caches larger than
64 MB. They propose a technique that uses native exe-
cution to capture a sample of memory accesses and uses
this to reduce the amount of warmup for large caches.
All of these techniques are effective for the types of sim-
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ulation they evaluate, but they would not help with
LiveSim because we still need to execute the application
once during the setup phase, and so LiveCache is easily
integrated with LiveSim’s setup phase as a low overhead
and relatively simple way to do cache warmup.

For LiveSim we have focused on developing a sim-
ulator that supports interactive use when evaluating
new architecture proposals. Our work focuses on fast
performance simulation for a single thread of execution
because this is the baseline for microarchitecture sim-
ulation, and it must work correctly before considering
more complex scenarios. Other researchers have looked
for ways to speed up thermal simulation [27, 28], multi-
threaded simulation [17, 29, 30], and simulation of soft-
errors in caches [31]. As future work we may extend
LiveSim to support these additional simulation modes,
but first we want to establish the usefulness of LiveSim
using performance simulation only.

There are also proposals to accelerate simulation by
varying the level of simulation detail depending on the
region of code that is being simulated [32, 33, 34]. While
these techniques work well for accelerating simulation
they fall short of our goal of supporting simulation speeds
that are suitable for interactive use.

7. CONCLUSION

We developed LiveSim, a novel simulation methodol-
ogy that can be used for interactive microarchitectural
design space exploration. Although analytical model-
ing can also be used for early design space exploration,
eventually architects typically use simulation based meth-
ods to evaluate the usefulness of proposed ideas. LiveSim
makes simulation fast enough for interactive use and
allows architects to quickly change parameters and get
immediate feedback using real benchmarks. LiveSim
leverages many advances of the past two decades in ap-
plying statistical sampling to microarchitectural simu-
lation. However, previous work on sampling has simply
tried to make simulation faster. LiveSim is the first
to demonstrate how sampling can be used to support
interactive microarchitectural simulation.

Our prototype demonstrates the feasibility of LiveSim
and obtains accurate results within 5 seconds and bounds
the possible error within 41 seconds on average for the
benchmarks we evaluated. It is available as an open
source project at https://github.com/masc-ucsc/liveos.
Although we evaluated the LiveSim methodology us-
ing this prototype, the concepts are general and can be
adopted for use with other simulators.
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